求解旅行商问题的几种解法

合集下载

邮递员问题最短路径的解法

邮递员问题最短路径的解法

邮递员问题最短路径的解法邮递员问题,又称旅行商问题(Traveling Salesman Problem,TSP),是一个著名的组合优化问题。

它要求找到一条路径,使得邮递员从出发点出发,经过所有的城市且仅经过一次,最后回到出发点,同时路径长度最短。

由于邮递员问题是NP-hard问题,没有多项式时间的解法。

然而,存在一些启发式和近似算法可以在可接受的时间内找到较好的解决方案:1. 蛮力法:尝试所有可能的路径组合,计算每条路径的长度,最终选择最短路径作为解。

这种方法的时间复杂度为O(n!),适用于较小规模的问题。

2. 最近邻算法:从一个起始点开始,每次选择离当前点最近的未访问过的城市作为下一个访问点,直到所有城市都被访问过,然后回到起始点。

该算法的时间复杂度为O(n^2),虽然不能保证找到最优解,但是可以在较短的时间内找到较好的解。

3. 2-opt算法:先使用最近邻算法得到一个初始解,然后对路径进行优化。

2-opt算法通过不断交换路径中的两个边来减小路径的长度,直到没有可改进的交换。

该算法可以较快地优化路径,但无法保证找到全局最优解。

4. 遗传算法:使用进化计算的思想来解决TSP问题。

通过生成初始种群,交叉、变异等操作进行迭代优化,逐渐找到更好的路径。

遗传算法可以在较短时间内找到较好的解,但是无法保证找到最优解。

上述算法只是解决TSP问题的一部分方法,具体使用哪种方法取决于问题规模和时间要求。

对于较小规模的问题,可以使用蛮力法或者最近邻算法得到较好的解。

对于更大规模的问题,可以考虑使用启发式算法,如遗传算法等。

此外,还存在其他算法和优化技术用于处理TSP问题,根据具体情况选择合适的方法。

组合优化中的旅行商问题

组合优化中的旅行商问题

组合优化中的旅行商问题组合优化问题是指在给定的集合或者结构中,寻找一个最优解或者一个近似最优解的问题。

而旅行商问题是组合优化中的一个经典问题,也是一个NP困难问题。

它的问题描述是:给定一些城市和它们之间的距离,求解一个最短路径,使得每个城市只经过一次,并且最后能够回到起始城市。

旅行商问题在实际生活中有着广泛的应用,比如物流配送、电路板布线、旅游路线规划等。

由于问题的复杂性,寻找解决该问题的最优算法一直是学术界和工业界的研究热点。

为了解决旅行商问题,已经提出了一系列的算法。

下面将介绍其中几种常见的算法。

1. 穷举法穷举法是最简单的解决旅行商问题的方法之一。

它的思想是对所有可能的路径进行穷举,计算路径的总长度,并选择其中最短的路径作为结果。

然而,由于旅行商问题的解空间巨大(复杂度是O(n!)),穷举法在问题规模较大时计算量会非常庞大,因此不适用于大规模问题。

2. 动态规划法动态规划法是另一种解决旅行商问题的常用方法。

它的思想是通过将问题分解成多个子问题,并利用子问题的最优解构造原问题的解。

具体来说,可以定义一个二维数组dp,其中dp[i][j]表示从城市i出发,经过集合j中的城市一次后,回到起始城市的最短路径长度。

通过动态规划的递推公式,可以求解出dp数组中的所有元素,从而得到整个问题的最优解。

3. 遗传算法遗传算法是一种基于生物进化和遗传机制的搜索算法。

它通过模拟生物进化过程中的选择、交叉和变异等操作,逐步优化解的质量。

在解决旅行商问题时,可以将每个可能的路径编码成一个染色体,并用适应度函数评估每个染色体的优劣。

然后通过选择、交叉和变异等操作,使得优秀的染色体得以传递下去,最终得到一个接近最优解的路径。

4. 其他启发式算法除了上述提及的算法,还有一些启发式算法常被用于解决旅行商问题,如蚁群算法、模拟退火算法和遗传算法等。

这些算法多为基于自然现象和启发式规则的搜索算法,可以有效地在大规模数据集上求解旅行商问题。

关于旅行商问题的数学模型

关于旅行商问题的数学模型

关于旅行商问题的数学模型旅行商问题(TravelingSalesmanProblem,TSP)是著名的组合优化问题,它的目标是找到一条路径,使得一个旅行商可以经过所有给定的城市,路径总长度最短。

