高考物理复习专题12楞次定律的应用知识点
12-10-22高二物理《楞次定律的应用》(课件)

d 3. 如图, 导线框abcd与导线 AB在同一平面内, 直导线 AB中通过恒定电流I,在 c b c 线框由左向右匀速通过直 b B 导线的过程中, 线框中感应电流方向是: A. 先abcd, 再dcba, 后abcda B. 先abcd, 再dcbad D C. 始终是dcbad D. 先dcbad, 再abcda, 后dcbad
在下面四个图中标出线圈上的N、S极
S S N N
N
N
S
S
N
G
G
S
G
S
G
N S
S
移近时
N
斥力
N
[从另一个角度认识楞次定律]
在下面四个图中标出线圈上的N、S极
S S N N
N
N
S
S
N
G
G
S
G
S
G
N S
S
移近时
N
斥力
N
阻碍相互靠近
[从另一个角度认识楞次定律]
在下面四个图中标出线圈上的N、S极
S S N N
N
N
S
S
N
G
G G G
[从另一个角度认识楞次定律]
在下面四个图中标出线圈上的N、S极
S S N N
N
N
S
S
N
G
G G G
S
[从另一个角度认识楞次定律]
在下面四个图中标出线圈上的N、S极
S S N N
N
N
S
S
N
G
G G G
S
N
[从另一个角度认识楞次定律]
在下面四个图中标出线圈上的N、S极
S S N N
2. 感应电流的效果总是要阻碍引起感应 电流的原因. (1)感应电流总要阻碍原磁通量的变化
楞次定律(高清图)

B. 管是用铝制成的, 管是用胶木制成的
C. 管是用胶木制成的, 管是用塑料制成的
D. 管是用铜制成的, 管是用胶木制成的
12.如图所示,蹄型磁铁和矩形线圈均可绕竖直轴OO’转动,从上想下看,当磁铁逆时针转动时,则()
A.线圈将逆时针转动,转速与磁铁相同
B.线圈将逆时针转动,转速比磁铁小
A.内环顺时针方向,外环逆时针方向
B.内环逆时针方向,外环顺时针方向
C.内外环均顺时针方向
D.内外环均逆时针方向
2.由细弹簧围成的圆环中间插入一根条形磁铁,如图所示.当用力向四周扩展圆环,使其面积增大时,从上向下看()
A.穿过圆环的磁通量减少,圆环中有逆时针方向的感应电流
B.穿过圆环的磁通量增加,圆环中有顺时针方向的感应电流
9.老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是()
A.磁铁插向左环,横杆发生转动
B.磁铁插向右环,横杆发生转动
C.无论磁铁插向左环还是右环,横杆都不发生转动
D.无论磁铁插向左环还是右环,横杆都发生转动
C.使磁铁沿垂直于线圈平面的方向向纸外做平动
D.使磁铁在线圈平面内绕O点沿顺时针方向转动
14.2003年,我国已宣布已研制成功一辆高温超导磁悬浮列车的车速已达到500km/h,如图所示就是磁悬浮的原理图,图中A是圆柱形磁铁,B是用高温超导材料制成的超导圆环,将超导圆环B水平方在磁铁A上,它就能在磁力的作用下悬浮在磁铁A的上方空中,则()
楞次定律倾向于理论
知识点1:利用楞次定律确定感应电流的方向
利用楞次定律判断感应电流的方向,步骤可以概括为:一原、二变、三感、四螺旋
高三磁场楞次定律知识点

