临床试验中常用统计分析方法
临床试验中的数据分析方法

临床试验中的数据分析方法在临床试验中,数据分析是评估新药疗效和安全性的重要环节。
合理的数据分析方法可以帮助研究人员准确地评估药物的治疗效果,并从中获取有意义的结果。
本文将介绍几种常用的临床试验中的数据分析方法。
一、描述性统计分析描述性统计分析是对试验数据的基本特征进行总结和描述的方法。
它通常包括测量数据的均值、标准差、中位数和百分比等指标,并可通过绘制直方图、箱线图和散点图等图表来展示数据的分布情况。
描述性统计分析可以帮助我们对数据的整体情况有一个直观的了解,为后续的进一步分析提供基础。
二、假设检验假设检验是在临床试验中用于检验研究假设是否成立的统计方法。
常见的假设检验方法包括t检验、方差分析和卡方检验等。
其中,t检验适用于比较两组样本均值的差异;方差分析适用于比较三组以上样本均值的差异;卡方检验适用于比较两组或多组分类数据的差异。
通过假设检验,我们可以判断药物的治疗效果是否显著,并对结果进行进一步的解读。
三、生存分析生存分析主要用于评估试验中受试者的生存情况和事件发生的时间。
在临床试验中,我们常用的生存分析方法有卡普兰-迈尔曲线和Cox比例风险模型。
卡普兰-迈尔曲线可以显示不同治疗组或不同变量水平的生存曲线,从中可以观察到治疗效果的差异;Cox比例风险模型可以用来分析多个变量对生存风险的影响,并得出风险比值和相应的置信区间。
生存分析可以帮助我们评估药物对患者生存情况的影响,为临床决策提供科学依据。
四、回归分析回归分析是一种用于研究因果关系的统计方法。
在临床试验中,我们常用的回归分析方法有线性回归、逻辑回归和生存回归等。
线性回归适用于研究两个连续变量之间的关系;逻辑回归适用于研究因变量是二分类的情况;生存回归适用于研究因变量是生存时间的情况。
回归分析可以帮助我们确定药物的独立影响因素,并预测结果的变化趋势。
综上所述,临床试验中的数据分析方法包括描述性统计分析、假设检验、生存分析和回归分析等。
这些方法可以帮助我们全面评估药物的疗效和安全性,为临床决策提供科学依据。
临床试验中常用统计分析方法

临床试验中常用统计分析方法在临床试验中,常用的统计分析方法有很多。
下面将介绍一些常见的统计学方法及其作用。
1.描述性统计:描述性统计是对试验数据进行整理和总结,以描述试验样本的特征和分布情况。
它包括了均值、标准差、中位数、百分位数、频率等指标的计算和展示。
2. 整体效应分析:整体效应分析用于评估治疗措施的总体效果。
其中,使用t检验可以比较两个样本的均值差异,配对t检验可以比较同一组样本在不同时间点的均值差异,方差分析可用于比较三个或三个以上组别的均值差异。
此外,如果存在荟萃分析(meta-analysis)数据,可以使用统计学的合并技术进行整体效应的定量分析。
3. 变量关联分析:变量关联分析用于评估两个或多个变量之间的关系。
相关系数可以用来度量两个变量之间的线性关系,如Pearson相关系数和Spearman等级相关系数。
此外,还可以通过回归分析来研究一个或多个自变量对因变量的影响。
4. 风险评估与预测:在临床试验中,风险评估和预测是一项重要的统计方法。
例如,Kaplan-Meier生存分析用于评估治疗组和对照组的生存曲线差异,Cox回归分析用于评估多个自变量对生存时间的风险影响。
5.随机性分析:随机性分析用于评估试验中的随机抽样过程是否满足预设的随机性要求。
例如,随机化完整性检查可用于检查随机分配的效果,查找可能的偏倚。
6.安全性分析:安全性分析主要用于评估药物或治疗措施的不良事件和副作用情况。
可以利用卡方检验或费希尔精确概率检验来比较不良事件在不同组别中的发生率。
以上是临床试验中常用的几种统计分析方法,不同的研究目的、研究设计和数据类型,可能需要采用不同的统计方法进行分析。
此外,临床试验中还可以使用一些高级的统计技术,如生存分析、荟萃分析和多个比较法等,以获得更详细和准确的研究结果。
临床试验数据分析中的统计学方法介绍

