原子核物理第二版习题答案杨福家复旦大学出版社教材
【9A文】原子核物理第二版-习题答案-杨福家-复旦大学出版社

第一章1-3.试计算核素He和Li,并对比结合能之差别作讨论。
1-4.试计算Zr,Zr,Zr,三个核素的中子分离能;比较这三个分离能,可得出什么重要结论?1-5.求出U的平均结合能;如果近似假定中等质量原子核的平均结合能为8.5MeV,试估计一个U核分裂成两个相同的中等原子核时,能放出多少能量?1-6.试由质量半经验公式,试计算Ca和Co的质量,并与实验值进行比较。
1-7.利用质量半经验公式来推导稳定核素的电荷数Z与质量数A的关系式,并与β稳定线的经验公式作比较?1-8.试利用镜核(A相同,中子数N和质子数Z互换的一对核)N和C质量差以及质量半经验公式来近似估算原子核半径参量r。
1-11.在核磁共振法研究原子Mg的基态(Iπ=5/2+)的磁特性实验中,当恒定磁场的强度B0=5.4×103Gs以及高频磁场的频率为v=1.40MHz时,发现了能量的共振吸收,试求gI因子及核磁矩。
1-12.假定核电荷Ze均匀分布在两个主轴分别为a和c(c沿对称轴)的旋转椭球内,试推导公式(1.6.6)。
(Q=2Z(c2-a2))5第二章2-1.核力有哪些主要性质?对每一种性质,要求举一个实验事实。
2-3.试计算从N 715O 816F 917中取出一个质子所需的能量;并进行比较,从中可得出什么结论?2-4.由质量半经验公式估算O 17和F 17的基态质量差,并与实验值比较。
(r0取1.4fm )2-5.根据壳层模型决定下列一些核的基态自旋和宇称:He 23,Li 37,Mg 1225,K 1941,Cu 2963,Kr 3683,Sb 51123,Pb 82209.2-6.实验测得He 25的最低三个能级Iπ为3/2-(基态),1/2-和3/2+;测得Ni 2857的最低4个能级的Iπ为3/2-(基态),5/2-,1/2-和7/2-,试与单粒子壳模型的预言相比较,并对比较结果作出定性说明。
第三章3-1.一个放射性核素的平均寿命为10d ,试问经过5天衰变的数目以及在第五天内发生衰变的数目是原来的多少(百分比)?3-2.已知1mg U 238每分钟放出740个α粒子,试计算1g U 238的放射性强度(T=4.5R10^9年)。
原子物理 杨福家 第四章 答案

4—l 一束电子进入1.2T 的均匀磁场时,试问电子自旋平行于和反平行于磁场的电子的能量差为多大?解:已知: 电子自旋磁矩在磁场方向的投影B B s s z g m μμμ±=±=(注意做题时,它是磁场方向的投影,不要取真实值B μ3)依磁矩与磁场的作用能量 θμμcos B B E =⋅=自旋与磁场平行时B B B E B s s μμμ==⋅=01cos自旋与磁场反平行时B B B E B s s μμμ-==⋅=1802cos则 eV eV B E E E B 4412101100.57881.222--⨯=⨯⨯⨯=μ=-=∆389.4—2 试计算原子处于232D 状态的磁矩μ及投影μz 的可能值.解:已知:j =3/2, 2s +1=2 s =1/2, ι=2则 5441564321232123=-+=-+=)()(jl s g j依据磁矩计算公式 B B j j g j j μμμ15521)(-=+-= 依据磁矩投影公式B j j z g m μ-=μ5652±±=,j j g m∴B B z μ±μ±=μ5652, 4-3 试证实:原子在6G 3/2状态的磁矩等于零,并根据原子矢量模型对这一事实作出解释.4-4 在史特恩-盖拉赫实验中,处于基态的窄的银原子束通过极不均匀的横向磁场,并射到屏上,磁极的纵向范围d =10cm ,磁极中心到屏的距离D =25 cm .如果银原子的速率为400m /s ,线束在屏上的分裂间距为2.0mm ,试问磁场强度的梯度值应为多大?银原子的基态为2S 1/2,质量为107.87u .4-5 在史特恩-盖拉赫实验中(图19.1),不均匀横向磁场梯度为cm T zB/.05=∂∂,磁极的纵向范围d =10cm ,磁极中心到屏的距离D =30cm ,使用的原子束是处于基态F 的钒原子,原子的动能E k=50MeV .试求屏上线束边缘成分之间的距离.解: 对于多个电子 2S +1=4 S =3/2 L =3, J =3/2则 52)4151415(2123)(2123222=-+=-+=2jl s g j23212123--++=;;;j m依公式 kTdDz B g m Z B J J 3⋅∂∂μ-=又 meV mV 5021= 3kT=mV 2=0.1eVkTdDz B g m Z B J J 3⋅∂∂μ-==cm 520920503010055223..±=⨯⨯⨯⨯± 和kTdDz B g m Z BJ J 3⋅∂∂μ-==cm 0.17365030105.05221±=⨯⨯⨯⨯± 4-6. 