高三磁场楞次定律知识点磁场楞次定律是电磁学中的一个重要概念,描述了电流变化产生的磁场变化所遵循的规律。
高三物理学习中,磁场楞次定律是必须掌握的知识点之一。
本文将详细介绍高三磁场楞次定律的定义、公式以及应用,并结合具体案例进行解析。
1. 磁场楞次定律的定义磁场楞次定律是法国物理学家安德烈-玛丽·安培于1820年提出的。
它描述了通过导线的电流变化所产生的磁场变化,以及磁场变化对导线本身产生的感应电动势。
2. 磁场楞次定律的公式根据磁场楞次定律的定义,可以得到其数学表达式为:$$\varepsilon = -\frac{d\Phi}{dt}$$其中,$\varepsilon$表示感应电动势(单位:伏特V),$d\Phi$表示磁通量的变化量(单位:韦伯Wb),$dt$表示时间的变化量(单位:秒s)。
根据右手定则,磁场的方向可以确定为“垂直于电流方向和磁场变化的方向”。
3. 磁场楞次定律的应用磁场楞次定律的应用范围非常广泛,以下列举几个具体的应用案例:3.1 电磁感应根据磁场楞次定律,当导线中的电流发生变化时,会产生磁场的变化。
而这种磁场的变化又会引起导线中的感应电动势。
因此,磁场楞次定律是解释电磁感应现象的重要理论基础。
3.2 电动机电动机是利用电流在磁场中受力而产生机械运动的装置。
根据磁场楞次定律,当电流通过电动机的线圈时,线圈会受到磁场力的作用,进而产生旋转运动。
电动机的工作原理就是基于磁场楞次定律的。
3.3 电磁铁电磁铁是利用电流产生磁场的原理,通过控制电流的开关来控制磁铁的磁性。
根据磁场楞次定律,当电流通过电磁铁时,会产生磁场。
通过改变电流的方向和大小,可以控制磁铁的磁性强弱,从而实现吸附和释放等功能。
4. 案例分析为了更好地理解磁场楞次定律的应用,我们以一个具体案例进行分析。
假设有一根直导线$AB$,电流从$A$点流入导线,经过一段时间后电流从$B$点流出。
根据磁场楞次定律,可以得到以下结论:4.1 磁场的产生当电流从$A$点流入导线时,会在导线周围产生一个环绕导线的磁场。
高二物理楞次定律及应用知识精讲

高二物理楞次定律及应用【本讲主要内容】楞次定律及应用楞次定律及熟练运用楞次定律【知识掌握】【知识点精析】1、实验:闭合电路的磁通量发生变化的情况:实线箭头表示原磁场方向,虚线箭头表示感应电流磁场方向。
分析:(甲)图:当把条形磁铁N极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反。
(乙)图:当把条形磁铁N极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同。
(丙)图:当把条形磁铁S极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反。
(丁)图:当条形磁铁S极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同。
通过上述实验:凡是由磁通量的增加引起的感应电流,它所激发的磁场一定阻碍原来磁通量的增加;凡是由磁通量的减少引起的感应电流,它所激发的磁场一定阻碍原来磁通量的减少。
在两种情况中,感应电流的磁场都阻碍了原磁通量的变化。
2、楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
说明:对“阻碍”二字应正确理解.“阻碍”不是“阻止”,而只是延缓了原磁通量的变化,电路中的磁通量还是在变化的.例如:当原磁通量增加时,虽有感应电流的磁场的阻碍,磁通量还是在增加,只是增加得慢一点而已.实质上,楞次定律中的“阻碍”二字,指的是“反抗着产生感应电流的那个原因。
”3﹑楞次定律的应用【解题方法指导】例1. 用一个接通灵敏电流计的螺线管,当磁铁S极移近或远离螺线管(如图所示)感应电流的方向如何?(1)先做演示实验,体会感应电流产生的真实性,再利用课件展示物理现象。
请同学们结合上节课的简单应用,完成基本操作程序:①判断原磁场方向;向上②判断磁通量是增加还是减少;甲增,乙减③判断感应电流的磁场方向;甲向上,乙向下④判断感应电流方向。
楞次定律知识总结

楞次定律
1、步骤
楞次定律的应用应该严格按以下四步进行:
①确定原磁场方向;
②判定原磁场如何变化(增大还是减小);
③根据“增反减同”确定感应电流的磁场方向;
④根据安培定则判定感应电流的方向.
2、楞次定律的四种表现形式
形式一、增反减同
当闭合回路中原磁通量增加时,感应电流的磁场方向就与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方相同。
形式二、来拒去留
感应电流阻碍相对运动,原磁场靠近闭合回路(线圈)时,感应电流的磁场要拒之;原磁场远离回路(线圈)时,感应电流的磁场要留之。
从运动的效果看,可表述为敌进我拒,敌退我追。
形式三、增缩减扩
闭合回路中原磁通量增大时,闭合回路的面积有收缩的趋势;原磁通量减少时,闭合回路面积有扩大的趋势。
形式四、(自感现象)感应电流阻碍原电流变化
线圈中原电流增加,在线圈中自感电流的方向与原电流方向相反;反之,则相同。
楞次定律和右手定则的区别
1、右手定则只适用于部分导体切割磁感线的情况,楞次定律适用于任何情况。
2、楞次定律的研究对象是整个回路,而右手定则却是一段做切割磁感线运动的导线。
但二者是统一的。
3、用到楞次定律必定要用安培定则。
1。
高考物理知识点:电磁感应现象——楞次定律(解析版)

