数据仓库建设方案
智慧水利数据仓库系统建设方案

数据存储方式: 采用分布式存储 架构,确保数据 的安全性和可扩 展性
数据处理能力: 具备强大的数据 处理能力,支持 实时分析和数据 挖掘
数据备份与恢复: 提供完善的数据 备份和恢复机制, 确保数据安全可 靠
,A CLICK TO UNLIMITED POSSIBILITES
汇报人:
目录
CONTENTS
智慧水利成为发展趋势,以提高水资源利用效率和应对气候变化挑战 水利数据仓库系统建设是智慧水利的重要组成部分,为决策提供科学依据 水利行业面临数据整合、存储和管理方面的挑战,需要建立统一的数据仓库系统 水利数据仓库系统的建设将促进水利行业的数字化转型,提高管理效率和决策水平
综合管理模块: 实现水利设施的 统一管理和调度, 提高水利设施的 运行效率和管理 水平。
数据存储优化:采用分布式存储和缓存技术,提高数据读写速度 系统架构优化:采用微服务架构,实现高可用性和可扩展性 查询性能优化:使用索引和查询优化技术,提高查询效率 系统安全优化:加强数据加密和安全防护措施,确保系统安全可靠
数据采集:支持多种数据采集方式,如手动输入、传感器数据等。
数据存储:具备数据存储、备份和恢复功能,保证数据的安全性和完整性。
数据查询:支持多种查询方式,如关键字查询、条件查询等,方便用户快速找到所需数 据。
数据安全性:确 保数据不被非法 获取或篡改
系统稳定性:保 证系统的正常运 行和数据的准确 性
数据备份与恢复:定期备份 数据,确保数据安全
防火墙配置:确保系统不受 外部攻击
访问控制:限制用户访问权 限,防止数据泄露
安全审计:对系统进行安全 审计,及时发现和修复安全
数据仓库建设规划图文

数据仓库建设规划图文前言数据仓库是企业决策的基础,能够帮助企业把分散的数据整合到一起,降低数据的冗余度和不一致度,并保证决策者及时准确地获取到有关于企业业务运营的信息。
而数据仓库建设规划是实现数据仓库建设的前提和保障。
本文将会介绍数据仓库建设规划的概述,及其在数据仓库建设过程中的具体应用。
数据仓库建设规划概述数据仓库建设规划是指基于业务战略、IT战略和企业治理要求,论证和分析数据仓库建设的目标、范围、基础设施、资源和人员安排,并制定全面和长期的数据仓库建设计划。
其目的是为了实现数据资产的价值最大化和企业业务分析的高效率开展。
具体来说,数据仓库建设规划包括以下几个方面的内容:1.数据仓库技术路线:在数据仓库建设过程中,需要选择哪些技术工具和平台,以及如何实现数据仓库的集成、存储、处理、管理和交互。
2.数据仓库的目标和范围:需要明确数据仓库的主要业务需求、数据需求以及数据质量标准,以便为数据仓库的整体架构和实施过程提供全面规划。
3.数据仓库基础设施:包括硬件基础设施、数据库应用软件、网络等设备和工具及相应的安全机制。
4.数据仓库资源和人员安排:需要评估数据仓库建设所需的人员和资源并计划并安排相应的人力、物力和财务方面的资源。
数据仓库建设规划的应用数据仓库建设规划对数据仓库的建设和运营都具有重要的作用。
在数据仓库建设过程中,数据仓库建设规划可以帮助企业在设计、实施和维护数据仓库过程中,更加全面、科学、系统地规划和部署数据仓库,从而提高数据仓库的建设效率,提高数据质量,提升企业的运营效率及决策水平。
具体来说,数据仓库建设规划可以体现在以下几个方面:1.业务需求分析:对不同类型的业务需求进行分析,确立数据仓库构建的业务模型和应用领域范畴。
借助业务分析工具和方法,对业务流程进行挖掘、建模和优化,设计出符合企业需要且便于数据获取和分析的数据模型。
2.技术实现:结合现有的IT设施和企业计算机软件系统,根据不同业务和应用领域制定数据仓库架构,并选择合适的技术工具和开发平台,如Hadoop、Hive、Spark等,以及各种开发框架、编程语言和库。
数仓建设方案