在史特恩-盖拉赫实验中,原子态的氢从温度为400K 的炉中射出,在屏上接受到两条氢束线,间距为0.60cm .若把氢原子换成氯原子(基态为2P 3/2,),其它实验条件不变,那么,在屏上可以接受到几条氯束线?其相邻两束的间距为多少?解: 已知 Z 2=0.30cm T =400K 3kT =3×8.617×10-5×400eV=0.103eVJ =1/2 g j =2 m j g j =±1由kTdDz B g m Z B J J 3⋅∂∂μ-=30.=⋅∂∂μkTdD z B B 3当换为氯原子时,因其基态为2P 3/2 ,j =3/2, l =1 s =1/234)415234(2123)(2123222=-+=-+=jl s g j23;21;21;23--++=j mcmz 0.60.33423±=⨯⨯±='cm z 0.20.33421±=⨯⨯±=''则相邻两条间距为|Z ”-Z ’|=0.4cm ,共有2j +1=4条。
原子物理 杨福家 第二章 答案

原子物理杨福家第二章答案第二章习题解22 对于氢原子、一次电离的氦离子He+和两次电离的锂离子Li++,分别计算它们的:(1)(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)(2)电子在基态的结合能;(3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长、解:(1)由类氢原子的半径公式由类氢离子电子速度公式∴H: r1H =0、053×12nm=0、053nm r2 H =0、053×22=0、212nm V1H=2、19 ×106×1/1=2、19 ×106(m/s)V2H=2、19 ×106×1/2=1、095 ×106(m/s)∴He+: r1He+=0、053×12/2nm=0、0265nm r2He+=0、053×22/2=0、106nm V1 He+=2、19 ×106×2/1=4、38 ×106(m/s)V2 He+=2、19 ×106×2/2=2、19 ×106(m/s)Li++: r1 Li++=0、053×12/3nm=0、0181nm r2 Li++=0、053×22/3=0、071nm V1 Li++=2、19 ×106×3/1=6、57 ×106(m/s)V2 Li++=2、19 ×106×3/2=3、28 ×106(m/s)(2)∵ 基态时n=1H: E1H=-13、6eVHe+: E1He+=-13、6×Z2=-13、6×22=-54、4eVLi++: E1He+=-13、6×Z2=-13、6×32=-122、4eV(3)由里德伯公式=Z2×13、6×3/4=10、2 Z2注意H、He+、Li++的里德伯常数的近似相等就可以算出如下数值。
原子物理学-杨福家第二章习题答案上课讲义

原子物理学-杨福家第二章习题答案第二章习题2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的:(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能;(3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长.n eeZ n a∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nmV 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s)∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nmV 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nmV 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s)(2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它∵基态时n =1H: E 1H =-13.6eVHe+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×22(3) 由里德伯公式Z 2×13.6×3/4=10.2Z 2注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。
【最新试题库含答案】原子核物理第二版习题答案杨福家复旦大学出版社_0

原子核物理第二版习题答案杨福家复旦大学出版社:篇一:原子核物理第二版习题答案杨福家复旦大学出版社第一章1-3.试计算核素He和Li,并对比结合能之差别作讨论。