临床试验数据分析中的统计学方法介绍在当今互联网时代,数据已经成为了各行各业的核心资源。
在医学领域,临床试验数据的分析对于评估药物疗效、确定治疗方案以及指导临床决策具有重要意义。
作为一位现代互联网思维的老师,我将为大家介绍一些在临床试验数据分析中常用的统计学方法。
1. 描述性统计分析描述性统计分析是对试验数据的基本特征进行总结和描述的方法。
它可以通过计算平均值、中位数、标准差等指标来揭示数据的集中趋势和离散程度。
此外,描述性统计分析还可以利用图表等可视化方式展示数据的分布情况,帮助研究人员更好地理解数据。
2. 推断统计分析推断统计分析是通过从样本数据中得出总体参数的估计和推断的方法。
在临床试验中,研究人员通常只能获得部分样本数据,无法观察到整个总体的情况。
因此,推断统计分析可以通过对样本数据的分析,利用概率理论和数理统计方法,对总体参数进行估计,并给出估计的可信区间。
3. 假设检验假设检验是一种用于判断样本数据与某个假设之间是否存在显著差异的统计方法。
在临床试验中,研究人员通常会提出一个原假设和一个备择假设,通过对样本数据的分析,利用统计学的方法来判断是否拒绝原假设。
常用的假设检验方法包括t检验、方差分析、卡方检验等。
4. 生存分析生存分析是一种用于研究事件发生时间和事件相关因素的统计方法。
在临床试验中,研究人员常常关注患者的生存时间或事件发生的风险,并希望了解某些因素对生存时间或风险的影响程度。
生存分析可以通过构建生存曲线、计算生存率以及应用生存模型等方法来实现。
5. 多元分析多元分析是一种用于研究多个变量之间关系的统计方法。
在临床试验中,研究人员通常需要考虑多个因素对结果的综合影响。
多元分析可以通过回归分析、方差分析、主成分分析等方法来研究多个变量之间的关系,并探索其中的相互作用。
以上介绍的统计学方法只是临床试验数据分析中的一部分,实际上还有很多其他方法,如重复测量分析、因果推断分析等。
这些方法在临床试验数据的处理和解读中起到了重要的作用,帮助研究人员更好地理解数据背后的规律,并为临床决策提供科学依据。
临床研究中常见的统计方法

临床研究中常见的统计方法在临床研究中,统计方法被广泛应用于数据分析和结果解释。
统计方法通过对数据进行收集、整理、分析和解读,可以帮助研究人员得出准确和可靠的结论。
本文将介绍在临床研究中常见的统计方法,包括描述统计、推断统计和生存分析。
一、描述统计描述统计是对收集到的数据进行汇总和描述的过程。
它主要通过计算和呈现基本的统计量来揭示数据的特征和分布情况,常用的统计量包括均值、中位数、众数、标准差、百分位数等。
通过描述统计,研究人员可以对数据的整体情况有一个直观的认识,并从中发现数据的趋势和异常情况。
二、推断统计推断统计是通过从样本中获得的信息来推断总体属性的情况。
它主要使用概率理论和抽样方法来进行推断。
推断统计的核心是假设检验和置信区间的计算。
假设检验用于判断研究结果是否具有统计学上的显著性,置信区间用于估计总体参数。
在临床研究中,推断统计可以帮助研究人员确定治疗效果的可靠性,对比不同组间的差异,评估药物的安全性等。
三、生存分析生存分析广泛应用于临床研究中的生存数据分析,用于评估疾病和治疗对患者生存时间的影响。
生存分析的核心是生存曲线和风险比(hazard ratio)的计算。
通过生存曲线,研究人员可以了解不同组别患者的生存率以及生存时间的差异;而风险比可以衡量不同因素对患者生存的相对风险。
生存分析在临床试验和观察研究中具有重要的意义,可以帮助医生和研究人员更好地了解疾病进展、预测患者生存时间以及评估治疗效果。
四、其他常见统计方法除了上述三种常见的统计方法外,临床研究中还存在其他一些常用的统计方法。
例如,线性回归分析、方差分析、多元分析、非参数检验、序列分析等。
这些方法可以根据研究的具体问题和数据类型进行选择和应用,以得到更准确和丰富的研究结果。
总结:临床研究中的统计方法在数据分析和结果解释中起到了重要的作用。
描述统计帮助研究人员了解数据的基本特征和趋势;推断统计可以判断研究结果的统计学显著性和可靠性;生存分析用于评估疾病治疗对患者生存时间的影响。