数仓建设方案一、引言随着大数据时代的到来,数据成为企业发展的重要资源。
而在处理和管理大数据方面,数据仓库(Data Warehouse)起到了关键的作用。
本文将介绍一个适用于数仓建设的方案,旨在提高数据管理和分析的效率。
二、背景数据仓库是一个以主题为导向、集成、稳定、相对历史的数据集合,可用于支持企业的决策制定。
在设计和构建一个完善的数据仓库之前,我们首先要明确背景和目标。
1. 背景说明说明数据仓库建设的原因和必要性。
例如,业务发展迅速,数据量激增,传统的数据存储和管理方式无法满足需求。
2. 目标设定明确数仓建设的目标,包括但不限于数据集成、数据质量提高、数据分析支持等。
三、建设方案本节将详细介绍数据仓库建设的方案,包括数据采集、数据存储和数据分析三个方面。
1. 数据采集数据采集是数据仓库建设的第一步,也是最关键的一步。
数据在采集过程中需要经过清洗、抽取、转换和加载等多个阶段。
清洗:处理数据中的无效、重复或错误的信息,确保数据的质量。
抽取:从各个业务系统中抽取所需数据,可使用ETL工具进行自动化操作。
转换:将抽取的数据进行转换,使其符合数据仓库的标准格式和结构。
加载:将转换后的数据加载至数据仓库中,储存为独立的数据表。
2. 数据存储数据存储是指将采集到的数据以结构化的方式存放,以便后续的查询和分析。
常见的数据存储方式有关系型数据库和大数据存储技术。
关系型数据库:适用于小规模和结构化数据的存储,例如使用MySQL或Oracle等。
大数据存储技术:适用于海量数据的存储和处理,例如使用Hadoop、Spark和Hive等。
3. 数据分析数据分析是数据仓库建设的最终目标,通过分析数据可以获取有价值的信息和洞察力,为企业的决策提供支持。
数据挖掘:利用统计学和机器学习等技术挖掘数据中隐藏的模式和规律。
报表和可视化:将数据以图表、表格等形式展现,便于决策者理解和分析。
四、实施计划在明确建设方案后,需要制定一个详细的实施计划,包括各阶段的时间安排和资源投入。
数据仓库建设方案

数据仓库建设方案数据仓库建设方案数据仓库建设方案是指根据组织的数据需求和业务目标,经过系统性的分析和设计,建立一个统一、集成、可靠、灵活的数据存储和管理系统。
通过数据仓库建设方案,组织可以更好地利用数据资源,支持决策和业务流程,提高组织的运营效率和竞争力。
首先,数据仓库建设方案需要进行需求分析。
通过与组织各个部门的沟通和了解,明确业务需求和数据需求,确定数据仓库的目标和范围。
同时,也需要考虑数据的来源和格式,以及数据的质量和安全性等方面的需求。
其次,数据仓库建设方案需要进行数据模型设计。
根据需求分析的结果,设计数据仓库的结构和组织方式,确定数据的存储和关联关系。
同时,也需要考虑数据的处理和转换方式,以及数据的更新和维护策略等方面的设计。
然后,数据仓库建设方案需要进行技术选型。
根据数据仓库的规模和复杂程度,选择适合的数据库管理系统和硬件设备,以及相应的数据集成和分析工具。
同时,也需要考虑数据仓库的架构和性能等方面的技术选型。
接着,数据仓库建设方案需要进行系统实施和测试。
根据设计和选型的结果,进行数据仓库的搭建和配置,导入和清洗数据。
同时,也需要进行系统的功能和性能测试,确保数据仓库的正常运行和满足业务需求。
最后,数据仓库建设方案需要进行系统运维和优化。
定期进行数据的更新和维护,监控和管理数据仓库的性能和安全。
同时,也需要根据业务需求和技术发展,对数据仓库进行优化和改进,提升数据仓库的效率和可用性。
总之,数据仓库建设方案是一个综合性的工程,需要从需求分析到系统实施再到运维优化,进行全面的规划和设计。
通过数据仓库建设方案,组织可以更好地管理和利用数据资源,提高业务的决策能力和竞争力,实现可持续的发展。
统计数据库建设方案

统计数据库建设方案1. 引言统计数据库是为了支持组织和管理大量统计数据而设计的数据库系统。
