超声波测距报告
超声波测距实验报告

超声波测距实验报告1. 实验目的1.掌握超声波测距的基本原理;2.熟悉超声波测距仪器的使用;3.培养实验操作能力和数据处理能力。
2. 实验原理超声波测距是利用超声波在空气中的传播速度和反射原理,通过测量超声波发射和接收之间的时间间隔来计算被测物体与测距仪之间的距离。
超声波在空气中的传播速度约为 340 m/s。
3. 实验器材与步骤3.1 器材1.超声波测距仪;2.连接线;3.测量物体。
3.2 步骤1.连接超声波测距仪与电源;2.打开超声波测距仪,进行自检;3.将测量物体放置在合适的位置;4.调整超声波测距仪的测量范围;5.记录测量数据;6.分析数据,计算距离。
4. 实验数据与分析本实验共进行五次测量,记录数据如下:序号 | 测量距离(cm) | 误差(cm) |— | ———— | ——– |1 | 150.0 | 2.0 |2 | 152.5 | 1.5 |3 | 148.0 | 2.0 |4 | 151.0 | 1.0 |5 | 149.5 | 1.5 |平均距离 = (150.0 + 152.5 + 148.0 + 151.0 + 149.5) / 5 = 150.0 cm最大误差 = 2.0 cm最小误差 = 1.0 cm5. 实验总结本次实验掌握了超声波测距的基本原理和操作方法,通过对测量数据的分析,得出被测物体与测距仪之间的平均距离为 150.0 cm,最大误差为 2.0 cm,最小误差为 1.0 cm。
实验结果表明,超声波测距技术在实际应用中具有较高的准确性和可靠性。
6. 建议与改进1.在实验过程中,要确保测量物体与测距仪之间的距离在测距仪的测量范围内;2.提高实验操作技巧,减小人为误差;3.后续可以尝试使用不同类型的超声波测距仪进行实验,比较其性能和精度。
7. 实验拓展7.1 超声波测距的应用领域超声波测距技术广泛应用于工业、农业、医疗、交通、安防等领域,例如:1.工业领域:测量物体的尺寸、厚度、距离等;2.农业领域:测量土壤湿度、作物高度等;3.医疗领域:测量人体内部器官的距离、厚度等;4.交通领域:车辆测距、速度检测等;5.安防领域:监控设备、报警系统等。
超声测距模块实验报告

一、实验目的1. 理解超声波测距的基本原理。
2. 掌握超声波测距模块的硬件连接与软件编程。
3. 学习使用超声波测距模块进行距离测量。
4. 了解超声波测距在实际应用中的优势与局限性。
二、实验原理超声波测距是利用超声波在介质中传播的速度和距离之间的关系来测量距离的一种方法。
当超声波发射器发出超声波时,它会遇到障碍物并反射回来。
通过测量发射和接收超声波之间的时间差,可以计算出障碍物与发射器之间的距离。
超声波在空气中的传播速度大约为340m/s。
设超声波发射器与接收器之间的距离为d,超声波从发射器传播到障碍物并返回所需的时间为t,则有:\[ d = \frac{v \times t}{2} \]其中,v为超声波在空气中的传播速度,t为超声波往返所需的时间。
三、实验设备1. 超声波测距模块HC-SR042. STM32单片机开发板3. 调试工具4. 电源5. 导线四、实验步骤1. 硬件连接(1)将超声波测距模块的VCC、GND、TRIG和ECHO引脚分别连接到STM32单片机的3.3V、GND、GPIO和中断引脚。
(2)将STM32单片机的电源和地连接到实验平台的电源。
2. 软件编程(1)编写STM32单片机的程序,用于控制超声波测距模块。
(2)程序主要包含以下功能:- 初始化GPIO和中断引脚;- 发送触发信号;- 读取回响信号;- 计算距离;- 显示距离。
(3)使用HAL库函数实现上述功能。
3. 调试与测试(1)将程序烧录到STM32单片机中。
(2)使用调试工具检查程序运行情况。
(3)调整超声波测距模块的位置,测试不同距离下的测量结果。
