层次分析法的应用实例

合集下载

层次分析法实例

层次分析法实例

层次剖析法运用实例问题描写:通信交换在当今社会显得尤其主要,手机等于一个例子,如今每小我手里都有至少一部手机.但如此临盆手机的厂家越来越多,品种八门五花,若何选购一款合适本身的手机这个问题困扰了很多人.目的:选购一款合适的手机准则:选择手机的尺度大体可以分成四个:适用性,功效性,外不雅,价钱.计划:因为手机厂家有几十家,我们无妨可以将其归类:○1欧美(iphone);○2亚洲(索爱);○3国产(华为).解决步调:1.树立递阶层次构造模子图1 选购手机层次构造图2.设置标度人们定性区分事物的才能习习用5个属性来暗示,即同样主要.稍微主要.较强主要.强烈主要.绝对主要,当须要较高精度时,可以取两个相邻属性之间的值,如许就得到9个数值,即9个标度.为了便于将比较判断定量化,引入1~9比率标度办法,划定用1.3.5.7.9分离暗示依据经验断定,要素i与要素j比拟:同样主要.稍微主要.较强主要.强烈主要.绝对主要,而2.4.6.8暗示上述两断定级之间的调和值.标度界说(比较身分i与j)1 身分i与j同样主要3 身分i与j稍微主要5 身分i与j较强主要7 身分i与j强烈主要9 身分i与j绝对主要2.4.6.8 两个相邻断定身分的中央值倒数身分i与j比较得断定矩阵a ij,则身分j与i比拟的断定为aji=1/aij 注:aij暗示要素i与要素j相对主要度之比,且有下述关系:aij=1/aji ;aii=1; i,j=1,2,…,n显然,比值越大,则要素i的主要度就越高.3.构造断定矩阵A B1 B2 B3 B4B1 1 3 5 1B2 1/3 1 3 1/3B3 1/5 1/3 1 1/5B4 1 3 5 1表1 断定矩阵A—BB1 C1 C2 C3C1 1 1/3 1/5C2 3 1 1/3C3 5 3 1表2 断定矩阵B1—CB2 C1 C2 C3C1 1 3 3C2 1/3 1 1C3 1/3 1 1表3 断定矩阵B2—CB3 C1 C2 C3C1 1 3 6C2 1/3 1 4C3 1/6 1/4 1表4 断定矩阵B3—CB4 C1 C2 C3C1 1 1/4 1/6C2 4 1 1/3C3 6 3 1表5 断定矩阵B4—C4.盘算各断定矩阵的特点值,特点向量和一致性磨练用乞降发盘算特点值:○1将断定矩阵A按列归一化(即列元素之和为1):bij= aij /Σaij;○2将归一化的矩阵按行乞降:ci=Σbij (i=1,2,3….n);○3将ci归一化:得到特点向量W=(w1,w2,…wn )T,wi=ci /Σci ,W即为A的特点向量的近似值;○4求特点向量W对应的最大特点值:2).3).同理有4).盘算最大特点根:5).进行一致性磨练:查同阶平均随机一致性指针(表6所示)知,(一般以为.时,断定矩阵的一致性可以接收,不然从新两两进行比较).阶数 3 4 5 6 7 8 9 10 1112 13 14 RI表6 平均随机一致性指针知足一致性请求.同理可得残剩断定矩阵的特点根,特点向量,一致性磨练.断定矩阵B1—C断定矩阵断定矩阵B3---C断定矩阵B4---C5.层次总排序获得统一层次各要素之间的相对主要度后,就可以自上而下地盘算各级要素对总体的分解主要度.设二级共有m个要素c1, c2,…,cm,它们对总值的主要度为w1, w2,…, wm;她的下一层次三级有p1, p2,…,pn共n个要素,令要素pi对cj的主要度(权重)为vij,则三级要素pi的分解主要度为:B1B2B3B4总排序权重层次C10.211C20.257C30.531表7 层次总排序表6.结论由表7可以看出,三个计划的好坏排序是C3>C2>C1,是以,对于大部分人来说,选购运用且价钱便宜的国产华为手机是比较实惠的.。