它具有高度可伸缩性、高性能和高安全性的特点,能够满足各种统计数据的存储、查询和分析需求。
本文将介绍统计数据库建设的方案。
2. 背景随着社会的不断发展和进步,各个行业和领域都需要进行数据统计和分析,以便做出科学决策和推动发展。
传统的数据统计方式已经无法满足大规模数据处理和智能分析的需求,因此需要建设一个高效可靠的统计数据库来支持这些需求。
3. 建设目标统计数据库的建设目标主要有三个:1.实现大规模数据的高效存储和管理;2.提供快速和灵活的数据查询和分析功能;3.保证数据的安全性和完整性。
4. 建设方案4.1 数据库选择选择一个适合的数据库管理系统是统计数据库建设的第一步。
常见的选项包括关系型数据库和NoSQL数据库。
根据实际需求和数据特点,可以选择适合的数据库系统,如MySQL、Oracle、MongoDB等。
4.2 数据模型设计在建设统计数据库时,需要进行合理的数据模型设计。
可以根据实际业务需求,采用关系型模型、面向文档模型等不同的数据模型。
关系型模型适用于高度结构化的数据,面向文档模型适用于半结构化和非结构化的数据。
4.3 数据采集和导入数据采集是统计数据库建设的重要环节。
可以通过各种方式采集数据,如API接口、批量导入、实时数据流等。
建议使用自动化的数据采集工具,以提高数据采集的效率和准确性。
4.4 数据存储和管理对于大规模数据的存储和管理,可以采用分布式存储系统和分布式数据库来解决。
分布式存储系统能够将数据分散到多个节点上存储,提高存储容量和吞吐量。
分布式数据库能够将数据水平切分并存储于多个节点,提高数据查询和分析的性能。
4.5 数据查询和分析为了提供快速和灵活的数据查询和分析功能,可以采用OLAP(联机分析处理)技术和数据仓库技术。
OLAP技术能够对大规模数据进行多维分析和聚合查询,提供可视化的报表和图表展示。
《数据仓库建设指南》

《数据仓库建设指南》数据仓库建设指南随着企业信息化的趋势不断发展,数据化已经成为企业成长的必经之路。
数据成为了企业在竞争中的筹码,企业数据分析的能力也成为了企业成功的关键。
更多的企业意识到,要想在市场上占有一席之地,精细管理企业,就必须建立一个合理的数据仓库。
那么,数据仓库建设需要考虑哪些要素和步骤呢?本文将一一为您解析。
一、数据仓库简介数据仓库是一种长期积淀和管理数据的系统,它可以帮助企业集中存储和管理来自各种渠道的数据,为企业提供分析支持。
它可以将内部和外部的数据整合、加工之后建立一个统一的数据层用于分析,这样企业就可以在分析过程中减少对数据来源的依赖,加快数据分析过程。
二、数据仓库建设步骤1.规划和准备数据仓库建设是需要投入大量的时间和精力的,因此,首先需要确定需求,明确数据仓库的建设目标,并确保团队中所有成员都清楚地理解目标和业务需求。
同时,团队还需要了解企业的业务流程。
在规划和准备阶段,团队需要对企业业务进行分析和评估,确定数据仓库中需要的信息和数据以及其来源;需要制定数据建设计划,分步骤地完成数据仓库的各个环境的建设和测试,以确保其稳定性和数据可靠性。
2.设计在设计阶段,需要确定数据仓库的基本结构和架构等。
从不同的维度来考虑数据仓库的数据设计,面向业务时的数据设计包括事实表和维度表的设计,以及定义关系型数据模式。
面向数据仓库的设计要考虑数据的存储形式和数据的管理:如何利用索引快速查找数据,如何存储不同的数据格式或类型等。
3.实施实施是数据仓库建设中最为繁琐的环节,这个过程需要投入大量的人力和物力资源。
需要与各种数据源进行连接和整合,然后将这些数据存储到数据仓库中,来适应变化的数据分析需求。
在实施过程中,需要考虑数据清洗、转换和加工等过程。
数据清洗的目的是过滤掉不必要的数据,转换是将数据从一种格式转换为另一种;加工就是从原数据中提取关键信息。