五、实验结果与分析1. 实验数据通过实验,得到以下数据:| 距离(cm) | 测量值(cm) || :--------: | :--------: || 10 | 9.8 || 20 | 19.7 || 30 | 29.6 || 40 | 39.5 || 50 | 49.4 |2. 数据分析实验结果表明,超声波测距模块的测量精度较高,误差在±1cm以内。
超声波雷达测距实训报告

一、实训目的本次实训旨在通过实际操作,了解超声波雷达测距的原理和实现方法,掌握超声波传感器的基本使用技巧,并学会利用STM32单片机进行数据处理和显示,从而完成一个简单的超声波雷达测距系统。
二、实训器材1. STM32F103单片机开发板2. HC-SR04超声波传感器模块3. OLED显示屏4. 连接线5. 电源三、实训原理超声波雷达测距的原理是利用超声波在空气中的传播速度来测量距离。
当超声波传感器发射超声波时,它会遇到障碍物后反射回来,通过测量超声波从发射到接收的时间差,可以计算出障碍物与传感器之间的距离。
四、实训步骤1. 硬件连接:- 将HC-SR04超声波传感器模块的两个引脚分别连接到STM32单片机的GPIO引脚。
- 将OLED显示屏的相应引脚连接到STM32单片机的SPI或I2C接口。
- 将电源连接到STM32单片机和超声波传感器模块。
2. 软件设计:- 编写STM32单片机的初始化程序,配置GPIO引脚、SPI/I2C接口等。
- 编写超声波传感器的控制程序,用于控制超声波传感器的发射和接收。
- 编写数据处理程序,用于计算超声波从发射到接收的时间差,从而得到距离值。
- 编写OLED显示屏的显示程序,用于显示距离值。
3. 程序实现:- 使用STM32 HAL库函数或直接操作寄存器来实现程序。
- 通过定时器中断来实现超声波传感器的时序控制。
- 使用查表法或直接计算法来实现距离值的转换。
4. 系统测试:- 将系统放置在测试环境中,调整测试距离,观察OLED显示屏上显示的距离值是否准确。
- 分析测试结果,找出系统误差的来源,并进行优化。
五、实训结果与分析1. 测试结果:- 在不同的测试距离下,OLED显示屏上显示的距离值与实际距离基本相符,说明系统具有较高的测量精度。
2. 误差分析:- 超声波在空气中的传播速度受温度、湿度等因素的影响,导致测距误差。
- 超声波传感器的响应时间存在一定的延迟,也会导致测距误差。
超声波测距总结报告

电子技术实验课程设计超声波测距系统总结报告自03胡效赫2010012351一、课题内容及分析首先根据课程所给的几个题目进行选择,由于自己最近在做电子设计大赛的平台设计,希望对超声波测距在定位方面应用有更详尽的了解,所以选择课题三——超声波测距作为课程设计,内容如下:对课题进行分析:实验提供超声波传感器T40-16和R40-16,利用面包板和小规模芯片搭接电路,实现距离的测量及显示。
大致思路即驱动发射端发出超声波,接收端收到返回的脉冲进行处理与计算得到测量距离并通过数码管和蜂鸣器显示。
二、方案比较与选择由于超声波测距方案原理基本相同,只要能够检测出发射到接收的时间,并通过相应计算就可以得到所测距离。
所以问题大致分为驱动发射端、接收端检测、间隔时间计算与计算结果显示四部分。
具体的方案设计如下:闸门脉冲源产生基准宽度为T 的闸门脉冲,该脉冲一方面控制计数电路的计数启动和并产生计数器清零脉冲,使计数器从零开始对标准脉冲源输出的时钟脉冲(频率为17KHz)计数。
同时开启控制门,超声波振荡器输出的40kHz脉冲信号通过控制门,放大后送至超声波换能器,由发射探头转换成声波发射出去。
该超声波经过一定的传播时间,达到目标并反射回来,被超声波换能器的接收探头接收变成电信号,经放大、滤波、电压比较和电平转换后,还原成方波。
图中的脉冲前沿检测电路检测出第一个脉冲的前沿,输出控制信号关闭计数器,使计数器停止计数。
则计数器的计数值反映了超声波从发射到接收所经历的时间(或距离)。
三、模块化设计及参数估算1、闸门控制模块●设计思路555振荡电路产生频率为2Hz的脉冲,作为闸门脉冲源。
RC微分电路将输出的2Hz脉冲进行微分运算产生脉冲信号,作为计数启动和计数清零的信号,分别控制D触发器的置高端和74LS90的清零端。
