六年级数学正、反比例应用题例题
六年级数学下册 试题-提优训练5(正、反比例) (含答案)(苏教版)

提优训练(5)(正、反比例) 班级 姓名一、填空1. 甲乙两人共同加工一批零件,完成任务时,甲乙完成零件个数的比是3:5,他们的工作效率之比是( );用同样多的钱,可以买A 种书12本,可以买B 种书18本, 两种书的单价之比是( );客货两车同时从AB 两地相向而行,客车速度与货车速度的比是3:5,相遇时,客货两车所行的路程之比是( )。
2.有一只汽船,在静水中航行每小时20千米。
汽船往返于甲、乙两个码头,逆水航行花费的时间等于顺水航行的1.5倍。
水的流速每小时( )千米。
3.某校买来A 、B 两种篮球共100个,已知甲种篮球每个30元,乙种篮球每个20元,且甲、乙两种篮球所用钱数一样多。
甲种篮球买了( )个。
4.小明从甲地到乙地,去时每小时行6千米,回来时每小时行9千米,来回一共用5小时。
甲、乙两地相距( )千米。
5.一辆汽车从A 城开往B 城,去时用了9小时,返回时速度快了10%,返回时需要( )小时。
6.甲、乙两辆汽车同时从两个城市相对开出,2小时后,两车在距离中点20千米处相遇,这时甲车与乙车的路程比是3:4,甲车每小时行( )千米。
7. 李平骑自行车从家到县城,原计划用5小时30分。
由于途中有3.6千米的道路不平,走这段路时的速度相当于原来的34,因此,晚到了12分钟。
李平家到县城有( )千米。
8. 一个车间改革后,人员减少20﹪,产量却增加了20﹪,工作效率提高了( )﹪。
9. 客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有42千米。
已知货车和客车的速度比是5 :7,甲、乙两地相距( )千米。
10.甲乙两列火车的速度比是5∶4,乙车先出发,从B 站开往A 站,当行到离B 站72千米的地方时,甲车从A 站出发开往B 站,两列火车相遇的地方离A 、B 两站距离的比是3∶4,A 、B 两站相距( )千米。
二、应用题1. 甲、乙两辆汽车同时从A 、B 两个城市相对开出,经过8小时相遇后,甲车继续向前开到B 城还要4小时。
六年级上册数学《比》3类必考应用题及练习

六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。
所设未知数的计量单位名称要与已知的计量单位名称相同。
练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。
X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。
2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。
2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。
例题如下:六一玩具厂要生产2080套儿童玩具。
前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。
2. 判断下列各题中,两种量是否成正比例关系,请说明理由。
(1)订阅《中国少年报》的金额和份数。
________(2)人的年龄和体重。
________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。
(1)把表格填完整。
(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。
x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。
(1)订《少先队员》的份数和总价钱。
________(2)三角形的面积一定,底和高。
________(3)总人数一定,行数和每行人数。
________(4)总价一定,单价与数量。
________已知x和y是反比例关系,根据表中的条件,填写下表。
全年级总人数一定,每班人数与班数成________比例。
=y(x不为0),那么x和y成________比例。
如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。
判断题。
(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。
________(判断对错)人的体重和年龄成正比例。
________(判断对错)糖水的含糖率一定,糖和水成反比例。
________(判断对错)正方形面积与边长成反比例。
________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。
________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。
________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。
六年级下册数学试题-第四单元《正反比例》(含解析)北师大版

