2022届人教版新高考数学一轮复习 第四章 三角函数、解三角形 第二讲 三角恒等变换【含答案】

合集下载

第二讲+同角三角函数的基本关系与诱导公式课件-2025届高三数学一轮复习

第二讲+同角三角函数的基本关系与诱导公式课件-2025届高三数学一轮复习

正弦 sin α
-sin α
-α -sin αFra bibliotekπ-α sin α
π2-α π2+α cos α cos α
余弦 cos α
-cos α cos α -cos α sin α -sin α
正切 口诀
tan α
tan α -tan α -tan α — —
函数名不变,符号看象限
函数名改变, 符号看象限
【常用结论】
)
1 A.3
22 B. 3
C.-13
D.-2 3 2
解析:由 sinα-1π2=31,得 cosα+1172π=cosα+32π-1π2= sinα-1π2=13.故选 A.
答案:A
考点三 同角三角函数基本关系式和诱导 公式的综合应用
[例 3](1)已知角 θ 的终边在第三象限,tan 2θ=-2 2,则 sin2θ +sin(3π-θ)cos (2π+θ)- 2cos2θ 等于( )
1.已知 sin x+cos x= 32-1,x∈(0,π),则 tan x=(
)
A.-
3 3
3 B. 3
C. 3
D.- 3
解析:因为 sin x+cos x= 32-1,且 x∈(0,π),所以 1+ 2sin x cos x=1- 23,所以 2sin x cos x=- 23<0,所以 x 为钝角, 所以 sin x-cos x= (sin x-cos x)2=1+2 3,结合已知解得 sin x= 23,cos x=-21,则 tan x=csoins xx=- 3.故选 D.
A.-
2 6
2 B. 6
C.-23
2 D.3
解析:由 tan 2θ=-2 2可得 tan 2θ=1-2tatnanθ2θ=-2 2, 即 2tan2θ-tanθ- 2=0,

2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数

2023年高考数学(理科)一轮复习——  任意角和弧度制及任意角的三角函数
索引
考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

4。

2同角三角函数的基本关系及诱导公式必备知识预案自诊知识梳理1。

同角三角函数的基本关系(1)平方关系:sin2α+cos2α=。

(2)商数关系:sinαcosα=(α≠π2+kπ,k∈Z)。

2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α续表公式一二三四五六口诀函数名不变,符号看象限函数名改变,符号看象限1。

特殊角的三角函数值2.同角三角函数基本关系式的常用变形(1)(sin α±cos α)2=1±2sin αcos α;(2)sin α=tan αcos αα≠π2+kπ,k∈Z;(3)sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;(4)cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1。

考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。

(1)对任意的角α,β有sin 2α+cos 2β=1。

( ) (2)若α∈R ,则tan α=sinαcosα恒成立.( )(3)sin (π+α)=-sin α成立的条件是α为锐角。

( )(4)若cos(n π—θ)=13(n ∈Z ),则cos θ=13.( )2。

(2020河北衡水中学模拟一,理3)已知cos α-π2=-2√55,α∈π,3π2,则tan α=( )A 。

2B 。

32C.1D.123。

(2020河北唐山模拟,理4)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B 。

-12C 。

√32D.-√324。

函数f (x )=15sin x+π3+cos x —π6的最大值为( ) A.65B.1C.35D.15关键能力学案突破考点同角三角函数基本关系式的应用【例1】(1)若tan(α-π)=12,则sin 2α+1cos 2α-sin 2α=( )A。

2022版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换1

2022版高考数学大一轮复习第4章三角函数解三角形第2讲三角恒等变换1

第四章 三角函数、解三角形第二讲 三角恒等变换练好题·考点自测1。

下列说法错误的是( )A.两角和与差的正弦、余弦公式中的角α,β是任意的 B 。

存在实数α,β,使等式sin (α+β)=sin α+sin β成立 C 。

公式tan (α+β)=tanα+tanβ1-tanαtanβ可以变形为tan α+tan β=tan (α+β)(1—tan αtan β),且对任意角α,β都成立 D.存在实数α,使tan 2α=2tan α2。