●参数设计:555振荡电路T = (R1+2*R2)*C*ln2。
其中R1取4.7kΩ,R2接入10kΩ滑动变阻器,最后实测7.51kΩ,C取47uF。
超声波测距实验报告

目录1、课题设计的目的和意义 (3)2、课题要求 (3)2.1、基本功能要求 (3)2.2、提高要求 (4)3、重要器件功能介绍 (4)3.1、CX20106A红外线发射接收专用芯片 (4)3.2、AT89C51系列单片机的功能特点 (5)3.3、ISD1700优质语音录放电路 (6)4、超声波测距原理 (8)4.1、超声波测距原理图 (8)4.2、超声波测距的基本原理 (9)5、硬件系统设计 (10)5.1、超声波发射单元 (10)5.2、超声波接收单元 (11)5.3、显示单元 (11)5.4、语音单元 (12)5.5、硬件设计中遇到的难题: (12)6、系统软件设计 (14)7、调试与分析 (15)7.1调试 (15)7.2误差分析 (15)8、总结 (16)9、附件 (17)9.1、总电路 (17)9.2、主要程序 (18)10、参考文献 (22)1课题设计的目的及意义随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。
毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。
超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。
比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。
随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。
超声波测距 实验报告

Q1
40106
图 6
7490 芯片的时钟接前一位的 Q3。最低位 7490 芯片的时钟接 17kHz TTL 方波(由信号 发生器提供)和闸门波形相与(或者相与非)的结果。闸门波形由下图所示的电路产生:
1 发(Q1)
D
SET
Q
Q3
CLR
Q
收
图 7
4、报警电路。
图 8
此部分的功能是通过存储器(用 74161 芯片)保存计数值,在报警时间(如图 8)内用 组合逻辑电路对计数值进行比较。若计数值小于 30(cm) (且小于存储器中的值) ,则利用
实验日期 2010-7-13~2010-7-15
实验室
222
座位号
23
清华大学电子工程系
电子技术课程设计 实验报告
超声波测距系统
班级 无 82 学号 2008011098 姓名 刘硕 交报告日期 2010-7-17
【实验任务】
1. 测量距离不小于 0.5m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.05m,显示精度 0.01m。 2.测量距离不小于 1.0m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.01m,显示精度 0.01m 3.测量距离不小于 2.0m 米,数字显示,动态更新测量结果,更新时间约 1 秒。测量精 度优于 0.01m,显示精度 0.01m 距离小于 0.3m 时,用蜂鸣片发出间歇式的“嘀一嘀”声响报 警。 4*.显示无跳动、闪烁,距离小于 0.3m 且距离变近时,用蜂鸣片发出间歇式的“嘀一嘀” 声响报警。
Ix<30cm Q3 BDC
图 10
实现距离小于 30cm 且距离变近报警的电路:
超声波测距仪实训报告

超声波测距仪实训报告一、实训目的本次超声波测距仪实训的主要目的是让我们深入了解超声波测距的原理和应用,通过实际操作和调试,掌握超声波测距仪的设计、制作和调试方法,提高我们的实践动手能力和解决问题的能力,同时培养我们的团队合作精神和创新思维。
二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。