页 1【单元提高讲义】2019—2020学年北师大版六年级下册第四单元《正反比例》(提高版)模块一:正比例与反比例 1、成正比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③比值一定关系式:k yx=(一定) 2、成反比例的量①两种相关联的量;②一种量变化,另一种量也随着变化;③积一定 关系式:k xy =(一定)3、判断两种量成正比例还是成反比例的方法。
关键是看这两种相关联的量对应的两个数的商一定还是积一定,如果商一定就成正比例,如果积一定就成反比例。
4、正比例与反比例的区别模块二:用比例解决实际问题根据问题中的不变量找出两种相关联的量,并判断这种相关联的量成什么比例,根据正反比例关系式列出方程并求解。
一、正、反比例异同点相同点:都有两种相关联的量,一种量随着另一种量变化.不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.二、正比例和反比例的比较正比例反比例1.相同点(1)都有两种相关联的量(2)一种量随着另一种量变化2.不同点页2正比例:(1)变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小(2)相对应的每两个数的比值(商)是一定的反比例:(1)变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大)(2)相对应的每两个数的积是一定的【试题检测】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.962.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:8000003.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高页3C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:4006.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断7.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是.在图中量得校园的长为3厘米,那么它的实际长度为米.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是.11.5x=3y,x:y=(:),x和y成比例.页412.一捆100m长的电线,用去的长度与剩下的长度成正比例.(判断对错)13.反比例关系可以用式子表示.14.如果x=3y(x和y都不为0),那么x和y成比例关系:如果xy=12.6(x和y都不为0),那么x和y成比例关系.15.在一张地图上画有一条线段比例尺,把它写成数值比例尺是,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是千米.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成比例.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.(判断对错)页518.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.(判断对错)19.两个正方形边长的比和面积的比能够组成比例.(判断对错)20.如果ab+5=12,则a与b成反比例..(判断对错)21.火车行驶1000km,行驶的速度和所需的时间成反比例..(判断对错)22.一辆汽车从甲地开到乙地所用的时间与速度成正比例..(判断对错)23.梯形的面积一定,它的高与上、下底的和成反比例.(判断对错)24.若以ab﹣8=12.5,则a与b成反比例.(判断对错)25.报纸的单价一定,总价与订阅的份数成反比例.(判断对错)四.计算题(共7小题)26.将线段比例尺化为数值比例尺:页627.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.28.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?31.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)页732.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?(2)看图估计,行2.5千米大约用多少分钟?页835.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?页9六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米页1040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.七.解答题(共4小题)41.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)页11页 1242.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y 表示用煤的数,x 表示用煤的天数,k 表示每天的用煤量,它们之间的关系可以表示为.