易错点22 电磁感应现象楞次定律易错总结一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)有效面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和有效面积S都不变,它们之间的夹角发生变化.如图(c)所示.二、感应电流的产生条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.三、对楞次定律的理解1.楞次定律中的因果关系楞次定律反映了电磁感应现象中的因果关系,磁通量发生变化是原因,产生感应电流是结果.2.对“阻碍”的理解问题结论谁阻碍谁感应电流的磁场阻碍引起感应电流的磁场(原磁场)的磁通量的变化为何阻碍(原)磁场的磁通量发生了变化阻碍什么阻碍的是磁通量的变化,而不是阻碍磁通量本身如何阻碍当原磁场磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当原磁场磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”结果如何阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行,最终结果不受影响3.“阻碍”的表现形式从磁通量变化的角度看:感应电流的效果是阻碍磁通量的变化.从相对运动的角度看:感应电流的效果是阻碍相对运动.解题方法楞次定律的应用应用楞次定律判断感应电流方向的步骤(1)明确所研究的闭合回路,判断原磁场方向.(2)判断闭合回路内原磁场的磁通量变化.(3)依据楞次定律判断感应电流的磁场方向.(4)利用右手螺旋定则(安培定则)判断感应电流的方向.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·江苏姜堰中学)学习物理除了知识的学习外,还要领悟并掌握处理物理问题的思想与方法。
下列关于物理学中的思想方法叙述正确的是()A.伽利略在研究自由落体运动时采用了微元法B.法拉第在研究电磁感应现象时利用了理想实验法C.在探究求合力方法的实验中使用了等效替代的思想D.在探究加速度与力、质量的关系实验中使用了理想化模型的思想方法【答案】C【详解】A.伽利略在研究自由落体运动时采用了实验和逻辑推理的方法。
高中物理之楞次定律知识点

高中物理之楞次定律知识点磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.适用条件(1)匀强磁场。
(2)S为垂直磁场的有效面积。
4.磁通量是标量。
5.物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cosθ或BS3。
(2)通过矩形a′b′cd的磁通量为BS3。
(3)通过矩形abb′a′的磁通量为0。
6.磁通量变化:ΔΦ=Φ2-Φ1。
电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。
2.条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。
3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。
感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导线切割磁感线产生感应电流。
用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
⑤“因电而动”用左手定则;“因动而电”用右手定则。
高二物理楞次定律知识点