这个问题在实际生活中有着广泛的应用,例如物流配送、电路板布线、DNA序列比对等领域。

本文将介绍旅行商问题的数学模型和解法。

1. 问题描述假设有n个城市,它们的位置分别为(xi,yi),i=1,2,...,n。

旅行商要从一个城市出发,经过所有城市恰好一次,最后回到出发城市。

城市之间的距离可以用欧几里得距离表示:d(i,j) = sqrt((xi-xj)^2 + (yi-yj)^2)旅行商问题的目标是找到一条路径,使得路径总长度最短。

2. 数学模型2.1 定义变量我们定义变量xij表示从城市i到城市j的路径是否被选择,如果被选择则xij=1,否则xij=0。

例如,x12表示从城市1到城市2的路径是否被选择。

2.2 目标函数旅行商问题的目标是找到一条路径,使得路径总长度最短。

因此,我们可以定义目标函数为:minimize ∑i∑j d(i,j)xij其中,i,j表示城市的编号,d(i,j)表示城市i和城市j之间的距离,xij表示从城市i到城市j的路径是否被选择。

2.3 约束条件旅行商需要经过所有城市恰好一次,因此我们需要添加以下约束条件:1. 每个城市只能被经过一次:∑j xij = 1, i=1,2,...,n2. 每个城市离开后只能到达一个城市:∑i xij = 1, j=1,2,...,n3. 不能出现子回路:∑i∈S ∑j∈S xij ≤ |S|-1, S{1,2,...,n}, |S|≥2其中,第一个约束条件表示每个城市只能被经过一次,第二个约束条件表示每个城市离开后只能到达一个城市,第三个约束条件表示不能出现子回路。

3. 解法旅行商问题是一个NP难问题,没有多项式时间算法可以求解。

因此,我们需要使用一些启发式算法来求解这个问题。

算法论文:旅行商问题的求解方法(动态规划法和贪心法)讲解

算法论文:旅行商问题的求解方法(动态规划法和贪心法)讲解

旅行商问题的求解方法摘要旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。

该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。

本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。

关键字:旅行商问题;动态规划法;贪心法;分支限界法1引言旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。

研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。

关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。

归纳起来,目前主要算法可分成传统优化算法和现代优化算法。

在传统优化算法中又可分为:最优解算法和近似方法。

最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。

但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。

2正文2.1蛮力法2.1.1蛮力法的设计思想蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。

一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。

在基本的数据结构中,一次处理每个元素的方法是遍历。

2.1.2算法讨论用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。

如对于图1,我们求解过程如下:(1)路径:1->2->3->4->1;路径长度:18;(2)路径:1->2->4->3->1;路径长度:11;(3)路径:1->3->2->4->1;路径长度:23;(4)路径:1->3->4->2->1;路径长度:11;(5) 路径:1->4->2->3->1;路径长度:18;(6) 路径:1->4->3->2->1;路径长度:18;从中,我们可以知道,路径(2)和(4)路径长度最短。