(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花元.页13(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.页14【解析版】一.选择题(共8小题)1.一个直角三角形的两条直角边分别是3厘米和2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24C.48D.96【解答】解:(3×4)×(2×4)÷2=12×8÷2=48(平方厘米)答:面积是48平方厘米.故选:C.2.把线段比例尺改写成数值比例尺是()A.1:8000B.1:80C.1:800000【解答】解:1厘米:8千米=1厘米:800000厘米=1:800000改写成数值比例尺是1:800000.页15故选:C.3.下列X和Y成反比例关系的是()A.x+y=10B.x=y C.y=(>0)【解答】解:A、x+y=10,是和一定,不成比例;B、x=y,即x:y=,是比值一定,则x和y成正比例;C、y=(>0),即xy=6,是乘积一定,则x和y成反比例.故选:C.4.下列各项中,两种量成反比例关系的是()A.工作效率一定,工作时间与工作总量B.人的年龄与其身高C.长方形的周长一定,它的长与宽D.三角形的面积一定,这个三角形的底和高【解答】解:A、作总量÷工作时间=工作效率(一定),是对应的“比值”一定,所以工作时间与工作总量成正比例;B、人的身高和年龄对应的“比值”和“乘积”都不一定,所以人的身高和年龄不成比例;页16C、长方形的长+宽=周长÷2(一定),是对应的“和”一定,所以长方形的长和宽不成比例;D、因为三角形的面积S=ah,所以三角形的面积一定,三角形的底和高成反比例.故选:D.5.在一幅地图上,4厘米表示实际距离16千米,这地图比例尺是()A.1:4B.1:4000C.1:400000D.1:400【解答】解:16千米=1600000厘米,4:1600000=1:400000;答:这幅地图的比例尺是1:400000.故选:C.6.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.页177.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.8.8x=5y,x与y()A.成正比例B.成反比例C.不成比例D.无法判断【解答】解:8x=5y,若x、y都不为0,则x:y=5:8=,是比值一定,则x和y成正比例;若x、y都为0,则不成比例.故选:D.二.填空题(共8小题)9.某学校平面图的比例尺是,改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.【解答】解:图上的1厘米表示实际距离100米,比例尺为:1厘米:10000厘米=1:10000页183×100=300(米)答:改为数值比例尺是1:10000.在图中量得校园的长为3厘米,那么它的实际长度为300米.故答案为:1:10000,300.10.一种微型零件长0.3毫米,将其画在纸上长9厘米,这张图纸的比例尺是300:1.【解答】解:因为0.3毫米=0.03厘米则9厘米:0.03厘米=300:1答:这张图纸的比例尺是300:1.故答案为:300:1.11.5x=3y,x:y=(3:5),x和y成正比例.【解答】解:因为5x=3y,所以x:y=3:5x:y=(一定),是比值一定,所以成正比例;故答案为:3,5,正.12.一捆100m长的电线,用去的长度与剩下的长度成正比例.×(判断对错)页19【解答】解:因为用的长度+剩下的长度=一捆电线的长度,所以用的长度与剩下的长度的比值和乘积都不一定,所以用的长度和剩下的长度不成比例,原题说法错误.故答案为:×.13.反比例关系可以用xy=k(一定)式子表示.【解答】解:如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),正比例关系可以用式子表示为:xy=k(一定);故答案为:xy=k(一定)14.如果x=3y(x和y都不为0),那么x和y成正比例关系:如果xy=12.6(x和y都不为0),那么x和y成反比例关系.【解答】解:如果x=3y(x和y都不为0),即x:y=3,是比值一定,那么x和y成正比例关系;如果xy=12.6(x和y都不为0),是乘积一定,那么x和y成反比例关系;故答案为:正,反.页2015.在一张地图上画有一条线段比例尺,把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.【解答】解:40千米=4000000厘米数值比例尺是1:400000040×3.5=140(千米)答:把它写成数值比例尺是1:4000000,在这张地图上量得某两地之间的距离为3.5厘米,则它们的实际距离是140千米.故答案为:1:4000000,140.16.(1)一批零件2000个(填写下表)40100200400……每箱装的个数20……装的箱数100(2)一批零件一定,每箱装的个数和装的箱数成反比例.