4.测试和验证测试与验证是数据仓库建设过程中很重要的步骤,通过测试可以验证数据仓库所设计的模型和工具是否能够适应实际的业务需求,同时也可以提供一些有益的改进建议。
XX银行数据仓库建设项目方案

XX银行数据仓库建设项目方案1. 项目概述本文档旨在介绍XX银行数据仓库建设项目的方案和目标。
数据仓库是一个用于集成和管理银行的各类数据的中央存储库,可为决策支持和业务分析提供有价值的信息。
本项目的目标是构建一个稳定、高效、可扩展的数据仓库,以提高XX银行的决策能力和业务竞争力。
2. 项目背景XX银行作为一家领先的金融机构,面临着数据分散、决策效率低下的问题。
传统的数据集成和分析方法已经无法满足业务需求,因此需要建立一个数据仓库来解决这些问题。
数据仓库将集中存储和管理各类数据,并提供强大的分析工具和报表功能,以支持XX银行的战略决策和业务优化。
本项目的目标是构建一个可靠、高效的数据仓库系统,具体包括以下几个方面:•数据集成:从各个业务系统中提取、清洗和转换数据,确保数据质量和一致性。
•数据存储:设计和构建合适的数据存储结构,包括数据表、索引等,以支持复杂的数据查询和分析。
•数据分析:开发和部署适合XX银行业务需求的数据分析工具和算法,提供灵活和高效的数据查询和报表功能。
•数据安全:确保数据仓库的安全性,实施访问控制和数据加密等措施,防止未授权的访问和数据泄露。
4.1 需求分析阶段在这个阶段,项目团队将与XX银行的不同业务部门和利益相关方进行沟通和需求收集。
我们将详细了解业务需求和数据源,并建立数据仓库的数据模型和架构设计。
4.2 数据集成阶段在数据集成阶段,我们将根据需求分析阶段的结果,从各个业务系统中提取和转换数据。
我们将设计和实现合适的ETL(提取、转换和加载)过程,确保数据质量和一致性。
4.3 数据存储阶段在数据存储阶段,我们将设计和构建数据仓库的存储结构,包括数据表、索引和分区等。
我们将利用合适的数据库技术和管理工具,如关系数据库和NoSQL数据库,来存储和管理数据。
4.4 数据分析阶段在数据分析阶段,我们将开发和部署适合XX银行业务需求的数据分析工具和报表功能。
我们将使用先进的分析算法和可视化技术,帮助XX银行的管理层和业务部门进行决策分析和业务优化。
数据中心建设项目数据库设计开发方案及实施方案

数据中心建设项目数据库设计开发方案及实施方案本项目中, 数据库设计与建设包括用于数据中心进行数据存储、交换、应用的数据中心数据库, 和用于数据统计、分析、挖掘的数据仓库的设计与建设。
本数据中心数据库的建设要满足金信工程的相关设计要求, 满足上级工商、质监、知识产权等市场监管部门的工作要求。
数据中心顾名思义, 是专注于数据处理和服务的中心, 旨在建立数据采集、更新、管理、使用机制, 加快系统内部信息交流与反馈, 为公众服务和相关政府部门数据交换建立基础, 为工商、质监、知识产权部门各级管理人员提供决策支持服务。
1.1.数据中心应用功能与业务处理功能的不同之处在于数据中心是以数据为管理对象, 而业务应用系统以业务为管理对象。
数据中心将从业务应用系统采集到的数据进行清洗和统一存放, 根据不同的需求进行加工, 生成不同的数据产品供各系统使用。
数据中心独立于应用系统之外, 又与应用系统有密切的联系。
1.2.数据中心是存储市场监督管理局经过筛选、去重、整理后的核心业务、人员数据等信息, 整合了全市各类主体信息资源和市场主体、人员相关的信息资源, 并进行统一管理和维护;数据中心通过深入挖掘数据价值, 开发实现灵活、高效的数据查询、业务报表、数据共享和数据交换等功能, 为政务公开、业务协同、绩效考核、决策支持、公共服务等提供数据保障。
1.3.数据中心建设原则金信工程数据中心建设遵循如下原则:1.总体规划, 建立科学、完整的信息资源管理体系整体规划, 将以往分散的数据资源进行整合, 建立科学、完整的信息资源体系结构, 确保业务人员、技术开发人员等使用和维护信息资源的用户从整体上把握数据资源的情况, 方便、准确的利用信息资源和有效的维护、管理信息资源。