[2020全国卷Ⅲ,9,5分]已知2tan θ-tan(θ+π4)=7,则tan θ=( )A.-2 B 。

—1 C.1 D 。

23。

[2021大同市调研测试]已知tan α2=3,则sinα1-cosα=( )A 。

3B .13C .-3D 。

−134.[2019全国卷Ⅱ,11,5分][文]已知α∈(0,π2),2sin 2α=cos 2α+1,则sin α= ( )A.15B .√55C 。

√33D.2√555。

[2020全国卷Ⅱ,13,5分][文]若sin x =−23,则cos 2x = 。

6.tan 67。

5°-tan 22。

5°= 。

7。

[2019江苏,13,5分]已知tanαtan (α+π4)=−23,则sin(2α+π4)的值是 .拓展变式1.[2020全国卷Ⅲ,5,5分][文]已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√222.1+cos20°2sin20°-sin 10°(1tan5°—tan 5°)= .3.已知α∈(0,π),化简:(1+sinα+cosα)·(cos α2-sin α2)√2+2cosα= 。

4。

[2021陕西省部分学校摸底检测]数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =√5-12的近似值,黄金分割比还可以表示成2sin 18°,则m√4-m 22cos 227°-1= ( )A 。

高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件

高考数学一轮总复习第四章三角函数与解三角形 6正弦定理余弦定理课件
变式2 (2022年全国乙卷)记的内角,,的对边分别为,, ,已知 .
(1)证明: .
(2)若,,求 的周长.
解:(1)证明:因为 ,所以 .所以 .所以,即,所以 .(2)因为,所以由(1)得 .由余弦定理,得 ,则,所以 .故 ,所以.所以的周长为 .
考点二 判断三角形的形状
例3 对于 ,有如下命题:①若,则 为等腰三角形;②若,则 为直角三角形;③若,则 为钝角三角形.其中所有正确命题的序号是____.
A. B. C. D.

解:对于A,由正弦定理,有,原式仅当 时成立,故A错误.对于B,因为,故,原式仅当 时成立,故B错误.对于C,,由余弦定理 ,得,原式仅当 时成立,故C错误.对于D,由正弦定理,可得,即 ,故D正确.故选D.
2.在中,角,,的对边分别为,,,已知,, ,则角 ( )
第四章 三角函数与解三角形
4.6 正弦定理、余弦定理
掌握余弦定理、正弦定理,并能用它们解决简单的实际问题.
【教材梳理】
1.正弦定理、余弦定理 在中,若角,,所对的边分别是,,,为 外接圆的半径,则
类别
正弦定理
余弦定理
文字语言
在一个三角形中,各边和它所对角的_______的比相等
考点四 与三角形面积有关的问题
例5 (2023年全国甲卷)记的内角,,的对边分别为,,,已知
(1)求 ;
(2)若,求 的面积.
解:(1)因为 ,所以,解得 .(2)由正弦定理,可得 ,即 ,即 .因为,所以 .又 ,所以 .故的面积为 .
【点拨】三角形面积计算问题要选用恰当公式,其中 等公式比较常用,可以根据正弦定理和余弦定理进行边角互化.
A. B. C. D.

2024届高考一轮复习数学课件(新教材人教A版 提优版):三角函数中有关ω的范围问题


∵f(x)在-56π,23π上单调递增,
∴-23π5≤6π2≥ωkπ2ω+kπ-3πω32ωπ ,
(k∈Z),则ωω≤≤64k-+25112k,
(k∈Z),
1 2 3 4 5 6 7 8 9 10 11 12
又 ω>0,则 0<ω≤12, 又存在唯一 x0∈0,56π,使得 f(x0)=1,而此时 ωx0+π6∈π6,5π6ω+π6, ∴π2≤5π6ω+π6<52π,得25≤ω<154, 综上,有25≤ω≤12.
1 A.3
1 B.2
√C.1
√D.4
将函数 f(x)的图象向右平移23ωπ个单位长度, 得到函数 g(x)=sinωx-23ωπ +π6
=sinωx+π6-32π=cosωx+π6, 又因为 F(x)=f(x)g(x)的图象关于点π3,0对称, 所以 F(x)=sinωx+π6cosωx+π6 =12sin2ωx+π3的图象关于点π3,0对称,
当 15x-π4=-π2,即 x=-6π0时,f(x)取得最小值,无最大值,满足题意. 故ω的最大值为15.
题型四 三角函数的零点与ω的关系
例 4 将函数 f(x)=cos x 的图象先向右平移56π个单位长度,再把所得函
数图象的横坐标变为原来的ω1 (ω>0)倍,纵坐标不变,得到函数 g(x)的图
为π3-1π2≥T4,