临床试验中的统计分析方法

临床试验中的统计分析方法临床试验是评估新药、治疗方法或医疗器械安全性和有效性的重要手段。
统计分析方法在临床试验中起着关键的作用,它能够通过对试验数据的整理和分析,为研究者提供有力的科学依据。
本文将介绍临床试验中常用的统计分析方法。
一、描述性统计分析在临床试验中,首先需要进行描述性统计分析,以了解实验数据的总体特征。
常见的描述性统计分析方法包括测量数据的中心趋势和离散程度。
中心趋势主要通过计算平均值、中位数和众数等指标来了解数据的集中程度;离散程度主要通过计算标准差、方差和极差等指标来了解数据的分散程度。
二、假设检验分析假设检验分析是临床试验中常用的统计分析方法之一,其主要用于判断两个或多个样本之间是否存在显著差异。
在假设检验中,通常会设立一个零假设和一个备择假设,通过计算样本数据的统计值,再与理论值进行比较,以确定是否拒绝零假设。
常见的假设检验方法包括独立样本 t 检验、配对样本 t 检验和方差分析等。
独立样本 t 检验用于比较两组独立样本的均值是否有显著差异,配对样本 t 检验用于比较同一组样本在不同时间点或对照组的均值是否有显著差异,方差分析则用于比较多个样本间均值是否有显著差异。
三、相关性和回归分析在临床试验中,常常需要探究变量之间的关系以及预测变量对结果的影响。
相关性和回归分析是用于分析变量间关系的统计方法。
相关性分析主要用于描述两个或多个变量之间的相关关系强度和方向。
相关系数可以通过计算协方差或皮尔逊相关系数来得到,其取值范围为 -1 到 1,正值表示正相关,负值表示负相关,绝对值越接近于1表示相关性越强。
回归分析主要用于建立变量间的数学模型来预测或解释因变量的变化。
常见的回归分析包括线性回归分析、多元回归分析和 logistic 回归分析等。
其中,线性回归分析用于探究自变量和因变量之间的线性关系,多元回归分析则考虑了多个自变量对因变量的影响,logistic 回归分析则用于处理因变量为二分类变量的情况。
临床试验数据分析的常用统计方法

临床试验数据分析的常用统计方法在医学领域,临床试验是评估新药物、治疗方法或医疗器械安全性和有效性的重要手段。
而临床试验数据的分析则是评估试验结果的关键环节。
为了确保数据的可靠性和科学性,临床试验数据分析常常采用一系列统计方法,下面将介绍其中的几种常用方法。
1. 描述统计分析描述统计分析是对试验数据进行总结和描述的方法。
它包括计算均值、标准差、中位数、百分位数等指标,以及绘制直方图、箱线图等图形。
通过描述统计分析,我们可以了解试验样本的分布情况、集中趋势和离散程度,为后续的推断统计分析提供基础。
2. 参数估计参数估计是根据样本数据对总体参数进行估计的方法。
在临床试验中,常常需要估计的参数包括治疗效果、副作用发生率等。
参数估计的常用方法有点估计和区间估计。
点估计是通过样本数据计算出一个数值作为总体参数的估计值,例如计算出的相对风险(RR)为0.85。
而区间估计则是给出一个范围,例如计算出的相对风险的95%可信区间为0.75-0.95。
区间估计可以提供更多的信息,例如置信水平和可信区间的宽度,帮助我们评估估计结果的可靠性。
3. 假设检验假设检验是通过对样本数据进行统计推断,判断总体参数是否符合某个假设的方法。
在临床试验中,常常需要判断新治疗方法是否显著优于对照组,或者某个变量是否与治疗效果相关。
假设检验的过程包括建立原假设和备择假设、选择适当的检验方法、计算检验统计量和确定显著性水平等。
常用的假设检验方法有t检验、卡方检验、方差分析等。
假设检验的结果通常以p值表示,p值越小,拒绝原假设的依据越充分。
4. 生存分析生存分析是研究事件发生时间和事件发生率的统计方法。
在临床试验中,常常需要评估患者的生存时间和治疗对生存的影响。
生存分析的常用方法有生存曲线分析和Cox比例风险模型。
生存曲线分析可以绘制出患者生存率随时间变化的曲线,比较不同组别之间的生存差异。