层次分析法经典案例

层次分析法经典案例

层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。

【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

1.建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。

AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。

然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。

在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。

最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。

明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。

通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。

下面将介绍几个AHP方法的应用实例。

1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。

通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。

然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。

2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。

通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。

3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。

通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。

4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。

通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。

5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。

通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。

综上所述,层次分析法在多准则决策问题的应用非常广泛。

通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。

这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。

层次分析法应用实例

层次分析法应用实例

层次分析法应用实例选择一个合适的餐馆一、 问题描述:古人云:民以食为天,在大学生活中,我们经常在假日跟几个好友一起去外 面吃饭,可是学校外面的餐馆各式各样,五花八门,选择一个好吃价格又合适的 餐馆也是十分令人困扰的。

(一) 目标选择一个合适的餐馆 (二) 准则选择餐馆的标准大体可以分成四个:地理位置、环境、味道、人均价格。

方案:美特家(海甸岛店)、印象三宝、滋味天下。

(在文中依次用A 、B 、C 表示)二、 解决步骤(一)层次结构图此结构图中分为三个层次:目标层、标准层和决策方案图 (二)设置标度人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强 重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值, 这样就得到9个数值,即9个标度,为了便于将比较判断定量化,引入 1〜9比 率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8 表示上述两判断级之间的折中值。

目标层 标准层决策层(四)求各因素权重的过程下面我们用两两比较矩阵来求出A、B、C在地理位置的得分第一步,先求出两两比较矩阵每一列的第二步,把两两比较矩阵的每一元素除以其相应列的总和,所得商组成的新的矩阵称之为标准两两比总和:1.000第四步,我们将求出的餐馆A,B,C三个方案在地理位置,环境,味道,价格四个方面的得分(权重),即这四个方面的特征向量如表第五步,我们还必须取得每个标准在总目标满意的餐馆里相对重要的程度,即要取得每个标准相对的权重,即标准的特征向量。

我们就需要把这四个标准两两比较,得到两两比较矩阵如表通过这个两两比较矩阵,我们同样地可求出标准的特征向量如表即味道相对权重为0.421,地理位置的相对权重为0.198,环境的相对权重为0.081,人均价格的相对权重为0.279.三、两两比较矩阵的一致性检验第一步,由被检验的两两比较矩阵乘以其特征向量,所得的向量称之为赋权和向量,即广1 1/7 1/2( 6.103 '「0.30*7 1 3 X0.681 = 2.052 1/3 1 0.216 0.649第二步,每个赋权和向量的分量分别除以对应的特征向量的分量,即第i个赋权和向量的分量除以第i个特征向量的分量,如下:0.308/0.103=2.9902.05/0.681=3.0100.649/0.216=3.005第三步,计算出第二步结果中的平均值,记为入max入max =(2.99+3.010+3.005) - 3=3.002第四步,计算一致性指标CI:CI=(入max-n)/(n-1)=(3.002-3) - 2=0.001第五步,计算出一致性率CR:CR=CI/RI=0.001 - 0.58=0.002 三0.1一致性规定当CR^ 0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。