【解答】解:(1)2000÷40=50(箱)页212000÷100=20(箱)2000÷200=10(箱)2000÷400=5(箱)40100200400……每箱装的个数205020105……装的箱数100(2)因为每箱装的个数×装的箱数=这批零件个数(一定);所以,一批零件一定,每箱装的个数和装的箱数成反比例.故答案为:反.三.判断题(共9小题)17.将图形缩小后得到的图形与原图形相比,大小不同,形状相同.√(判断对错)【解答】解:将图形缩小后得到的图形与原图形相比,大小不同,形状相同原题说法正确.故答案为:√.页2218.煤的数量一定,使用天数与每天的平均用煤量成正比例关系.×(判断对错)【解答】解:因为每天的平均用煤量×使用的天数=煤的数量(一定),也就是两种相关联的量的乘积一定,所以,煤的数量一定,使用的天数与每天的平均用煤量成反比例.这种说法是错误的.故答案为:×.19.两个正方形边长的比和面积的比能够组成比例.×(判断对错)【解答】解:设这两个正方形的边长分别是1与2;1×1=12×2=4边长之比的比值是:1:2=面积之比的比值是:1:4=≠所以,两个正方形边长的比和面积的比不能组成比例.故答案为:×.20.如果ab+5=12,则a与b成反比例.√.(判断对错)页23【解答】解:如果ab+5=12,ab=12﹣5=7(一定),是两个量的乘积一定,则a与b成反比例;原题说法正确.故答案为:√.21.火车行驶1000km,行驶的速度和所需的时间成反比例.√.(判断对错)【解答】解:火车的速度×所需的时间=火车行驶距离(一定),是乘积一定,所以行驶的速度和所需的时间成反比例.原题说法正确.故答案为:√.22.一辆汽车从甲地开到乙地所用的时间与速度成正比例.×.(判断对错)【解答】解:速度×时间=路程(一定),是乘积一定,所以速度和时间成反比例.原题说法错误.故答案为:×.23.梯形的面积一定,它的高与上、下底的和成反比例.√(判断对错)页24【解答】解:因为梯形的两底之和×高=梯形的面积×2(一定),是乘积一定,所以梯形的高与上、下底的和成反比例.故答案为:√.24.若以ab﹣8=12.5,则a与b成反比例.√(判断对错)【解答】解:若ab﹣8=12.5,即ab=20.5,是乘积一定,则a与b成反比例.原题说法正确.故答案为:√.25.报纸的单价一定,总价与订阅的份数成反比例.×(判断对错)【解答】解:订阅份数与总价是两种相关联的量,它们与报纸的单价有下面的关系:总价:订阅份数=报纸的单价(一定);已知报纸的单价一定,也就是总价与订阅份数的比值一定,所以订阅份数与总价成正比例.原题说法错误.故答案为:×.页25四.计算题(共7小题)26.将线段比例尺化为数值比例尺:【解答】解:2厘米:60千米=2厘米:6000000厘米=1:3000000;答:化为数值比例尺是1:3000000.27.画出图形A按2:1放大后的图形C;画出图形B按1:2缩小后的图形D.【解答】解:画出图形A按2:1放大后的图形C(下图红色部分);画出图形B按1:2缩小后的图形D(下图绿色部分):页2628.一个机器零件长5毫米,画在一张图纸上是20厘米.求这张机器零件图的比例尺.【解答】解:20厘米:5毫米=200毫米:5毫米=40:1答:这张机器零件图的比例尺是40:1.29.把图1图形按比例缩小后得到图2的图形,求未知数x.(单位:cm)【解答】解:由题意得:15:x=25:2025x=15×20页27x=12答:未知数x的值是12厘米.30.在比例尺是1:300的地图上,量得一块直角三角形地的周长是24厘米.已知三条边的长度比是3:4:5,求三角形地三条边实际的长各是多少米?【解答】解:24×=6(厘米)24×=8(厘米)24×=10(厘米)6÷=1800(厘米)1800厘米=18米8÷=2400(厘米)2400厘米=24米10÷=3000(厘米)3000厘米=30米答:三角形地三条边实际的长分别是18米、24米、30米.页2831.右图是由左图按比例放大得到的,右图的长是多少?(单位:分米)【解答】解:300÷60=5120×5=600(分米)答:右图的长是600分米.32.在一幅比例尺是的图纸上,量得某校的篮球场长26厘米,宽15厘米,这个篮球场的实际面积是多少?【解答】解:26÷=26×100=2600(厘米)=26(米)15÷=15×100页29=1500(厘米)=15(米)26×15=390(平方米)答:这个篮球场的实际面积是390平方米.五.应用题(共5小题)33.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?【解答】解:5cm:8m=5cm:800cm=1:160答:这张照片的比例尺是1:160.34.“六一”那天,芳芳和小朋友们一起骑车去动物园玩.下面的图象表示的是她骑车的路程和时间的关系.(1)芳芳骑车行驶的路程和时间成正比例吗?为什么?页30(2)看图估计,行2.5千米大约用多少分钟?【解答】解:(1)芳芳骑车行驶的路程和时间成正比例,因为速度一定,路程与时间成正比例关系;(2)利用图象估计,芳芳行2.5千米时大约用了15分钟.35.甲地到乙地的实际距离是150km,在一幅地图上量得两地的图上距离是2.5cm.这幅地图的比例尺是多少?【解答】解:150千米=15000000厘米,2.5:15000000=1:6000000;答:这幅地图的比例尺是1:6000000.36.