而Cox比例风险模型可以估计不同因素对生存的影响,并计算出相应的风险比值。
临床试验中的统计分析方法

临床试验中的统计分析方法临床试验是评估新药物、治疗方法或其他医疗干预措施疗效和安全性的重要手段。
在进行临床试验时,统计分析方法起到了关键的作用,它帮助研究人员从海量数据中提取有价值的信息,并进行科学、客观的评估和判断。
本文将介绍一些常用的统计分析方法,以及它们在临床试验中的应用。
1. 描述性统计分析描述性统计分析是对试验数据进行整体概括的方法。
它通过计算平均值、中位数、标准差等指标,来描述数据的集中趋势、离散程度等特征。
在临床试验中,描述性统计分析常用于对受试者的基线特征进行总结,以及对治疗组和对照组的基本情况进行比较。
2. 假设检验假设检验是判断试验结果是否具有统计显著性的方法。
它基于概率统计原理,通过比较试验组和对照组之间的差异,判断这种差异是否仅仅是由于随机因素引起的,还是真实存在的。
常见的假设检验方法包括t检验、卡方检验、方差分析等。
在临床试验中,假设检验一般用于比较两种治疗方法的疗效,或者评估新药物与安慰剂之间的差异。
3. 生存分析生存分析是评估试验结果中患者生存时间或发生事件的概率的方法。
它考虑到了不同患者间观察时间的差异,通过构建生存曲线和风险比等指标,来评估治疗干预对患者生存的影响。
生存分析常用于研究药物对患者的治疗效果,尤其对于肿瘤临床试验来说具有重要意义。
4. 回归分析回归分析是通过建立数学模型,来探究自变量与因变量之间的关系。
在临床试验中,回归分析可以用来评估治疗干预对预后结局的影响,并控制其他干预因素的干扰。
常见的回归分析方法包括线性回归、逻辑回归、Cox回归等。
5. 效应量计算效应量是一个衡量试验结果差异大小的指标,它可以用于评估治疗效果的临床意义和实用价值。
常用的效应量计算方法有Cohen's d、相对风险等。
临床试验中,选择合适的效应量计算方法,有助于研究人员更准确地评估治疗干预的疗效。
在临床试验中,合理选择和应用统计分析方法,对于得出准确、可靠的结论至关重要。
临床研究资料常用统计分析方法

临床研究资料常用统计分析方法近年来,随着医学研究的发展,临床试验在医学领域中扮演着至关重要的角色。
为了得出准确和有说服力的结论,统计分析方法在临床研究中起着不可或缺的作用。
本文将介绍一些常用的临床研究资料统计分析方法,以帮助读者更好地理解和运用这些方法。
1. 描述性统计分析法描述性统计分析法是研究者在进行临床研究时常用的一种方法。
它通过计算平均数、标准差、中位数、最大最小值等指标来描述研究数据的基本特征。
例如,在一项针对药物治疗效果的临床试验中,研究者通常会计算出药物治疗组和对照组疗效指标的平均数和标准差,以比较两组之间的差异。
2. 生存分析法生存分析法是研究生存时间和事件发生率的一种统计方法。
在临床实践中,生存分析法常用于评估治疗干预对患者生存时间的影响,尤其是在肿瘤治疗领域中广泛应用。
生存分析方法包括卡普兰-迈尔(Kaplan-Meier)生存曲线和考克斯比例风险模型等。
3. T检验和方差分析T检验和方差分析是常用的比较两个或多个样本平均值之间是否有统计学差异的方法。
T检验适用于两个样本的比较,而方差分析则适用于三个或更多个样本的比较。
这些方法都依赖于计算样本的均值和方差,并通过分析差异的大小和显著性水平来判断组间是否存在差异。
4. 相关性分析相关性分析是研究两个或多个变量之间关系的方法。
在临床研究中,研究者常常需要探索变量之间的相关性,以了解潜在的因果关系或者预测未来事件的可能性。
常用的相关性分析方法包括皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数等。
5. 多元回归分析多元回归分析是一种可以同时考虑多个自变量对因变量影响的统计方法。
在临床研究中,多元回归分析常用于探究多个因素对某一指标结果的影响,如预测疾病发展风险的影响因素。
这种方法可以消除单个变量的干扰,提高模型的预测准确性。