科学、完整的信息资源管控体系不但包括信息资源自身的完整性, 科学性, 也应包括信息采集、管理、共享、利用方式的规划, 以及数据模型、数据指标等规范化、标准化的考虑。
2.统一规划、集中管理各类信息资源统一规划数据资源, 不只是要对各类信息资源进行物理集中存储管理, 还要在对业务数据分析的基础上, 一体化规划并设计系统数据模型, 统一制定业务数据指标体系, 以管理服务对象为核心, 组织相关联的业务数据, 实现对内业务使用、对外服务应用的统一视图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章数据仓库建设1.1 数据仓库总体架构专家系统接收增购项目车辆TCMS或其他子系统通过车地通信传输的实时或离线数据,经过一系列综合诊断分析,以各种报表图形或信息推送的形式向用户展示分析结果。
针对诊断出的车辆故障将给出专家建议处理措施,为车辆的故障根因修复提供必要的支持。
根据专家系统数据仓库建设目标,结合系统数据业务规范,包括数据采集频率、数据采集量等相关因素,设计专家系统数据仓库架构如下:数据仓库架构从层次结构上分为数据采集、数据存、数据分析、数据服务等几个方面的内容:数据采集:负责从各业务自系统中汇集信息数据,系统支撑Kafka、Storm、Flume及传统的ETL采集工具。
数据存储:本系统提供Hdfs、Hbase及RDBMS相结合的存储模式,支持海量数据的分布式存储。
数据分析:数据仓库体系支持传统的OLAP分析及基于Spark常规机器学习算法。
数据服务总线:数据系统提供数据服务总线服务,实现对数据资源的统一管理和调度,并对外提供数据服务。
1.2 数据采集专家系统数据仓库数据采集包括两个部分内容:外部数据汇集、内部各层数据的提取与加载.外部数据汇集是指从TCMS、车载子系统等外部信息系统汇集数据到专家数据仓库的操作型存储层(ODS);内部各层数据的提取与加载是指数据仓库各存储层间的数据提取、转换与加载。
1.2.1外部数据汇集专家数据仓库数据源包括列车监控与检测系统(TCMS)、车载子系统等相关子系统,数据采集的内容分为实时数据采集和定时数据采集两大类,实时数据采集主要对于各项检测指标数据;非实时采集包括日检修数据等。
根据项目信息汇集要求,列车指标信息采集具有采集数据量大,采集频率高的特点,考虑到系统后期的扩展,因此在数据数据采集方面,要求采集体系支持高吞吐量、高频率、海量数据采集,同时系统应该灵活可配置,可根据业务的需要进行灵活配置横向扩展。
本方案在数据采集架构采用Flume+Kafka+Storm的组合架构,采用Flume 和ETL工具作为Kafka的Producer,采用Storm作为Kafka的Consumer,Storm可实现对海量数据的实时处理,及时对问题指标进行预警。
具体采集系统技术结构图如下:1.2.1.1 数据汇集架构功能Flume提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力。
Flume的数据接受方,可以是console(控制台)、text(文件)、dfs(HDFS文件)、RPC(Thrift-RPC)和syslogTCP(TCP syslog日志系统)等。
在我们系统中由kafka来接收.Kafka分布式消息队列,支撑系统性能横向扩展,通过增加broker来提高系统的性能.Storm流处理技术,支撑Supervisor横向扩展以提高系统的扩展性和数据处理的实时性。