层次分析法经典案例

层次分析法经典案例

层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。

本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。

一、案例背景某企业计划购买新设备,以提升生产效率和质量。

然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。

为了解决这一问题,业主决定应用层次分析法进行设备选择。

二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。

1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。

在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。

目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。

2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。

通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。

比如,在准则层中,设备性能指标对设备价格的重要性为6。

3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。

通过对判断矩阵进行归一化处理,可获得各因素的权重。

权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。

例如,计算准则层中各因素的权重向量。

4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。

通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。

若一致性比率超过一定阈值,需要检查和修正判断矩阵。

5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。

根据排序结果,我们可以选择最合适的备选方案。

经典层次分析法分析及实例教程

经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地










苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1

层次分析法及其案例分析

层次分析法及其案例分析

2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。

层次分析法的应用实例汇总

层次分析法的应用实例汇总

第二节 层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构(b) 过河代价层次结构图5-3 过河的效益与代价层次结构图过河的效益A 过河的效益 2B经济效益1B过河的效益3B隧 道2D桥 梁1D渡 船3D美化11C进出方便10C舒适9C自豪感8C交往沟通7C安全可靠6C建筑就业5C当地商业4C 岸间商业3C收入2C节省时间1C过河的代价A 社会代价2B 经济代价 1B环境代价3B隧 道 2D桥 梁1D 渡 船3D对生态的污染9C对水的污染8C汽车的排放物7C居民搬迁6C交往拥挤5C安全可靠4C冲击渡船业3C操作维护2C投入资金1C关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9表5-10表5-11表5-12表5-13表5-14表5-15表5-16表5-17表5-18表5-19表5-20表5-21表5-22表5-23这样我们得到方案关于效益的合成顺序为T )07.0 ,36.0 ,57.0()4(=益ω效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

表5-24表5-25表5-26表5-27表5-28表5-29表5-30表5-31代价分析的判断矩阵如表5-24—表5-36所示。

表5-32表5-33表5-34表5-35表5-36得到方案关于代价的合成排序为T )05.0 ,58.0 ,36.0()4(=代ω整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:桥梁:效益/代价=1.58 隧道:效益/代价=0.62轮渡:效益/代价=1.28方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法的应用实例
笫二节层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以
代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3 (a)和(b)分别表示。

例过河的代价与效益分析。

过河的效益A
经济效益过河的效益过河的效益
BB B 321
节收岸当建安交自舒进美省入间地筑全往豪适出化时商商就可沟感方CCC92U 间业业业靠通便C8 CCCCCCC35610741
桥梁隧道渡船
DDD 312
(a)过河效益层次结构
过河的代价A
经济代价社会代价环境代价BBB 321
投操冲安交居汽对对入作击全往民车水生资维渡可拥搬的的态金护船黑挤迁排污的业放染污CCCCC56241物染CC38 CC97
桥梁隧道渡船
DDD 312
(b)过河代价层次结构
图5-3过河的效益与代价层次结构图
关于效益的各个判断矩阵如表5-9—表5-23所示。

表5~9 表5~10
(2)(3) A BBBCCCCB1 C^^123123451
Bl 3 6 0. 61 Cl 1/3 1/7 1/5 1/6 0.04 1 1
Bl/3 1 2 0. 22 C 1 1/4 1/2 1/2 0. 09 2 2
Bl/6 1/2 1 0. 11 C 1 7 5 0.54 3 3
C 1 1/5 0. 11 C. I. =0 4
C 1 0. 23 5
C. I. =0. 14
表5~11 表5~12
(3)(3) BC CCC CCBa 32 67 8 3 910 11 23
Cl 6 9 0. 76 Cl 1/4 6 0. 25 6 9
C 1 4 0. 18 C 1 8 0. 69 7 10
C 1 0. 06 C 1 0. 06 8 11
C. I. =0.05 C. I. =0.07
表5~13 表5~14
(4)(4) CD DDD DDCs 3 1 12 3 2 12 3 12
DI 2 7 0. 58 DI 1/2 8 0. 36 1 1
DD 1 6 0. 35 1 9 0. 59 2 2
D 1 0. 07 D 1 0. 05 3 3
C. I. =0.02 C. I. =0.02
(4) (4) CD DDD DDCs 33 12 3 4 12 3 34
表5-15 表5-16
(4) (4) CD DDD DDCs 33 12 3 4 12 3 34
DI 4 8 0. 69 DI 1 6 0. 46 1 1
D 1 6 0. 25 D 1 6 0. 46 2 2
D 1 0. 06 D 1 0. 08 3 3
C. I.二0・ 07 C・ I.二0
表5~17 表5~18
(4) (4) CD DDD DDC3 w5 12 3 6 12 3 56 DI 1/4 9 0.41 DI 4 7 0.59 1 1
D 1 9 0. 54 D 1 6 0. 35 2 2
D 1 0. 05 D 1 0. 06 3 3
C. I.二0・ 11 C・ I.二0. 09
表5~19 表5~20
(4) (4) CD DDD DDC3 o? 12 3 8 12 3 78 DI 1 5 0. 46 DI 5 3 0. 64 1 1
D 1 5 0.46 D 1 1/3 0. 11 2 2
D 1 0. 09 D 1 0. 26 3 3
C. I.二0 C・ I.二0.02
表5-21 表5-22
(4) (4) CD DDD DDC3 w 1 12 3 2 12 3 12 DI 5 8 0. 73 DI 3 7 0. 64 1 1
D 1 5 0. 21 D 1 6 0. 29 2 2
D 1 0. 06 D 1 0. 07 3 3
C. I.二0. 7 C・ I.二0. 05
表5-23
C. I.二0. 8 C・ I.二0. 05
(4) CD DDall 12 3 11
DI 6 1/5 0. 27 1
D 1 1/3 0. 10 2
D 1 0. 63 3
C. I. =0.31
这样我们得到方案关于效益的合成顺序为
(4)T,,(0. 57, 0. 36, 0. 07)益
(4)效益层次模型的整体一致性比例C. R. <0. 1 (最后一个矩阵的一致性较差,但因
3
C的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