1-4.试计算Zr,Zr,Zr,三个核素的中子分离能;比较这三个分离能,可得出什么重要结论?1-5.求出U的平均结合能;如果近似假定中等质量原子核的平均结合能为8.5MeV,试估计一个U核分裂成两个相同的中等原子核时,能放出多少能量?1-6.试由质量半经验公式,试计算Ca和Co的质量,并与实验值进行比较。
1-7.利用质量半经验公式来推导稳定核素的电荷数Z与质量数A的关系式,并与β稳定线的经验公式作比较?1-8.试利用镜核(A相同,中子数N和质子数Z互换的一对核)N和C质量差以及质量半经验公式来近似估算原子核半径参量r。
1-11.在核磁共振法研究原子Mg的基态(????=5/2+)的磁特性实验中,当恒定磁场的强度??0=5.4×103Gs以及高频磁场的频率为v=1.40MHz 时,发现了能量的共振吸收,试求gI因子及核磁矩。
1-12.假定核电荷Ze均匀分布在两个主轴分别为a和c(c沿对称轴)的旋转椭球内,试推导公式(1.6.6)。
(Q=5Z(??2-??2))2第二章2-1.核力有哪些主要性质?对每一种性质,要求举一个实验事实。
16172-3.试计算从157??8??9??中取出一个质子所需的能量;并进行比较,从中可得出什么结论?2-4.由质量半经验公式估算17??和17??的基态质量差,并与实验值比较。
(r0取1.4fm)2-5.根据壳层模型决定下列一些核的基态自旋和宇称:32563831232097412????,3????,12????,19??,29????,36????,51????,82????.篇二:原子核物理第三章课后习题答案3-3. 60Co是重要的医用放射性同位素,半衰期为 5.26年,试问1g60Co的放射性强度?100mCi的钴源中有多少质量60Co?解:放射性强度公式为:A??dN0.693m??N0e??t??N,其中N?N0e??t,?=,N=NA,T为半衰期,dtTM?A??dN0.693m??N0e??t??N??NAdtTM0.6931??6.0221367?1023 5.26?365?24?360059.9338?4.19778?1013次/秒?1.135?103Ci其中Ci?3.7?1010次核衰变/秒,100mCi?3.7?1010?100?10?3=3.7?109次核衰变/秒,利用公式dN0.693m??N0e??t??N?NA,可知dtTM0.693m0.693mA?NA??6.0221367?1023?3.7?109。
《原子物理学》部分习题解答(杨福家)

gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2
1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c
原子物理学杨福家第⑦章习题答案

第七章习题1,2参考答案7-1试计算核素40Ca和56Fe的结合能和比结合能.分析:此题可采用两种算法,一是按核结合能公式;另一是按魏扎克核质量计算公式.一.按核子结合能公式计算解:1 ) 对于核素40Ca,A=40,Z=20,N=20由结合能公式B=Z m p+Z m e-M= (20×1.007277+20×1.008665-39.9625)u=0.35625u×931.5MeV/u=331.846MeV比结合能B/A=331.846/40MeV=8.296MeV2 )对于核素56Fe,A=56,Z=26,N=30由结合能公式B=Z m p+Z m e-M= (26×1.007277+30×1.008665-55.9349)u=0.514252u×931.5MeV/u=479.025MeV比结合能B/A=479.025/56MeV=8.554MeV二.按魏扎克公式计算对于题目中所给的40Ca和56Fe都是偶偶核.依B=a V A-a s A2/3-a c Z2A-1/3-a sys(Z-N)2+a p A1/2+B壳,代入相应常数计算也可.7-2 1mg238U每分钟放出740个α粒子,试证明:1g238U的放射性活度为0.33微居,238U的半衰期为4.5x109a.证:1mg238U每分钟放出740个α粒子,1g238U的放射性活度为A=740×1000/60贝克=1.233×104贝克=1.233×104贝克/3.7×104(贝克/微居)=0.33微居衰变常数λ= A/N=4.874×10-21半衰期T1/2=0.693/λ=0.693/4.874×10-21秒=1.42×1020秒=4.5×109a.得证.第七章习题3,4参考答案7-3活着的有机体中,14C 对12C 的比与大气中是相同的,约为1.3x10-12.有机体死亡后,由于14C 的放射性衰变,14C 的含量就不断减少,因此,测量每克碳的衰变率就可计算有机体的死亡时间.现测得:取之于某一骸骨的100g 碳的β衰变率为300次衰变/min ,试问该骸骨已有多久历史?解:100g 碳14的放射性活度 A=300次/min=5次/s , 又14C 的半衰期 T 1/2=5730a则 10=T C依 A=λN活着的生物体中14C 的个数为N=10=1.3047×1012个依公式t e N N ⋅-=λ得N N =10155810⨯⨯--=-=13216年答:该骸骨已有13216年历史。