TSP问题的求解

TSP问题的求解
(2)缺点:但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较 费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的 问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一 直是遗传算法中较难解决的问题。 5.3 线性规划优缺点:
(1)优点:算法稳定,易得标准值 (2)缺点:针对 TSP 问题,需要先计算出第 i 个城市到其余城市的距离, 当城市数目较多时计算复杂。
关键词:TSP 问题 模拟退火算法 线性规划 遗传算法
一、问题重述
1.1 引言 TSP 是典型的组合优化问题, 并且是一个 NP-hard 问题,TSP 简单描述为:
一名商人欲到 n 个不同的城市去推销商品, 每 2 个城市 i 和 j 之间的距离为 d ij , 如何选择一条路径使得商人每个城市走一遍后回到起点, 所走的路径最短。用数 学符号表示为:设 n 维向量 s =(c1 , c2 , …, cn )表示一条路经, 目标函数为:min
小可以不断变化。在该题中,取温度的衰减系数α=0.9,其中固定温度下最大迭 代次数为:100 次,固定温度下目标函数值允许的最大连续未改进次数为 5 次, 即当算法搜索到的最优值连续若干步保持不变时停止迭代。
④最短路径的确定
借助 Matlab 通过模拟退火算法得出最短路径为:27—26—25—24—15— 14—8—7—11—10—21—20—19—18—9—3—2—1—6—5—4—13—12—30—23 —22—17—16—29—28—27,最短路径图如下图 1
图1 最短距离为:423.7406
(2)法二:遗传算法 优化过程如下图 2 所示:
图2 初始种群中的一个随机值(初始路径):
22—6—3—16—11—30—7—28—17—14—8—5—29—21—25—27—26—19 —15—1—23—2—4—18—24—13—9—20—10—12—22

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

v1.0 可编辑可修改TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。

其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。

旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。

非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。

若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。

TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。

因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。

二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。

但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。

2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。

其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。

旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。

非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。

若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。

TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。

因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。

二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。

但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。

2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。

3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距商,要求确定一条经过各城市当且仅当一次的是短路线。

其图论描述为:给定图G= (V, A),其中V为顶点集,A 为各顶点相互连接组成的边集,设(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamihon回路,即遍历所有顶点当且仅当一次的最短距离。

旅行商问题可分为如下两类:1)对称旅行商问题3j=dji, ni, j=l, 2, 3, - , n);2)非对称旅行商问题(dijHdji, Bi, j=1, 2, 3, - , n)o非对称旅行商问题较碓求解,我们一般是探讨对称旅行商问题的求解。

若对于城市V={V H V2, V n - , %}的一个访问顺序为T={l), b, tj, - , tj, - , tj,A其中衣v (i=l, 2, 3,・・・,□),且记t n+l=tl>则旅行商问题的数学模型为:血工Xzr-l TSP是一个典型的组台优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中槪括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。

因此,快速、有效地解决TSP有着重要的理论价值和板高的实际应用价值。

二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近台并、最近插入、晨远插入、最近添加、贪婪插入等。

但是,由于构造型算法优化质長较差,迄今为止巳开发了许多性能较好的改迸型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopficld神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策路2.1模拟退火算法方法1)编码选择:采用描述TSP解的臺常用的一种策略——路径编码。

2)SA状态产生函数的设计:对于基于站径编码的SA状态产生函数操作,可将其设计为:①互换操作(SV7AP);②逆序操作(INV);③插入操作仃NS)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年第5期(总第77期)
边疆经济与文化
THE BORDER ECONOMY AND CULT URE
No 1512010General 1No 177
10
 B I A N J I A N G J I N G J I Y U W EN HUA
【旅游经济】
求解旅行商问题的几种解法
高春涛
(哈尔滨商业大学基础科学学院,哈尔滨150028)
摘 要:旅行商问题(TSP )是一个典型的NP 完全问题,现在还没有找到有效的解法。

目前比较热门的求解TSP 问题的方法主要有四种:神经网络算法;模拟退火算法;遗传算法;蚁群算法。

关键词:旅行商问题;组合优化;解法
中图分类号:F 592 文献标志码:A 文章编号:167225409(2010)0520010202
收稿日期:2010201222作者简介:高春涛(1973
),女,黑龙江拜泉人,讲师,硕士,主要从事混沌神经网络研究。

一、引言
旅行商问题(Traveling Sales man Pr oble m ),是指给定n 个城市,任何两城市之间皆有路连通,其距离为已知,某旅行商从其中某城市出发,要经过每城市一次,且只能一次,最后又必须返回出发城市,要求找出最短的巡回路径。