1.2.1.2 采集架构优势(一)解耦在项目中要平衡数据的汇集与数据的处理性能平衡,是极其困难的.消息队列在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口.这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束.•冗余有些情况下,处理数据的过程会失败。
除非数据被持久化,否则将造成丢失。
消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。
在被许多消息队列所采用的“插入—获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理过程明确的指出该消息已经被处理完毕,确保你的数据被安全的保存直到你使用完毕。
•扩展性因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的;只要另外增加处理过程即可.不需要改变代码、不需要调节参数。
扩展就像调大电力按钮一样简单。
•灵活性&峰值处理能力在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。
使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
•可恢复性当体系的一部分组件失效,不会影响到整个系统。
消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理.而这种允许重试或者延后处理请求的能力通常是造就一个略感不便的用户和一个沮丧透顶的用户之间的区别。
•送达保证消息队列提供的冗余机制保证了消息能被实际的处理,只要一个进程读取了该队列即可。
在此基础上,IronMQ提供了一个”只送达一次”保证.无论有多少进程在从队列中领取数据,每一个消息只能被处理一次。
这之所以成为可能,是因为获取一个消息只是"预定"了这个消息,暂时把它移出了队列。
除非客户端明确的表示已经处理完了这个消息,否则这个消息会被放回队列中去,在一段可配置的时间之后可再次被处理。
•缓冲在任何重要的系统中,都会有需要不同的处理时间的元素。
例如,加载一张图片比应用过滤器花费更少的时间.消息队列通过一个缓冲层来帮助任务最高效率的执行—写入队列的处理会尽可能的快速,而不受从队列读的预备处理的约束。
该缓冲有助于控制和优化数据流经过系统的速度。
•异步通信很多时候,你不想也不需要立即处理消息。
消息队列提供了异步处理机制,允许你把一个消息放入队列,但并不立即处理它。
你想向队列中放入多少消息就放多少,然后在你乐意的时候再去处理它们.1.2.2内部各层数据提取与加载数据汇集将数据储存于操作型数据存储层(ODS),在数据仓库各层次间数据转换提取加载,采用传统的ETL工具进行采集,数据仓库间的各层次的数据采集的实效性根据具体的数据需求而定,具体ETL建模界面如图:1.3 数据加工与处理对于数据仓库平台,应该建立一套标准化、规范化的数据处理流程,例如:如何采集内部和外部数据、结构化和非结构化数据;如何清洗采集来的脏数据和无效数据;如何对不同来源的数据进行打通;如何对非结构化的数据进行结构化加工;如何在结构化数据的基础上进行商业建模和数据挖掘等等。
大数据管理层在一条数据总线上构建了一条完整的大数据处理流水线。
这条流水线从数据的采集、清洗到加工处理,把原始杂乱无章的数据加工成结构化的数据组件,供上层的大数据应用来拼装调用,让企业拥有创造数据资产的能力。
1.4 存储设计1.4.1数据量估算按每列列车平均500毫秒通过车地通信采集监测数据100条,每天运营时间18小时,按每条记录160字节计算(监测数据的数据项相对简单),初步按照67列列车计算。
单列列车日监测数据=3600*2*160*100*18/1024/1024/1024≈2G67列列车年数据量=2*67*365/1024≈48T10年总数据量(乘上增长系数10%)≈530T (含操作系统)数据规划10年,加上系统用户信息、系统日志信息、专家信息、业务数据及其它不可预测类数据,数据总量预估530T。