综上所述,临床研究中常用的统计分析方法涵盖了描述性统计分析法、生存分析法、T检验和方差分析、相关性分析以及多元回归分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临床试验中常用统计分析方法
---统计分析的质量是与临床试验的设计、实施和数据管理密切相关的。
就统计分析本身而言,其指导思想是使偏差最小和避免I类错误的增大。
定性资料的统计分析方法
统计学试验设计:包括确定样本量的大小、试验设计方法(盲法/开放)(具体见有关章节)
1. 定性资料的概念:
---统计资料中按品质和属性分组计数所得的资料,由定性变量和频数两部分组成。
定性变量可分为名义变量(如治疗方法分甲、乙、丙等)和有序变量(如疗效结果分治愈、显效、有效、无效)。
---新药临床研究中,定性资料常用的统计检验方法有卡方检验、校正的卡方检验、Fisher精确检验及Ridit检验、秩和检验。
2. 定性资料的统计描述计算率、比等指标,如试验组和对照组的有效率,并可用各种统计图来表示。
3. x2检验
---治疗前年龄、性别、病程、病情等一般情况组间均衡性比较,治疗后计数资料的改善情况比较均为双向无序R×C
表资料,用x2检验。
当表中理论频数小于5的格子数超过
全部格子数的1/5时,应用Fisher精确检验。
---如果为2×2表资料,当总样本含量n≥40,且理论频数T均大于5时,用x2检验;当总样本含量n≥40,单有理论频数满足1≤T<5时,用校正的x2检验;当总样本含量n <40或有理论频数<l时,用Fisher精确检验。
---目前,各种计算机统计软件的应用(如SAS)使统计学分析中复杂得运算过程简单化,有条件将双向无序R×C表资料均进行Fisher精确检验。
4. 秩和检验
---进行组间疗效比较或对量化的症状、体征的改善进行组间比较以及考察疗效与年龄、性别等相关性分析时,这些资料属于单向有序R×C表资料,应采用与"有序性"有联系的秩和检验或Ridit检验。
---秩和检验的优势在于它不仅可判断各组间是否有显著性差异,而且可说明对比各组的效果优劣和强弱是x2检验无法做到的。
---对于单向有序R×C表资料,Ridit检验和秩和检验的意义完全相同,根据试验者的习惯及熟练程度选一种即可。
5. 定性资料统计分析注意事项
(1) 不可用x2检验分析一切列联表资料,要根据列联表中定性变量的性质决定统计分析方法。
(2) x2检验中资料要满足公式的要求,不可盲目套用。
定量资料的统计分析
1. 定量资料的概念:
---定量资料是指对观察对象测量一项或多项指标的数值大小所得的资料。
2. 定量资料的统计描述
---计算定量指标的均数、标准差、中位数、最大值、最小值等。
用直方图和累计频数分布图等统计图来表示。
3. 定量资料假设检验的选择:
(1) 根据数据的分布决定选用参数检验还是非参数检验。
---若数据服从正态分布,且满足方差齐性(即两组或多组总体方差相等),一般选择参数检验,如t检验、U检验、方差分析;若数据分布类型不明确,或不满足参数检验的前提条件,可选用非参数检验,如秩和检验等;若数据经某种变量变换后满足参数检验的前提条件,可对变换后的数据进行参数检验。
(2) 选用参数检验时,要根据试验因素的个数和水平决定是采用t检验还是方差检验。
若资料为单因素两水平,用t检验,若属单因素K水平(K>3)或两个及两个以上因素的设计,必须用方差检验。
4. t检验:
---II、III期新药临床试验中,定量资料的分析基本用t检验。
(1) 成组设计定量资料:如比较试验组与对照组某项定量指标治疗情况,为成组设计定量资料,用t检验。
---但当资料符合正态分布而方差不齐时,用t’检验,若样本数n较大时,用U检验。
(2) 配对设计定量资料:如比较试验组或对照组各组中某项指标治疗前后的改善情况,即为配对设计定量资料,用配对的t检验。
(3) 单组设计定量资料:在[临床试验研究中少用。
5. 方差分析:
---I期临床试验中分析受试者用药后各观察时点的体温、血压、呼吸、心率等指标的变化有无显著性差异,这种资料为方差分析中配伍组设计类型,需选择方差分析。