原子物理杨家福答案

原子物理杨家福答案1、关于物质的密度,下列说法正确的是()[单选题] *A. 一罐氧气用掉部分后,罐内氧气的质量变小,密度不变B. 一只气球受热膨胀后,球内气体的质量不变,密度变大C. 一支粉笔用掉部分后,它的体积变小,密度变小D. 一块冰熔化成水后,它的体积变小,密度变大(正确答案)2、46.把一个实心铁块放入盛满水的容器中,溢出水的质量是5g,若把铁块放入盛满酒精的容器中,则溢出酒精的质量是()(ρ酒精=8×103kg/m3,ρ水=0×103kg/m3)[单选题] *A.5gB.5gC.4g(正确答案)D.36g3、47.夏天刚从冰箱中取出冰棒后,发现以下四种现象:①冰棒上粘着“白粉”;②剥去纸后冰棒会冒出“白雾”;③冰棒放进茶杯后,一会儿杯的外壁就会“出汗”;④冰棒放进嘴里变成“糖水”。
这四种现象形成过程中放热的有()[单选题] *A.①②③(正确答案)B.②③④C.①②④D.①③④4、人耳听不到次声波,是因为响度太小[判断题] *对错(正确答案)答案解析:次声波和超声波的频率超过了人耳的听觉范围5、4.子弹以速度v从枪口射出,v指瞬时速度.[判断题] *对(正确答案)错6、与头发摩擦过的气球能吸引细小水流,是因为气球和水流带上了同种电荷[判断题]对错(正确答案)答案解析:气球经过摩擦后带电,可以吸引轻小的水流7、通常情况下,关于一段镍铬合金丝的电阻,下列说法中正确的是()[单选题]A.合金丝的电阻跟该合金丝的横截面积无关B.合金丝的电阻等于该合金丝两端电压与通过其电流的比值(正确答案)C.合金丝两端的电压越大,合金丝的电阻越大D.通过合金丝的电流越小,合金丝的电阻越大8、88.如图为甲、乙两种物质的m﹣V图像,下列说法中正确的是()[单选题] * A.体积为15cm3的乙物质的质量为30g(正确答案)B.甲的质量一定比乙的质量大C.甲、乙体积相同时,乙的质量是甲的2倍D.甲、乙质量相同时,甲的体积是乙的2倍9、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性10、人推木箱没有推动,是因为人对木箱的推力小于地面对木箱的摩擦力[判断题] *对错(正确答案)答案解析:木箱没有被推动,处于静止状态,合力为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
1-3.试计算核素He和Li,并对比结合能之差别作讨论。
1-4.试计算Zr,Zr,Zr,三个核素的中子分离能;比较这三个分离能,可得出
什么重要结论?
1-5.求出U的平均结合能;如果近似假定中等质量原子核的平均结合能为8.5MeV,试估计一个U核分裂成两个相同的中等原子核时,能放出多少能量?
1-6.试由质量半经验公式,试计算Ca和Co的质量,并与实验值进行比较。
1-7.利用质量半经验公式来推导稳定核素的电荷数Z与质量数A的关系式,并与β稳定线的经验公式作比较?
1-8.试利用镜核(A相同,中子数N和质子数Z互换的一对核)N和C质量差以及质量半经验公式来近似估算原子核半径参量r。
1-11.在核磁共振法研究原子Mg的基态(Iπ=5/2+)的磁特性实验中,当恒定磁场的强度B0=5.4×103Gs以及高频磁场的频率为v=1.40MHz时,发现了能量的共振吸收,试求gI因子及核磁矩。
1-12.假定核电荷Ze均匀分布在两个主轴分别为a和c(c沿对称轴)的旋转椭
球内,试推导公式(1.6.6)。
(Q=2
Z(c2-a2))
5
第二章
2-1.核力有哪些主要性质?对每一种性质,要求举一个实验事实。
2-3.试计算从N 715O 816F 917
中取出一个质子所需的能量;并进行比较,从中可得出
什么结论?
2-4.由质量半经验公式估算O 17和F 17的基态质量差,并与实验值比较。
(r0取1.4fm )
2-5.根据壳层模型决定下列一些核的基态自旋和宇称:He 23,Li 37,Mg 1225,K 1941
,Cu 2963,Kr 3683,Sb 51123,Pb 82209
.
2-6.实验测得He 25的最低三个能级Iπ为3/2-(基态),1/2-和3/2+;测得Ni 2857
的最低4个能级的Iπ为3/2-(基态),5/2-,1/2-和7/2-,试与单粒子壳模型的预言相比较,并对比较结果作出定性说明。
第三章
3-1.一个放射性核素的平均寿命为10d ,试问经过5天衰变的数目以及在第五天内发生衰变的数目是原来的多少(百分比)?