又∵T=2ωπ,∴
ω 4
≤π4,∴ω≥2,∴ω
有最小值
2.
1 2 3 4 5 6 7 8 9 10 11 12
2.函数 f(x)=cosωx-π6(ω>0)在区间π3,23π内单调递减,则 ω 的最大值为
1 A.2
√B.74

高考数学一轮总复习第四章三角函数与解三角形 5函数y=Asinωx+φ及三角函数的应用课件

考点三 函数 图象与性质的综合应用
命题角度1 函数的零点问题
例3 设常数使方程在区间,上恰有五个解 ,则 ( )
A. B. C. D.
解: .

作出函数在, 上的图象如图所示.
由图象,可知在区间, 上恰有五个解,只有 时才能成立.由,,,解得, ,
,, .所以 .故选C.
【点拨】研究的性质时,一般将 视为一个整体,利用换元法和数形结合思想解题.与三角函数相关的方程根的问题(零点问题)等常通过函数与方程思想化为图象交点问题,再借助图象分析.
图1
图2
A.200 B.400 C. D.
解:由题图,可得,,即,则 .故选D.

6.将函数 的图象上所有点向右平移个单位长度,得到如图所示的函数 的图象,则 ( )
A.0 B.1 C.2 D.

解:依题意,知,故 .的周期满足,得 ,所以,所以 .由,得 , .又,所以,所以 ,所以 .故选C.
图1
图2
A.函数 的最小正周期为12B. C.时,过山车距离地平面 D.一个周期内过山车距离地平面低于的时间是



解:由题意,知周期满足,解得 ,A正确.由,得.又 解得 所以.由,即,得 .因为,所以.所以 ,B错误. ,C正确.由,得,即 , ,,解得, .所以一个周期内过山车距离地平面低于的时间是 ,D正确.故选 .

3.(2022年浙江卷)为了得到函数的图象,只要把函数 图象上所有的点( )
A.向左平移个单位长度 B.向右平移 个单位长度C.向左平移个单位长度 D.向右平移 个单位长度
解:因为,所以把函数 图象上的所有点向右平移个单位长度,即可得到函数 的图象.故选D.

高考数学一轮总复习第四章三角函数与解三角形 1任意角蝗制及三角函数的概念课件

2
最值问题常用二次函数或基本不等式.关于扇形的弧长公式和面积公式有角度制与弧
度制两种形式,一般使用弧度制.
变式2 已知一扇形的圆心角为 ,半径为,弧长为,若 =
π

3
= 10 cm,求:
(1)扇形的面积;
(2)扇形的弧长及该弧所在弓形(由弦及其所对的弧组成的图形)的面积.
解:(1)由已知,得扇形 =
(2)三角函数的定义域和函数值在各象限的符号.
三角函数
定义域(弧度制下)
第一象限
第二象限
第三象限
第四象限
符号
符号
符号
符号
-
-
-
-
4.特殊角的三角函数值
0
0
1
1
0
0
1
不存在
0
0
0
0
1
不存在
0
常用结论
1.角的集合
(1)象限角的集合.
象限角
第一象限角
第二象限角
第三象限角
第四象限角
角的集合表示
(2)非象限角(轴线角)的集合.
3
3
3
3
解:如图,在坐标系中画出直线 =
在[0,2π)内,终边在直线 =
满足条件的角有两个,即−
{−
π
3,可以发现它与轴的夹角是 .
3
π 4π
3上的角有两个,即 , .在[−2π, 0)内
3
3