11 表5-24 表5-25
(2)(3) AB BBC CCB3 3 12 3 1 12 3 1
B 1 5 7 0.74 Cl 7 9 0.77 11
B 1 2 0. 16
C 1 5 0. 17 2 2
B 1 0. 09
C 1 0. 06 3 3
C. I. =0. 01 C. I.二0. 1
表5-26 表5-27
(3)(3) BC CCC CCBa CD2 45 6 3 78 9 23
DI 1/3 1/5 0. 11 Cl 3 4 0.62 1 7
DC 1 1/5 0. 26 1 1/3 0. 13 2 8
D 1 0. 64 C 1 0. 25 3 9
C. I. =0. 02 C. I.二0. 11
表5-28 表5-29
C. I.二0. 4 C ・ I.二0. 03
(4) (4) CD DDCD DD® o 1 12 3 2 12 3 12
Dl 7 9 0. 77 DI 1/3 8 0. 30 1 1
D 1 5 0. 17 D 1 9 0. 65 2 2
DD 1 0. 06 1 0. 05 3 3
C. I. =0. 05 C. I.二0. 05
表 5~30 表 5~31
(4) (4) CD DDD DDCa 33 12 3 4 12 3 34
Dl 1 9 0. 47 Dl 4 9 0. 69 1 1
D 1 9 0. 47 D 1 8 0. 26 2 2
D 1 0. 05 D 1 0. 05 3 3
C. I.二0 C ・ I.二0.09
代价分析的判断矩阵如表5-24-表5-36所示。

表 5-32 表 5~33
1 1 D 1 9 0. 47 D 1 9 0. 47
2 2 D 1 0. 05 D 1 0.
05 3 3
C. I.二0 C ・ I.二0
表 5-34 表 5-35
(4) (4) CD DDD DDC3 w? 12 3 8 12 3 78
1 1 D 1 6 0. 29 D 1 5 0. 28
2 2 D 1 0. 06 D 1 0.
07 3 3
表 5~36(4) (4) CD DDD DDCs 35 12 3 6 12 3 56
Dl 1 9 0. 47 Dl 1 9 0. 47 Dl 3 8 0. 65 Dl 3 7 0. 65
(4) CD DDa9 12 3 9
DI 1/6 7 0. 21 1
D 1 8 0. 73 2
D 1 0. 05 3
C. I. =0. 16
得到方案关于代价的合成排序为
(4)T ,, (0. 36, 0. 58, 0. 05)代
(4)整体一致性比例C. R. <0.1 o
各方案的效益/代价如下:
桥梁:效益/代价=1.58
隧道:效益/代价二0.62
5
轮渡:效益/代价=1.28
方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

6。

相关文档
最新文档