由于在很多实际问题中,如印刷电路板的铅孔路线方案、连锁店的货物配送路线等问题经过简化处理,均可建模为旅行商问题,因而对旅行商问题求解方法的研究具有重要的应用价值。

旅行商问题是运筹学中有代表性的组合优化问题,也是典型的NP 完全问题。

虽然它陈述起来很简单,但求解却很困难,对于具有n 个城市的TSP 问题,其可能的路径数目为(n -1)!/2,至今尚未找到有效的求解方法,在理论上枚举法可以解决这一问题,但是当n 较大时,解题的时间消耗会使枚举法显得没有任何实际价值。

因此寻求一种求解时间短,能满足实际问题精度要求的解,成为解决该问题的主要途径。

二、TSP 求解方法
求解旅行商问题的方法可以分为两大类,一类是精确算法,目的是要找到理论最优解;另一类是近似算法,其算法简单,计算量小,大多数情况下求得的满意解能满足要求。

1.Hopfield 神经网络算法
1982年,Hopfield 开创性地在物理学、神经生物学和计算机科学等领域架起了桥梁,提出了Hopfield 反馈神经网络模型(HNN )。

Hopfield 网络是典型的全连接网络,通过在网络中引入能量函数以构造动力学系统,并使网络的平衡态与能量函数
的极小解相对应,从而将求解能量函数极小解的过程转化为网络向平衡态的演化过程。

尤其是通过对TSP 问题的成功求解,开辟了神经网络模型在计算机科学应用中的新天地,动态反馈网络从而受到广泛的研究和关注,被广泛应用于优化问题中,且已
设计出了专用的硬件电路。

[1]
Hopfield 网络是一种非线性动力学模型,通过引入类似Lyapunov 函数的能量函数概念,把神经网络的拓扑结构(用连接矩阵表示)与所求问题(用目标函数描述)对应起来,转换成神经网络动力学系统的演化问题。

因此,在用Hopfield 网络求解优化问题之前,必须将问题映射为相应的神经网络。

对TSP 问题的求解,首先将问题的合法解映射为一个置换矩阵,并给出相应的能量函数,然后将满足置换矩阵要求的能量函数的最小值与问题的最优解相对应。

2.模拟退火算法
模拟退火算法最初的思想由Metr opolis 在1953
年提出,[2]
Kirkpatrick 在1983年成功地将其应用在组合最优化问题中。

模拟退火算法的出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。

模拟退火算法在某一初温下,伴随温度参数的不断下降,结合概率突跳特征在解空间中随机寻找目标函数的全局最优解,即在局部优解能
概率性地跳出并最终趋于全局最优。

[1]
用固体退火模拟组合优化问题,将内能E 模拟为目标函数f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:有初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解。

高春涛:求解旅行商问题的几种解法
B I A N J I A N G J I N G J I Y U W EN HUA
11
 解决TSP 问题的模拟退火算法的框架为:[3]
给定起、止“温度”T,T 0和退火速度a,初始的一条路径C 0;W hile (T >T 0)do;在C 0的邻域内产生另一条路径C 1;计算两条路径所引起的目标函数(能量)值的变化△E;若△E ≤0,接受新值,若exp (-△E /T )>rand (0,1)(rand (0,1)表示0~1之间的随机数,也接受新值,否则就拒绝;确定新的参数值,若扰动被接受,则C0←C1,否则不变化;若接受新值,降温T ←aT,否则不降温;End 。

模拟退火算法的实验性能具有质量高、初值鲁棒性强、通用易实现的优点。

但是,为寻到最优解,算法通常要求较高的初温、较慢的降温速率、较低的终止温度以及各温度下足够多次的抽样,因而模拟退火算法往往优化过程较长,这也是模拟退火算法最大的缺点。

3.遗传算法
遗传算法(Genetic A lgorith m s 简称G A )是基于生物进化原理的普适性全局优化算法,是美国M ichigan 大学的Holland 教授于1975年受进化论的启发而首次提出的。