在比例尺是1:20000图纸上量得北京天安门广场南北长为4.4厘米,东西宽为2.5厘米.北京天安门广场的实际面积是多少平方米?【解答】解:4.4÷88000(厘米)88000厘米=880米页312.5÷=50000(厘米)50000厘米=500米880×500=440000(平方米)答:北京天安门广场的实际面积是440000平方米.37.右边的图象表示汽车在公路上行驶的路程与耗油量的关系.①请你用学过的数学知识描述这辆汽车行驶的路程和耗油量的关系,并讲明理由.②根据图象,这辆汽车行驶75km耗6升.计算这辆汽车行驶180km耗油多少升?【解答】解:①汽车行驶路程与耗油量是正比例关系;因为50:4=100:8=150:12=…=12.5(一定),汽车行驶路程与耗油量的比值一定,所以汽车行驶路程与耗油量是正比例关系.页32②设这辆汽车行驶180km耗油x升,=75x=6×180x=x=14.4.答:辆汽车行驶180km耗油14.4升.六.操作题(共3小题)38.把图A缩小到原来的,把图B放大到原来的2倍.【解答】解:把图A缩小到原来的(图中图形A′),把图B放大到原来的2倍(图中图形B′).39.下面是胜利小学综合楼一层的布局,请你根据比例尺及实际距离确定下面四个地点的位置.页33A:图书室30米×10米B:会议室29米×7米C:实验室13米×7米D:科技室10米×6米【解答】解:答案如下:比例尺:1:100040.长征造纸厂的生产情况如表.时间/天1234567…生产量/吨70140210280350420490…(1)写出几组这两种量中相对应的两个数的比,求出比值,并比较比值的大小.(2)说明这个比值所表示的意义.(3)表中的两种量成正比例关系吗?为什么?页34(4)在下面画出它的图象,并根据图象估计一下生产560吨纸大约要用几天时间.【解答】解:(1)70:1=70,140:2=70,210:3=70,280:4=70,350:5=70,它们的比值都是70;(2)这个比值是用工作量除以工作时间所得,所以这个比值表示工作效率;(3)因为表中相关联的两种量:工作量:工作时间=工作效率(一定)符合正比例的意义,所以表中相关联的两种量成正比例关系;(4)估计图象可得,生产560吨纸大约要用8天时间.七.解答题(共4小题)页3541.如图,方格中的梯形是按1:1000的比例尺画出的学校的一块草地.请你给草地的正中央设计一个半径为10米的圆形花池,按比例画在图中.再量出有关数据(取整厘米数),标在图上,并求剩余草地的实际面积.(单位:厘米)【解答】解:10米=1000厘米1000×=1(厘米)即圆形花池的半径图上为1厘米画图如下:页366÷=6000(厘米),6000厘米=60米8÷=8000(厘米),8000厘米=80米10÷=10000(厘米),10000厘米=100米(60+100)×80÷2﹣3.14×102=160×80÷2﹣3.14×100=6400﹣314=6086(平方米)答:剩余草地的实际面积是6086平方米.42.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.页37(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?【解答】解:(1)用煤的吨数÷用煤的天数=每天的用煤量(一定)根据两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就是成正比例的量因此可判断用煤天数和用煤量成正比例关系.(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为=(一定).(3)根据图象可判断:5天有煤1.5吨;2.4吨煤可以用8天.故答案为:=(一定).43.王叔叔买了一辆汽车,下表是他在试车过程中记录下的数据.页38汽车所行路程/km015304560耗油量/L02468(1)汽车所行路程与耗油量有什么关系?(2)汽车行驶90km,耗油多少升?(3)当油箱还剩3L油时,汽车还能行驶多少千米?【解答】解:(1)耗油量随着路程的变化而变化,因为15÷2=7.5、30÷4=7.5…即每升油所行路程不变,所以汽车所行路程和耗油量成正比例关系;(2)因为耗油量=路程÷每升油所行路程,90÷7.5=12(升)答:要耗油12升.(3)因为路程=每升油所行路程×耗油量,7.5×3=22.5(千米)答:汽车大约还能行驶22.5千米.44.文具盒每个售价8元,购买2个,3个,…分别需要多少元?(1)填一填.页39数量/个01234567…应付金额/元0816243240…(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花72元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.【解答】解:(1)8×6=48(元)8×7=56(元)表格如下:数量/个01234567…页40应付金额/元08162432404856…(2)因为:8÷1=8(元)16÷2=8(元)24÷3=8(元)……总价÷数量=单价(单价是一定的),所以应付金额与文具盒的数量成正比例.(3)画图如下:(4)8×9=72(元)答:买9个文具盒要花72元.(5)根据总价和数量的正比例关系可知:所以:李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的5倍.故答案为:72,5.页41。