,− .故满足条件的角
3
3

2π π 4π

2π π 4π
,− , , }.故填{− ,− , , }.
周率日为背景,通过给出中外为求得圆周率而采用的经典“割圆术”思想,

2022届高考一轮复习第4章三角函数解三角形第3节简单的三角恒等变换课时跟踪检测理含解

第四章 三角函数、解三角形第三节 简单的三角恒等变换第一课时 两角和与差的正弦、余弦和正切公式A 级·基础过关 |固根基|1.(2019届贵阳模拟)设tan ⎝ ⎛⎭⎪⎫α-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4等于( ) A .-2 B .2 C .-4D .4解析:选C 因为tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=14, 所以tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-4.故选C .2.(2020届贵阳摸底)在△ABC 中,sin A =513,cos B =35,则cos C =( )A .5665 B .-3365C .5665或-1665D .-1665解析:选D 因为cos B =35,所以sin B =45.因为sin A =513,所以cos A =±1213.因为sin B =45>sinA =513,所以B>A ,所以角A 为锐角,所以cos A =1213.则cos C =cos [π-(A +B)]=-cos(A +B)=sin Asin B -cos Acos B =513×45-1213×35=-1665.故选D .3.(2019届山东三校联考)已知sin 2α=13,则cos 2α-π4=( )A .13 B .16 C .23D .89解析:选C sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=13,则cos 2⎝ ⎛⎭⎪⎫π4-α=23,即cos 2⎝ ⎛⎭⎪⎫α-π4=23.故选C . 4.(2019届福建五校第二次联考)已知cos ⎝ ⎛⎭⎪⎫π4-α=45,则sin 2α=( )A .15B .-15C .725D .-725解析:选C 解法一:因为cos ⎝ ⎛⎭⎪⎫π4-α=45,所以sin 2α=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π4-α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .解法二:令π4-α=θ,则α=π4-θ,因为cos θ=45,所以sin 2α=sin 2⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θ=cos 2θ=2cos 2θ-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .解法三:因为cos ⎝ ⎛⎭⎪⎫π4-α=45,所以22(cos α+sin α)=45,所以cos α+sin α=425,平方得1+sin 2α=3225,即sin 2α=725.故选C .5.(2019届河北六校联考)已知α∈(0,π),且tan α=2,则cos 2α+cos α=( ) A .25-35B .5-35C .5+35D .25+35解析:选B ∵α∈(0,π),tan α=2,sin 2α+cos 2α=1,∴α在第一象限,且cos α=15.∴cos 2α+cos α=2cos 2α-1+cos α=2×⎝ ⎛⎭⎪⎫152-1+15=-35+15=5-35,故选B .6.(2019届佛山模拟)已知tan α,tan β是方程x 2+33x +4=0的两根,若α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β等于( )A .π3B .π3或-23πC .-π3或23πD .-23π解析:选D 由题意得,tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0.又α,β∈⎝ ⎛⎭⎪⎫-π2,π2,故α,β∈⎝ ⎛⎭⎪⎫-π2,0, 所以-π<α+β<0.又tan (α+β)=tan α+tan β1-tan αtan β=-331-4=3,所以α+β=-2π3.7.(2019届牛栏山中学模拟)已知cos 2α-cos 2β=a ,那么sin (α+β)sin (α-β)等于( ) A .-a 2B .a 2C .-aD .a解析:选C sin (α+β)sin (α-β)=(sin αcos β+cos α·sin β)(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2α=-a.故选C .8.(2019年全国卷Ⅱ)已知α∈⎝⎛⎭⎪⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A .15 B .55C .33D .255解析:选B 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α.因为α∈⎝⎛⎭⎪⎫0,π2,所以sin α>0,cos α>0,所以2sin α=cos α.又因为sin 2α+cos 2α=1,所以sin α=55(负值舍去).故选B . 9.(2020届大同调研)已知sin ⎝ ⎛⎭⎪⎫θ-π6=12,且θ∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫θ-π3=________. 解析:因为θ∈⎝ ⎛⎭⎪⎫0,π2,所以θ-π6∈⎝ ⎛⎭⎪⎫-π6,π3.由sin ⎝ ⎛⎭⎪⎫θ-π6=12,得θ-π6=π6,所以θ=π3,则cos ⎝ ⎛⎭⎪⎫θ-π3=cos ⎝ ⎛⎭⎪⎫π3-π3=1. 答案:110.已知tan (α-β)=12,tan β=-17,且α,β∈(0,π),则2α-β=________.解析:易知tan (2α-β)=tan [2(α-β)+β]. 因为tan (α-β)=12,所以tan 2(α-β)=2tan (α-β)1-tan 2(α-β)=43, 故tan (2α-β)=tan 2(α-β)+tan β1-tan 2(α-β)tan β=1.由tan β=-17∈⎝ ⎛⎭⎪⎫-33,0,知5π6<β<π,由tan α=tan [(α-β)+β]=13∈⎝ ⎛⎭⎪⎫0,33,知0<α<π6,所以2α-β∈⎝ ⎛⎭⎪⎫-π,-π2,故2α-β=-3π4.答案:-3π411.(2019届宜昌联考)已知函数f(x)=Asin ⎝ ⎛⎭⎪⎫x +π4,x∈R,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值;(2)若f(θ)+f(-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ的值.解:(1)由f ⎝⎛⎭⎪⎫5π12=Asin ⎝ ⎛⎭⎪⎫5π12+π4=Asin 2π3=32A =32,可得A = 3.(2)因为f(θ)+f(-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,所以3sin ⎝ ⎛⎭⎪⎫θ+π4+3sin ⎝ ⎛⎭⎪⎫π4-θ=32,即⎝⎛⎭⎪⎫22sin θ+22cos θ+⎝ ⎛⎭⎪⎫22cos θ-22sin θ=32,所以cos θ=64. 因为θ∈⎝ ⎛⎭⎪⎫0,π2,所以sin θ=104,所以f ⎝⎛⎭⎪⎫3π4-θ=3sin ⎝ ⎛⎭⎪⎫3π4-θ+π4=3sin(π-θ)=3sin θ=304. 12.(2018年江苏卷)已知α,β为锐角,tan α=43,cos (α+β)=-55.(1)求cos 2α的值; (2)求tan (α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos (α+β)=-55, 所以sin (α+β)=1-cos 2(α+β)=255,所以tan (α+β)=-2. 因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247. 所以tan (α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.B 级·素养提升 |练能力|13.在斜△ABC 中,sin A =-2cos Bcos C ,且tan B ·tan C =1-2,则角A 的大小为( ) A .π4B .π3C .π2D .3π4解析:选A ∵在斜△ABC 中,sin A =sin(B +C)=sin Bcos C +cos Bsin C =-2cos Bcos C ,两边同时除以cos Bcos C ,可得tan B +tan C =- 2.又∵tan Btan C =1-2,∴tan(B +C)=tan B +tan C1-tan Btan C =-1.又∵B+C∈(0,π), ∴B +C =34π,∴A =π4.14.(2019届湖北武汉模拟)《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形面积之比为4∶9,则cos (α-β)的值为( )A .59B .49C .23D .0解析:选A 由题可设大、小正方形边长分别为3,2, 可得cos α-sin α=23,① sin β-cos β=23,②由图可得cos α=sin β,sin α=cos β,①×②可得,49=cos αsin β+sin αcos β-cos αcos β-sin αsin β=sin 2β+cos 2β-cos (α-β)=1-cos (α-β),解得cos (α-β)=59.故选A .15.(2019届唐山市高三摸底考试)已知函数f(x)=sin x -sin 3x ,x ∈[0,2π],则f(x)的所有零点之和等于( )A .5πB .6πC .7πD .8π解析:选C f(x)=sin x -sin 3x =sin(2x -x)-sin(2x +x)=-2cos 2xsin x ,令f(x)=0,可得cos 2x =0或sin x =0,∵x∈[0,2π],∴2x∈[0,4π],由cos 2x =0可得,2x =π2或2x =3π2或2x=5π2或2x =7π2,∴x=π4或x =3π4或x =5π4或x =7π4,由sin x =0,得x =0或x =π或x =2π,∴π4+3π4+5π4+7π4+0+π+2π=7π,∴f(x)的所有零点之和等于7π,故选C . 16.(2019届广东六校第一次联考)已知A 是函数f(x)=sin ⎝ ⎛⎭⎪⎫2 018x +π6+cos ⎝ ⎛⎭⎪⎫2 018x -π3的最大值,若存在实数x 1,x 2,使得对任意实数x ,总有f(x 1)≤f(x)≤f(x 2)成立,则A|x 1-x 2|的最小值为( )A .π2 018 B .π1 009 C .2π1 009D .