3-2.已知1mg U 238每分钟放出740个α粒子,试计算1g U 238的放射性强度(T=4.5*10^9年)。
3-3. Co 60是重要医用放射性同位素,半衰期为5.26年,试问1g Co 60的放射性强度?100mCi 的钴源中有多少质量Co ?
3-4.活着的有机体中,C 14
和C 12的原子数比与大气中是相同的,约为1.3*10^-12。
有机体死亡后,由于C 14的放射性衰变,14C 的含量就不断减少,因此,测量每克碳的衰变率就可计算有机体的死亡时间。
现测得:新疆古尸骸骨的100g 碳的β衰变率为900次/min ,试问该古尸已有多久历史?(14C 衰变期为5730年)
3-5.用氘轰击Mn 55可生成β-放射性核素Mn 56,56Mn 的产生率5*10^8/S ,已知56Mn 的半衰期2.579h ,试计算轰击10小时后所产生的56Mn 放射性强度。
3-7.(1)从3.1.9出发,讨论当λA<λB 时,子体NB (t ),在什么时候达极大值(假定NB (0)=0)?(2)已知钼锝母牛有如下衰变规律:
临床中利用同质异能素Tc 99m 所放的γ(141keV )作为人体器官的诊断扫描。
试问在一次淋洗后,再经过多少时间淋洗Tc 99m 时,可得到最大量的子体Tc 99m 。
3-9.Po 210核从基态进行衰变,伴随发射出两组α粒子:一组α粒子能量为5.30MeV ,放出这组α粒子后,子核处于基态;另一组α粒子能量为4.50MeV ,放出这组α粒子后,子核处于激发态。
计算子核由激发态回到基态时发出的γ光子能量。
3-10.V 47 既可发生β+衰变,也可发生K 俘获,已知β+最大能量为1.89MeV ,试求K 俘获过程中放出的中微子能量Ev 。
3-13.将下列β衰变按跃迁级次分类 (1)H 3(1/2+)→He 3(1/2+) (2)N 17(1/2-)→O 17(5/2+) (3)Cs 137(7/2+)→Ba 137(3/2+) (4)In 115(9/2+)→Sn 115(1/2+) (5)Br 76(1-)→Se 76(0+)
(6)Cl 36(2+)→Ar 36(0+) (7)Rb 87(3/2-)→Sr 87(9/2+)
3-14.原子核Zn 69处于能量为436keV 的同质异能态时,试求放射γ光子后的反射动能E Rγ和放射内转换电子后的反冲动能E Re 。
第四章
4-2.一个氘核吸收了6MeV γ射线后被分裂为一个质子和一个中子,若发射的中子与γ射线成90°,试求所出射的质子和中子的动能,以及质子出射方向和γ射线的夹角。
4-3.试求下列反应阈能:
Li 7(α,n )B 10;B 11(p ,n )C 11;O 18(p ,n )F 18;Li 7(P ,α)He 4
4-5.试问用多大能量质子轰击固定氚靶,才能发生H 3(p ,n )He 3反应?入射质子能量超过多大,出射中子为单值?若入射质子能量为3.00MeV ,且发射的中子和质子的入射方向成90°角,则发射的中子和He 3的动能各是多少?
4-6Li 7(p ,n )Be 7是加速器上的常用来产生中子的核反应。
试计算:(1)反应阈能多大?(2)当入射质子能量为Ep=1.90MeV 时,出射中子有否圆锥效应?若有则要求给出最大出射角θLM ,(3)入射质子能量为Ep=2.0MeV 时,有否圆锥效应?(已知M (Be 47)=7.016930u )。
第五章
5-3.4MeV 的α粒子和1MeV 的质子,他们在同一物质中的能量损失是否一样?他们在铝中射程是多少?
5-4.如果已知质子在某一物质中的射程和能量关系曲线,能否从这曲线求得某一能量的d、t粒子在同一物质的射程值,如果能的话,应怎样计算?
5-6.10MeV的氘核与10MeV的电子穿过铅时,他们的辐射损失率之比是多少?20MeV的粒子穿过铅时,辐射损失和电离损失之比是多少?
5-7.一准直的γ光子束(能量为2.04MeV),穿过薄铝片,在20°方向测量次级电子,问在这个方向发射的康普顿反冲电子的能量是多少?。