高二物理楞次定律知识点楞次定律是电磁感应中的基本定律之一,描述了磁感应强度与通过闭合回路的磁通量的关系。
它由法国物理学家楞次在1834年提出,是电磁学的重要基石之一。
本文将介绍高二物理楞次定律的相关知识点。
1. 楞次定律的表述楞次定律可以用以下公式表述:ε = -ΔΦ/Δt其中,ε代表感应电动势,ΔΦ代表磁通量变化,Δt代表时间变化。
2. 磁通量的概念磁通量Φ是描述磁场穿过一个平面的数量的物理量。
它的大小与磁场的强度和面积有关,可以用以下公式计算:Φ = B·A·cosθ其中,B代表磁场强度,A代表平面面积,θ代表磁场线与平面法线之间的夹角。
3. 楞次定律的基本原理楞次定律的基本原理是磁场变化引起感应电动势的产生。
当磁通量发生变化时,闭合回路中会产生感应电动势,进而产生感应电流。
4. 楞次定律的应用楞次定律在实际应用中具有广泛的意义,包括以下几个方面:1) 可以解释电磁感应现象,如电磁感应发电机的工作原理。
2) 可以解释变压器的工作原理,即利用楞次定律实现电压的升降。
3) 可以解释电磁铁的工作原理,即通过改变电磁铁中的电流产生磁场,实现吸附和释放物体。
5. 楞次定律的扩展楞次定律还可以扩展到电场变化引起的感应电动势。
当电场发生变化时,也会产生感应电动势。
这一扩展称为法拉第电磁感应定律。
6. 楞次定律的实验验证楞次定律可以通过一系列实验来验证,如改变磁场强度、改变磁场方向以及改变回路形状等。
实验结果与楞次定律的预测一致,进一步验证了该定律的准确性。
总结:高二物理学习中楞次定律是一个重要的知识点,它可以用来解释电磁感应现象,如电磁感应发电机、变压器和电磁铁的工作原理。
楞次定律的实验验证也进一步证明了其准确性。
通过学习楞次定律,我们可以更好地理解电磁学的基本原理和应用,为进一步的物理学习奠定基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、考查楞次定律的应用
楞次定律的应用主要考查的内容
主标题:楞次定律的应用
副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。
关键词:楞次定律
难度:3
重要程度:5
内容:
考点剖析:
楞次定律是高中物理的基本定律,从近几年的高考可以看出,对楞次定律的考查几乎每年都有,高考主要考查考生熟练运用楞次定律判断感应电流的方向,由感应电流的方向判断引起感应电流的原磁场方向及磁通量变化,出题以选择题为主。
楞次定律的文字表述简明扼要,初学时常常不能完全理解它的含义。
要正确理解楞次定律需要注意以下两点。
1.定律中有两个磁场——引起感应电流的磁场(原磁场)和感应电流的磁场。
原磁场的变化产生感应电流,感应电流的磁场阻碍原磁场的变化。
2.理解定律的关键在于理解“阻碍”的含义:“阻碍”不是“阻止”,不是使原磁场的变化停止,阻碍作用只是“延缓”原磁场的变化,没有原磁场的变化就不会有感应电流的产生;“阻碍”的对象是原磁场的变化而不是原磁场,不能把“阻碍”简单理解为“相反”;阻碍不仅有“反抗”原磁场增加的含义,还有“补偿”原磁场减弱的含义。
楞次定理可推广为:感应电流的效果总是“反抗”引起感应电流的原因。
常有以下几种表现:
1.阻碍原磁通量的变化——“增反减同”。
如果原磁场的磁通量是增加的,感应电流就产生一个反向的磁场“反抗”原磁场的增加;如果原磁场的磁通量是减小的,感应电流就产生一个同向磁场对原磁场进行“补偿”。
2.阻碍导体的相对运动——“来拒去留”。
从运动效果上看,也可形象地表述为“敌进我退”、“敌逃我追”。
典型例题
例1.(2014·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。
一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。
让条形磁铁从静止开始下落。
条形磁铁在圆筒中的运动速率( )
A.均匀增大
B.先增大,后减小
C.逐渐增大,趋于不变
D.先增大,再减小,最后不变
【解析】C.本题考查楞次定律、法拉第电磁感应定律。
竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动。
所以C 正确。
例2.(2014·广东卷] 如图所示,上下开口、内壁光滑的铜
管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由
静止释放,并落至底部,则小磁块( )
A .在P 和Q 中都做自由落体运动
B .在两个下落过程中的机械能都守恒
C .在P 中的下落时间比在Q 中的长
D .落至底部时在P 中的速度比在Q 中的大
【解析】C.磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A 、B 错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P 中的下落时间比在Q 中的长,落至底部时在P 中的速度比在Q 中的小,选项C 正确,选项D 错误。
例3.(2015·重庆)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S 。
若在1t 到2t 时间内,匀强磁场平行于线圈
轴线向右穿过线圈,其磁感应强度大小由1B 均匀增加到2B ,则该段
时间线圈两端a 和b 之间的电势差φa -φb ( )
A.恒为2121()nS B B t t --
B. 从0
均匀变化到2121
()nS B B t t -- C.恒为-2121()nS B B t t -- D.从0均匀变化到-2121()nS B B t t -- 【解析】C.穿过线圈的磁感应强度均匀增加,故产生恒定的感应电动势,根据法拉第电磁感应定律,有:
E =n t Φ∆∆=nS B t
∆∆=2121()nS B B t t -- 根据楞次定律,如果线圈闭合,感应电流的磁通量向左,故感应电动势顺时针(从右侧看),故φa <φb ,故:
φa -φb =-2121
()nS B B t t -- 例4.(2015·山东) 如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动。
现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。
在圆盘减速过程中,以下说法正确的是( )
A .处于磁场中的圆盘部分,靠近圆心处电势高
B .所加磁场越强越易使圆盘停止转动
C .若所加磁场反向,圆盘将加速转动
D.若所加磁场穿过整个圆盘,圆盘将匀速转动
【解析】ABD.根据右手定则可判断靠近圆心处电势高,选项A正确;圆盘处在磁场中的部分转动切割磁感线,相当于电源,其他部分相当于外电路,根据左手定则,圆盘所受安培力与运动方向相反,磁场越强,安培力越大,故所加磁场越强越易使圆盘停止转动,选项B正确;磁场反向,安培力仍阻碍圆盘转动,选项C错误;若所加磁场穿过整个圆盘,整个圆盘相当于电源,不存在外电路,没有电流,所以圆盘不受安培力而匀速转动,选项D正确。