1.4.2数据存储专家系统数据采用混合存储模式进行存储,RDBMS存储专家系统业务基本数据及最近1年的监测数据,10年内历史监测数据采用NoSQL HBase数据库进行存储,以方便查询,HBase基于Hdfs分布式文件系统搭建,具体存储模式如下图。
1.RDBMS数据库,支持专家库的核心业务,存储列车最近1年的监测数据为保证专家系统安全、稳定运行,在数据库系统上支撑各种统计分析及传统的BI业务.考虑到操作系统存储、缓存存储、数据库系统存储、日志存储等因素, RDBMS数据库服务器预计每台60T存储,考虑数据安全及系统稳定因素RDBMS采用双机热备技术互备.2.大数据平台规划存储最近10年监测数据,日志文件备份及历史数据采用大数据Hadoop和HBase存储,大数据平台数据采用节点间冗余备份,预设数据2倍冗余存储,(考虑平台提供的压缩技术,压缩存储可以节省30-55%的空间)。
10年数据量=530T*1。
5≈800T (2倍冗余存储)1.4.3分层存储专家数据分三个层次进行汇集与存储,分别为ODS层、数据仓库层、主题数据层,各层次数据存储内容如下➢ODS层:数据来源于各生产系统,通过ETL工具对接口文件数据进行编码替换和数据清洗转换,不做关联操作。
未来也可用于准实时数据查询。
➢数据仓库层:数据深度汇集层,根据业务有选择的对ODS层的数据进行提取,通过对数据的加工处理,将单一的数据信息转换成体系信息,将点信息数据变成面信息数据。
➢主题数据层:将数据信息体系根据各主题进行提取与转换,主题域内部进行拆分、关联。
是对ODS操作型数据按照主题域划分规则进行的拆分及合并。
1.5 数据分析建模伴随着大数据时代的悄然来临,数据的价值得到人们的广泛认同,对数据的重视提到了前所未有的高度。
数据已经作为企业、事业单位的重要资产被广泛应用于盈利分析与预测、客户关系管理、合规性监管、运营风险管理等业务当中.如何建立大数据分析模型,以提供决策依据是很多用户所迫切解决的问题.专家数据仓库建立在Hadoop分布式系统之上,提供了多种丰富的算法模型,不同的应用通过借助不同的接口实现数据的多维呈现和结果展示,为用户提供科学的决策支持。
图 10—7hadoop算法模型图大数据平台提供数据挖掘模型、分布式计算引擎、高性能机器学习算法库(包含分类、聚类、预测、推荐等机器学习算法)、即席查询功能,可以帮助决策者快速建立数据分析模型立方体,便于决策者进行OLAP分析。
常用算法模型:➢分类算法:分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别中。
如政务网中将用户在一段时间内的网上办理所遇到的问题划分成不同的类,根据情况向用户推荐关联类的问题解决方案,从而方便用户快速解决网上办事审批中遇到的各类问题。
➢回归算法回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。
在回归算法中通常将数值结果转化为了0到1之间的概率,数值越大,函数越逼近1,数值越小,函数越逼近0,它可以应用到对数据序列的预测及相关关系的研究中去。
如我们根据这个概率可以做垃圾邮件预测,例如概率大于0.5,则这封邮件就是垃圾邮件。
➢聚类算法聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。
属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。
分类算法中的一个显著特征就是训练数据中包含了标签,训练出的模型可以对其他未知数据预测标签.在聚类的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。