六年级正比例和反比例比例练习题资料讲解

六年级正比例和反比例比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :1513. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
写出两个比值是8的比( )、( )。
15. 加工零件的总个数一定,每小时加工的零件个数的加工的时间( )比例;订数学书的本数与所需要的钱数( )比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数( )比例。
六年级奥数比例应用题

六年级奥数比例应用题【指点迷津】比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用。
它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。
解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。
【经典例题】1、小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18,小明和小方的速度之比是多少"【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之比。
解: 68 : 59=27:20 答:小明和小方的速度之比是27: 20。
【举一反三】1、1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16,李师傅用的时间比张师傅多18; ,张师傅和李师傅每小时加工的个数之比是多少" 2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38,李刚和张亮的速度之比是多少"【经典例题】2、甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨"【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47,取出8吨后,则甲库余下的吨数是甲、乙两库总吨数的49 ,所以取出的8 吨是占甲、乙两库总数的47 —49解:8÷〔47 —49〕= 63〔吨〕 答:两仓库原存货总吨数是63吨。
【举一反三】2、1、甲、乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲、乙两厂人数的比是2:3, 甲、乙两厂原来一共有多少人"2 甲、乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲、乙两队人数的比是4 5,甲、乙两队原来一共有多少人?【经典例题】3、A 、B 两地相距360 米,前一半时间小华用速度A 行走,后一半时间用速度B 走完全程,又知A: B =5:4,前一半路程所用时间与后一半路程所用时间的比是多少?【思路导航】全程的一半是360 ÷ 2 = 180(米)第一种速度行:360×55+4=200(米) ,多于一半20米 第二种速度行:360×45+4= 160(米) ,少于一半20米 第一种速度行的后20米应属于后一半的路程了。
2020翼教版六年级下数学3.正比例、反比例【含答案】

2020翼教版六年级下数学3.正比例、反比例一、单选题1.王老师家到学校的距离是560米,他从家到学校需8分钟.他平均每分钟走多少米?问题是求()A. 速度B. 时间C. 路程2.下列关系式中,正确的是()。
A. 速度+时间=路程B. 速度×时间=路程C. 速度×路程=时间D. 时间×路程=速度3.分数值一定时,分子和分母( )A. 成正比例B. 成反比例C. 不成比例D. 不成正比例4.根据表格判断数量间的比例关系。
时间(小时)23578……路程(千米)100150250350400……时间与路程( )。
A. 成正比例B. 成反比例C. 不成比例5.如果x= y,那么与y成()比例.A. 正B. 反C. 不成D. 无法确定二、判断题6.飞机的速度为12千米/分,动车的速度为320千米/时,动车的速度比飞机快。
7.已知5x-3y=0,那么x与y成正比例。
8.比例尺一定,图上距离和实际距离成正比例9.两种相关联的量,不成正比例,就成反比例.三、填空题10.若a×b=c ,则当c一定时,________和________成反比例。
11.路程一定,________和________是两个变量。
12.小亮步行的速度是每分钟60米,可写作________;照这样的速度走15分钟,共走了多少米?解决这个问题用到的数量关系是________。
13.车轮周长一定,所行驶的路程和车轮的转数成________比例.14.判断下面各题中的两种量是否成比例,成比例的写出成什么比例。
①和一定,加数和另一个加数。