超声波发生器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时时间 t 就可以计算出发射点距障碍物的距离 s,即 s = 340t/2。
三、实训设备与材料1、超声波传感器模块(包括发射探头和接收探头)2、单片机开发板3、显示屏4、杜邦线若干5、面包板6、电源适配器四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板进行连接,使用杜邦线将发射探头连接到单片机的某个输出引脚,接收探头连接到单片机的某个输入引脚。
将显示屏连接到单片机的相应引脚,以便显示测量到的距离值。
2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 软件。
编写初始化程序,包括单片机引脚的配置、定时器的设置等。
编写超声波发射和接收的控制程序,实现超声波的发射和接收,并计算往返时间。
根据距离计算公式,将计算得到的距离值转换为合适的格式,并通过显示屏进行显示。
3、系统调试硬件调试:检查电路连接是否正确,电源是否正常,传感器是否工作正常等。
软件调试:通过单步调试、设置断点等方式,检查程序的执行流程和计算结果是否正确。
综合调试:将硬件和软件结合起来进行调试,不断修改和优化程序,直到系统能够稳定准确地测量距离。
五、实训过程中遇到的问题及解决方法1、测量误差较大问题描述:测量得到的距离值与实际距离存在较大偏差。
原因分析:可能是由于超声波在空气中的传播受到温度、湿度等环境因素的影响,也可能是由于硬件电路的干扰或者软件算法的不完善。
超声波测距实验报告

超声波测距实验报告一.实验规划1.在网上寻找同型号超声波原理图,并理解。
2.向学长询问队里关于超声波测距的资料。
3,根据资料将硬件电路搭好,然后一边消化资料,一边学习单片机的相关知识。
4,将上一届的程序看懂,然后稍加改动,以适应自己的单片机开发板环境。
5,有不懂得地方,先自己琢磨,实在琢磨不透就请教队里的学长和学姐。
6,不断地调试程序,使得测距更加精准。
7,进行距离和角度测量的实验,并记录数据8,进行数据分析,探究影响超声波测距精度的原因以及传感器性能的好坏。
二.数据处理超声波发散角的大小被测物体表面平整实际距离11.1 16.1 21.1 26.1 31.1 36.1 41.1 46.1 51.1 56.1 61.1 66.1 71.1 76.1 81.1 86.1 91.1 96.1 101.1 显示距离10.2 15.5 20.5 25.9 30.7 35.7 40.7 45.3 51.1 55.7 61 66.1 71.1 76.3 81.2 86.3 91.5 95.9 101.3 误差大小0.9 0.6 0.6 0.2 0.4 0.4 0.4 0.8 0 0.4 0.1 0 0 0.2 0.1 0.2 0.4 0.2 0.2被测物体表面凹凸不平显示值9.2 14,5 20.8 25.9 30.4 35.6 41 45.5 51.1 58.6 61.6 66.3 71.9 76.2 81.4 86.5 91.2 96.8 102.1 实际值11.1 16.1 21.1 26.1 31.1 36.1 41.1 46.1 51.1 56.1 61.1 66.1 71.1 76.1 81.1 86.1 91.1 96.1 101.1 误差1.2 1.6 0.3 0.2 0.7 0.5 0.1 0.6 02.5 0.5 0.2 0.8 0.1 0.3 0.4 0.1 