π4 026解析:选B f(x)=sin ⎝ ⎛⎭⎪⎫2 018x +π6+cos ⎝ ⎛⎭⎪⎫2 018x -π3=32sin 2 018x +12cos 2 018x +12cos 2 018x +32sin 2 018x =3sin 2 018x +cos 2 018x =2sin ⎝⎛⎭⎪⎫2 018x +π6,故A =f(x)max =2,f(x)的最小正周期T =2π2 018=π1 009.又存在实数x 1,x 2,使得对任意实数x ,总有f(x 1)≤f(x)≤f(x 2)成立,所以f(x 2)=f(x)max ,f(x 1)=f(x)min ,故A|x 1-x 2|的最小值为A×12T =π1 009,故选B .17.(2019届湖南重点高中联考)已知向量a =(2,sin θ),b =(cos θ,-1),若a⊥b,则sin ⎝ ⎛⎭⎪⎫θ+π4cos ⎝⎛⎭⎪⎫θ+π4=________.解析:由已知得a·b=2cos θ-sin θ=0,所以tan θ=2,所以sin ⎝ ⎛⎭⎪⎫θ+π4cos ⎝ ⎛⎭⎪⎫θ+π4=12sin ⎝⎛⎭⎪⎫2θ+π2=12cos 2θ=12(cos 2 θ-sin 2θ)=12×cos 2θ-sin 2θsin 2θ+cos 2θ=12×1-tan 2θ1+tan 2θ=-310. 答案:-310第四章 三角函数、解三角形第三节 简单的三角恒等变换 第二课时 简单的三角恒等变换A 级·基础过关 |固根基|1.2sin 235°-1cos 10°-3sin 10°的值为( )A .1B .-1C .12D .-12解析:选D 原式=2sin 235°-12⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°=-cos 70°2sin 20°=-12.2.(2019届成都模拟)已知tan α=m 3,tan ⎝ ⎛⎭⎪⎫α+π4=2m ,则m =( )A .-6或1B .-1或6C .6D .1解析:选A 由题意知,tan α=m 3,tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=2m ,则m3+11-m 3=2m ,∴m=-6或1,故选A .3.已知2tan αsin α=3,α∈⎝ ⎛⎭⎪⎫-π2,0,则cos ⎝ ⎛⎭⎪⎫α-π6的值是( ) A .0 B .22C .1D .12解析:选A 由2tan αsin α=3,得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,∴cos α=12或cos α=-2(舍去).∵-π2<α<0,∴α=-π3,∴cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫-π2=0. 4.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( )A .3π4B .π4或3π4C .π4D .2k π+π4(k∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010, 故cos (α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.又0<α+β<π,故α+β=π4.5.(2019届福州市高三期末)若2sin x +cos ⎝ ⎛⎭⎪⎫π2-x =1,则cos 2x =( ) A .-89B .-79C .79D .-725解析:选C 因为2sin x +cos ⎝ ⎛⎭⎪⎫π2-x =1, 所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.故选C .6.若α是第二象限角,且sin α=35,则1-2sin π+α2·sin π-α2=( )A .-65B .-45C .45D .65解析:选C 因为1-2sin π+α2sin π-α2=1-2cos 2α2=-cos α,又sin α=35,且α是第二象限角,所以cos α=-45,所以1-2sin π+α2sin π-α2=45.故选C .7.(2019届兰州模拟)计算tan ⎝ ⎛⎭⎪⎫π4+αcos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝ ⎛⎭⎪⎫π4+αcos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α·cos 2α2sin 2⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α =cos 2αsin ⎝ ⎛⎭⎪⎫π2+2α=cos 2αcos 2α=1.8.设sin α2=45,且α是第二象限角,则tan α2的值为________.解析:因为α是第二象限角,所以α2是第一或第三象限角.①当α2是第一象限角时,有cos α2=1-sin 2α2=1-⎝ ⎛⎭⎪⎫452=35, 所以tan α2=sinα2cosα2=43;②当α2是第三象限角时,与sin α2=45矛盾,舍去.综上,tan α2=43.答案:439.(2019届三湘名校联考)函数f(x)=sin 2x +2cos x 在区间[0,π]上的值域为____________.解析:f′(x)=2cos 2x -2sin x =-2(2sin 2x +sin x -1)=-2(2sin x -1)(sin x +1),当x∈⎝⎛⎭⎪⎫0,π6∪⎝⎛⎭⎪⎫5π6,π时,f′(x)>0;当x∈⎝ ⎛⎭⎪⎫π6,5π6时,f′(x)<0,∴x =π6是f(x)的极大值点,x =5π6是f(x)的极小值点.