________②单价一定,总价和数量。
________③实际距离一定,图上距离与比例尺。
________④路程一定,时间和速度。
________⑤每箱鸡蛋重量一定,箱数和鸡蛋总重量。
________四、解答题15.王师傅每小时做30个零件,2小时、3小时……各需要多少个?(1)完成下表。
六年级下册数学 正反比例训练

六年级下册数学正反比例训练1、分数值一定,分子和分母(正)比例分母一定,分数值和分子(正)比例分子一定,分数值和分母(反)比例2、在长方形中,长一定,面积和宽(正)比例宽一定,面积和长(正)比例面积一定,长和宽(反)比例周长一定,长和宽(不成)比例长一定,周长和宽(不成)比例宽一定,周长和长(不成)比例3、在平行四边形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例4、在三角形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例5、在正方形中,边长和周长(正)比例面积和边长(不成)比例6、在圆中,面积和半径(不成)比例周长和半径(正)比例直径和半径(正)比例直径和面积(不成)比例7、每公顷产量一定,总产量和公顷数(正)比例公顷数一定,每公顷产量和总产量(正)比例总产量一定,每公顷产量和公顷数(反)比例8、份数一定,每份数和总数(正)比例每份数一定,份数和总数(正)比例总数一定,每份数和份数(反)比例9、商一定,除数和被除数(正)比例除数一定,商和被除数(正)比例被除数一定,除数和商(反)比例10、积一定,两个因数(反)比例一个因数一定,另一个因数和积(正)比例11、甲×乙=丙,当丙一定时,甲和乙(反)比例当甲一定时,丙和乙(正)比例当乙一定时,甲和丙(正)比例12、车轮的周长(或半径、直径)一定,车轮前进路程和转数(正)比例13、一堆煤的总重量一定,烧去的和剩下的(不成)比例14、要行的总路程一定,已经走过的路程和剩下的路程(不成)比例15、在规定的时间里,制造每个零件的时间和制造零件的个数(反)比例16、一批纸总页数一定,装订练习本本数和每本练习本的页数(反)比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正、反比例应用题
☆知识要点:
<1>解答正、反比例应用题,要以正、反比例的意义为依据.
<2>解答正反比例应用题的一般步骤:
①先确定题中三种数量关系中的定量,然后分析两个变量是比值一定,还是积一定,从而确定两个变量间是正比例关系还是反比例关系.
②设未知数x .
③根据题意列出等式,正比例列成比例式,反比例列成乘积相等的等式.
④解答并检验.
<3>解答正反比例应用题的关键是正确判断,两种相关联的量是成什么比例,判断的方法是
例1. 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?
分析:根据条件和问题,可知这道题,一批电视机是一定的,每天装的台数和完成的天数成反比例关系,所以两次每天生产的台数和完成的天数的乘积是相等的.
解:设每天应装x台.
答:每天应装75台.
例2. 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?
分析:每天生产个数×天数=零件总数(一定),已知零件总数一定,每天生产个数与生产天数成反比例.
此题可先求实际用多少天,然后再求提前几天完成.
方法<1>
解:设实际用x天完成.(间接设)
答:提前5天完成.
方法<2>
解:设可以提前x天完成.(直接设)
例3. 用4台拖拉机每天可耕地32公顷,如果用9台同样的拖拉机,每天可耕地多少公顷?
已知工作效率一定,工作总量和拖拉机台数成正比例
解:设每天耕地x公顷.
答:每天可耕地72公顷.
<4>会应用比例等知识用多种方法解答问题,提高综合运用知识能力.
在学习中,要注重知识的内在联系的沟通,这样就可以提高综合运用知识能力.
答:两袋共重216千克.
方法4. 用比例分配方法解答:
24×(4+5)=216(千克)
从以上的解答过程可以知道,同学们学习了用比例解题后,又多了一种解题思路,思路更开阔了,但要注意具体问题要具体分析,根据题目的实际情况选择最好的解题方法,指出提高我们的解题能力.
☆基础练习:
<1>一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?
<2>同样的方砖铺地,铺18平方米用砖144块,现有840块方砖可铺地多少平方米?
<3>修一条公路,5天共修4500米,照这样计算20天共可修多少米?
<4>用边长20厘米的方砖铺一块地,需要2000块,如果改用边长为40厘米的方砖铺地,需要多少块?
<5>一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?
<6>学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人?
<7>一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?
<8>运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
☆数学医院:
<1> 电视机厂要生产一批电视机,头30天生产180台,照这样计算,要生产1320台,需要多少天?(用比例解)
解:设需要x天。