它引进生物学中基因遗传和“自然选择,适者生存”的进化思想,将优化问题的求解看成可行解的进化过程。

一般地,遗传算法以一群随机产生的可行解开始,每个解用一串编码表示为个体,由优化目标函数确定个体的适应度对个体进行评价。

通过交叉、变异等遗传算子的操作对种群进行组合产生下一代个体,逐步向优化的种群进化。

与传统的优化方法相比,遗传算法的主要特点是:遗传算法使用参数的编码集,而不是参数本身进行操作;遗传算法不在单点上寻优,而是从整个种群中选择生命力强的个体产生新的种群;遗传算法仅使用问题的目标函数进行工作,不需要其他的先决条件或辅助信息;遗传算法使用随机转换原理而不是确定性规则来工作。

遗传算法在具体实施中有多种变形和修正,其
主要操作思想可描述成:[4]
Step 1问题的染色体表示;Step2初始解组(种群)的生成;Step3计算解组中各个解的适值函数(代价函数);Step4从解组中随机抽取两个解作为父母代;Step5对父母代实施遗传操作(交叉、变异等)以产生一个后代解;
Step6按某种规则,用该后代解替代原解组中的某个解;Step7若当前解组符合停机条件,则算法终止,否则,转Step4。

遗传算法的优点是算法进行全空间并行搜索,并将搜索重点集中于性能高的部分,从而能够提高效率且不易陷入局部极小;算法具有固有的并行性,提高对种群的遗传处理可处理大量的模式,并
且容易并行实现。

其主要缺点是对于结构复杂的组合优化问题,搜索空间大,搜索时间比较长,往往会出现早熟收敛的情况;对初始种群很敏感,初始种群的选择常常直接影响解的质量和算法效率。

4.蚁群算法
蚁群算法(Ant Col ony A lgorithm ,简称ACA )是由意大利学者Dorigo M 等人首先提出来的一种新型的模拟进化算法。

它是从对蚁群行为的研究中产生的。

仿生学家经过大量细致观察与研究发现,原来蚂蚁在寻食的过程中,通过一种称之为信息素的物质相互传递信息。

更具体地说,蚂蚁在运动过程中能够在它所经过的路径上留下信息素,而且在运动过程中感知这种信息素的存在及其强度,并以此指导自己的运动方向。

蚂蚁倾向于朝着信息素强度高的方向前进,因此,由大量蚂蚁组成的蚁群的行为便表现出一种信息的正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

蚂蚁群就是通过个体之间这种信息交换机制来彼此协作达到搜索食物的目的。

为了避免蚂蚁两次走上同一条路径,为每个蚂蚁设置一个禁忌表以记录它走过的路径。

蚁群算法的优点在于:它是一种自适应、自组织、本质上并行的方法,而且是一种正向反馈的方法,可以促使整个系统向最优解进化,具有较强的鲁棒性,对蚁群算法模型稍加修改,就可以应用于其他问题,同时它可以与多种启发式算法结合,以改善算法的性能。

但是该算法也具有收敛速度慢、易陷入局部最优等缺点。

此外,算法中的参数设定目前尚无理论的依据,要靠实验来调整和确定。

TSP 问题是组合优化领域中的一个典型问题,解决此问题有较大的现实意义,并且此问题也可作为测试新的算法的标准问题,因此此问题一直是研究的热点。

参考文献:[1] 王 凌.智能优化算法及其应用[M ].北京:清华大学出版社,2001.
[2] M ETROP LO I S N,ROSE NBLUT B A W ,ROSE NBLUT B M N,ET AL.Equati on of State Calculati ons Fast Computing Machines
[J ].J of che m ical physica,1953,21(6):1087-1092.[3] 高 尚.求解旅行商问题的模拟退火算法[J ].华东船舶工业学院学报:自然科学版,2003,17(3):13-16.[4] 马 良.旅行推销员问题的算法综述[J ].数学的实践与认识,2000,30(2):156-165.
〔责任编辑:乙 侻〕。

相关文档
最新文档