若各时间点总体均数之间的差别有显著性时,再用q检验等进行多个均数之间的两两比较。
6. 定量资料统计分析中注意事项
(1) 不可忽视t检验和方差分析的前提条件;进行t检验时,资料一定要服从正态分布并满足方差齐性。
这是因为必须在这样的前提下所计算出的t统计量才服从t分布。
而t检验正是以t分布作为其理论依据的检验方法。
---方差分析与t检验的前提条件相同。
(2) 根据不同的试验设计类型选择相应的检验统计量:
---若资料为单因素两水平,就有配对设计和成组设计之分,
相应地其t检验的公式也不同,而单因素K水平的设计(K>3)、随机化区组设计、析因设计、正交设计、拉丁方设计等均有与其相应的方差分析模型,要正确选用。
(3) 不可用t检验代替方差分析:
---若错误地用t检验代替方差分析,不仅无法分析因素之间交互作用的大小,而且由于选用的数学模型与设计类型不匹配,易得出错误结论。
统计分析的质量控制
---统计资料的质量是进行正确的统计分析的基础,直接关系到统计推断的科学性和可靠性。
1. 资料的完整性和准确性
---严谨、科学得临床试验方案、完善得临床试验观察表格以及良好的临床试验监督和质量控制是保证资料完整、准确的前提,资料统计阶段科学、妥善地处理数据是保证资料完整和准确的关键。
(1) 缺失值和异常值的处理:
---当数据过分地偏大或偏小时,不可盲目舍弃,要查明原因,如果属于过失误差,立即校正,若非过失误差,可用统计方法(X±3S)检查,决定是否应当舍弃。
用统计方法舍弃数据的前提是该指标的取值在总体中呈正态分布,且样本数n>10。
---若原始记录中数据有遗漏,要如实反应,不可随意添加。
(2) 不可任意取舍病例:
---要严格按病例纳入标准和排除标准判断病例是否纳入统计,不得根据研究结果是否符合研究者的主观愿望而取舍病例。
对于失访病例,要查明原因,判断是否与药物的有效性及安全性有关。
2. 组间均衡性的考察:
---组间均衡性是指试验组与对照组除处理因素外,其它与疾病有关的重要临床特征及可能影M向疾病转归和预后的因素保持一致,这是用统计方法分析、比较试验药与对照药疗效和安全性优劣的前提。
因为统计学的显著性检验是建立在样本的随机性和资料的均衡性的基础上的。
在对试验药与对照药的疗效进行统计学处理分析时,必须进行疗前均衡性的比较。
所采用的统计分析方法要根据分析变量是定性资料还是定量资料来确定,方法同前述。
3. 统计结果的解释与表达要准确:
(1) 了解P<0.0l与P<0.05的真正含义:
---统计学上根据假设检验原理推算出来的P值,表示拒绝特定的零假设可能犯阳性错误的概率的理论值,它的大小不反映对比的两者之间差别的程度大小。
如比较甲、乙两种药物的疗效时(假定甲优于乙),若得到P<0.0l,则认为甲药非常显著地优于乙药,若得到P<0.05,则认为甲药显著地优于乙药,这是错误的。
(2) 选择标准差(S)还是标准误(Sx)
---当资料符合正态分布时,X土S或X土Sx均可表达定量资料的结果,但含义是不同的。
X土S反映观察值在样本均值附近波动的大小,而x土Sx即可信区间反映样本均值于整体均值的接近程度,并且隐含着总体均值会以一定的概率落入x土Sx的范围。
当资料服从偏态分布时,为了使结果看起来误差较小,特意选用X土Sx是不对的。
(3) 表达假设检验结果的正确方法:
---完整地表达假设检验结果的正确方法包括所选用的统计方法,统计量的具体值及自由度,假设检验的具体P值及统计学结论、临床意义。
这样统计分析结果才完善、清晰、透彻。
(4) 选择分析对象的数据集来进行统计分析
包括:全样本(intention-to-treat)分析和遵循研究设计(Per-Protocol)对象分析
(5) 调节协变量作用或亚组效应
---除了治疗以外,主要变量可能与协变量有关,或在受试者亚组之间存在差异,这时需要调节协变量影响或亚组效应。
包括:对于定量变量可用多元回归/协方差分析和对于定性变量可用多元logistic模型。