1被测物体的长为91cm,宽为61cm实际值1111213141516171819202122232425262728293031323334353637383940显示值99.419.7119.413140.5149.8160.4170.2180.7190.1200.5210.9220.4231.1240.5250.9260.2271.1279.8290.9301.8309.7320.7330.3341.4351.1361.7371.3381.2391.6400.1误差0.6.30.6-0.50.2-0.4-0.2-0.7-0.1-0.5-0.9-0.4-1.1-0.5-0.9-0.2-1.10.2-0.9-0.80.30.7-0.3-1.4-1.1-1.7-1.3-1.2-1.6-0.1被测物体长为60cm,宽为45cm实际值1111213141516171819202122232425262728293031323334353637383940显示值99.511.9119.613.8140.9150.1160.7170.6180.6189.6200.2211.7220.6230.9241.1250.7260.3270.5281.3291.3300.9311.6322332.4342.2352.1362.5272.7382.1392.7403.4误差值0.5-.9.4-.8-0.9-0.1-0.7-0.6-0.60.4-0.2-1.7-0.6-0.9-1.1-0.7-0.3-0.5-1.3-1.3-0.9-1.6-2-2.4-2.2-2.1-2.5-2.7-2.1-2.7-3.4三.实验总结1前四组实验数据,超声波传感器所测为1m以内的实物的距离,实验结果表明测量精度与被测物体表面积有关,与被测物体的表面平整程度无关,超声波的发散角与被测物体的距离有关,且与被测物体距离越近,超声波发散角越大,(在10cm以内接近40)当与被测物体距离超过56cm时,发散角在15度以内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气
总结报告
超声波测距装置
XX大学 XX学院
项目名称:超声波测距装置
项目负责人:XXX
项
组员:X
目
简
所在班级:X
介
项目指导老师:X
项目完成时间:2016年11月
超声波测距装置
其功能:此装置能够测量出装置(超声波发射点)与障碍
一 :
物之间的距离, 并通过4位LED数码管显示出装置与障碍物 之间的距离(单位为mm)。
人员
例(%)
xx
元器件的购买和焊接,总
20%
结报告
xx
89C52单片机编程,PPT制作
20%
x
超声波发射电路模块
15%
x
PPT汇报
15%
12
插座
13
74LS04
14 4位数码管
15
分体超声 波收发器
元件规格型号
轻触开关(含35个)
12种值电解电容(每种10个)
30种常用(每种10个) 10欧(10个) 2K(100个) 1k(100个) 220k(100个) PNP s9012 12M 14PIN 16pin 40PIN 14pin 共阳极12pin
CX20106A芯片电路构成的,CX20106A芯片电路可以对超
三 声波信号进行放大、限幅、带通滤波、峰值检波、整形、
: 比较等功能,比较完之后超声波接收电路会输出一个低电
设 平到单片机去请求中断,当即单片机停止计时,并开始去
计 过 程
进行数据的处理。 CX20106A芯片的前置放大器具有自动增益控制的功能,
三 : 设 计 过 程
图7
实物展示
本系统在设计和数据的计算过程中无可避免地会产 生一定的误差,以下对可能产生误差的原因进行分 析: (1)环境的温度所引起的误差 环境温度的影响是本设计在不同的温度条件下测量
五 数据存在误差的主要原因,根据有关资料,在当温 : 差较大时,前后两次测距的误差肯定前后相差也比 结 较大。而本设计中并没有温度补偿模块,主要是起 果 到距离的测量和警报的作用而已,所以本设计并没 分 有采用温度补偿模块进行设计。 析
射点距障碍物的距离(s),即:s=340t/2)。
①在测距的时候。本系统利用一片89C52单片机作
为控制中心,通过单片机其中的一个I/O口对超声
波发射器进行控制,(I/O口为高电平时,触发超
声波发射电路发出超声波),此时在另一个单片机
I/O端口等待信号的返回(若有信号返回则此端口
二 为低电平)。
:
五 来的信号时就会自动忽略掉,继续去等待检测在这个工作 : 周期内是否有有效反射波反射回来,如果有就进行处理, 结 没有就进行新的一次测量。 果 分 析
六 : 资 金 使 用 情 况
序号 元件名称
1
常用轻触 按键包
2
电解电容 包
3
瓷片电容 包
4
电阻
5
电阻
6
电阻
7
电阻
8
三极管
9
直插晶振
10
插座
11
插座
项
目 测试原理:采用两个超声波探头分别进行超声波的发射和
研 接收,通过超声波发射探头向某一方向发出超声波,在发
究 内 容
射的同时开始采用计时器计时,超声波在空气中传播,途 中若碰到障碍物就会立即返回来,超声波接收器一旦收到 反射波就停止计时器,读出时间t。(超声波在空气中的传播 速度为340m/s,根据计时器记录的时间t,就可以计算出发
当测量的距离比较近时,放大器不会过载;而当测量距离 比较远时,超声波信号微弱,前置放大器就有较大的放大
增益效果。
3.3 显示报警模块设计
3.3.1 数码管显示模块设计 在每个数码管里面都有8只发光二极管,它们分别记作a、b、 c、d、e、f、g、dp,其中dp是小数点(如图7所示),当 电流由二极管的正极流向负极时,二极管就可点亮。
设
②信号循环不断地进行采集。系统包括超声波测
计 距单元(超声波集成模块)、89c52单片机控制、
方 蜂鸣器报警模块和数码管显示模块。这个设计的汽
法 车倒车雷达要能够连续测距,数据经过单片机的处
理后,用4位数码管显示所测量得到的距离,若计
时器溢出,或距离超过2500mm,蜂鸣器会发出鸣
叫声进行报警。
所设计出来的超声波测距系统各模块如下图·1所示
二
超声波接收器
放大电路 检波电路 报警系统
:
设
89c52单片机
计
方
超声波发射器
放大电路
显示模块
法
图·1
3.2.2 超声波接收电路设计由于超声波在空气来自的传播过程中是有衰减的,如果距
离较远,那么超声波接收电路所接收到的超声波信号就会
比较微弱,因此需要对接收到的信号进行放大而且放大的
倍数也要比较大。超声波接收电路主要是由集成电路
(2)不同障碍物表面材料的不同介质引起的误差 因为表面粗糙的障碍物介质要比光滑介质的测量结 果要差,如果障碍物的反射面比较粗糙会引起反射 信号散射开那么回波信号就会减弱,这样就会导致 测量结果的误差增大。
五 (3)超声波模块的感应角的影响 : 两个超声波探头即发射探头和接收探头和障碍物之 结 间存在一个几何角度,反射波入射到探头存在一定 果 的角度,当这个角度过大时,这就会造成测量较大 分 的误差,或者说根本接收不到回波信号。特别是在 析 障碍物的距离较近的时候这个误差就成为了距离测
源
六 :
19 蜂鸣器
5V
2 0.4
资
51单片 20 机最小
STC89C52RC 40pin
2 2.66
金
系统
使
21 排插针
40pin
1 0.06
用
22 杜邦线
40根
1 2.6
情
23 万用板
9*15cm
2 0.68
况
共
计
66.73 元
%
作 量 分 配 比 例
(
项 目 参 加
人 员 分
)工
及
工
项目参加 项目中主要负责的工作 完成项目工作量的比
两个一对
数量
单价
1
1.19
1
4.5
1
6
1
1.2
1
1.44
1
0.94
1
1.44
10
0.05
2
0.16
2
0.1
2
0.1
2
0.21
2
3.17
2
1.8
2
5.47
超声波 16 接收芯
片
CX20106
2 1.42
17 单片机
STC89C52RC 40pin
2 3.8
面包板
18 专用电
兼容5V 3.3V
2 3.08
量的主要误差的原因,但是这种误差是可以尽量减 小的,利用发射能力强、散射小的探头,或者多用
(4)余波信号的影响 在测量时有一部分的声波是从发射探头直接转收到接收探 头的,这部分声波即是余波信号,这种余波对测量的干扰 是挺大的。但是这种干扰能够通过别的方法进行处理,比 如软件算法的方法去消除直达波的干扰。当芯片收到信号 波时自动判定收到的超声波信号是发射的声波衍射而返回