又∵f ⎝ ⎛⎭⎪⎫π6=332,f ⎝ ⎛⎭⎪⎫5π6=-332,f(0)=2,f(π)=-2,∴f(x)∈⎣⎢⎡⎦⎥⎤-332,332. 答案:⎣⎢⎡⎦⎥⎤-332,332 10.(2019届四省八校联考)f(x)=sin 2x 1-2sin 2⎝ ⎛⎭⎪⎫x 2-π4×(1+3tan x)的最小正周期为________. 解析:f(x)=sin 2x 1-2sin 2⎝ ⎛⎭⎪⎫x 2-π4×(1+3tan x)=sin 2x cos ⎝⎛⎭⎪⎫x -π2×⎝ ⎛⎭⎪⎫1+3×sin x cos x =2sin xcos x sin x ×cos x +3sin x cos x =2(cos x +3sin x)=4sin ⎝⎛⎭⎪⎫x +π6,则f(x)的最小正周期T =2π. 答案:2π11.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P(-3,3).(1)求sin 2α-tan α的值;(2)若函数f(x)=cos(x -α)cos α-sin(x -α)sin α,求函数g(x)=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x)在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域. 解:(1)∵角α的终边经过点P(-3,3),∴sin α=12,cos α=-32,tan α=-33. ∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f(x)=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g(x)=3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6-1. ∵0≤x ≤2π3, ∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1, ∴-2≤2sin ⎝ ⎛⎭⎪⎫2x -π6-1≤1, 故函数g(x)=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x)在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域是[-2,1]. 12.(2019届河南省实验中学模拟)已知函数f(x)=43cos 2ωx +2sin 2ωx -3(ω>0)的部分图象如图所示,H 为图象的最高点,E ,F 是图象与直线y =3的交点,且EH →·EF →=EH →2.(1)求ω的值及函数的值域;(2)若f(x 0)=335,且x 0∈⎝ ⎛⎭⎪⎫-103,-23,求f(x 0+2)-3的值.解:(1)函数化简得f(x)=23cos 2ωx +2sin 2ωx +3=4sin ⎝ ⎛⎭⎪⎫2ωx +π3+ 3.由题意可知|EF|=T2.因为EH →·EF →=EH →2,所以EH →·(EH →+HF →)=EH →2,所以EH →·HF →=0,所以HF⊥HE,所以△EFH 是等腰直角三角形.又因为点H 到直线EF 的距离为4,所以|EF|=8,所以函数f(x)的周期T =16.所以2ω=2π16,即ω=π16,函数f(x)的值域是[-4+3,4+ 3 ].(2)由(1),知f(x)=4sin ⎝ ⎛⎭⎪⎫π8x +π3+3,因为f(x 0)=335,所以sin ⎝ ⎛⎭⎪⎫π8x 0+π3=-310. 因为x 0∈⎝ ⎛⎭⎪⎫-103,-23,所以π8x 0+π3∈⎝ ⎛⎭⎪⎫-π12,π4,所以cos ⎝ ⎛⎭⎪⎫π8x 0+π3=9710,所以f(x 0+2)-3=4sin ⎝ ⎛⎭⎪⎫π8x 0+π4+π3=4sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π8x 0+π3+π4=4sin ⎝ ⎛⎭⎪⎫π8x 0+π3cos π4+4cos ⎝ ⎛⎭⎪⎫π8x 0+π3sin π4=4×⎝ ⎛⎭⎪⎫-310×22+4×9710×22=194-65.B 级·素养提升|练能力|13.(2019届长春市高三第一次质量监测)函数f(x)=3sin x +3cos x 的最大值为() A . 3 B .2C .2 3D .4解析:选C 由题意,可知f(x)=3sin x +3cos x =23sin ⎝ ⎛⎭⎪⎫x +π6,所以函数的最大值为23,故选C .14.函数f(x)=12(1+cos 2x)sin 2x (x∈R)是( ) A .最小正周期为π的奇函数B .最小正周期为π2的奇函数 C .最小正周期为π的偶函数D .最小正周期为π2的偶函数 解析:选 D ∵f(x)=14(1+cos 2x)(1-cos 2x)=14(1-cos 22x)=14sin 22x =18(1-cos 4x),∴f(-x)=18[1-cos (-4x)]=18(1-cos 4x)=f(x),因此函数f(x)是最小正周期为π2的偶函数,故选D . 15.已知tan 2α=34,α∈⎝ ⎛⎭⎪⎫-π2,π2,函数f(x)=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f(x)≥0恒成立,则sin ⎝⎛⎭⎪⎫α-π4的值为( ) A .-255B .-55C .-235D .-35解析:选A 由tan 2α=34,即2tan α1-tan 2α=34,得tan α=13或tan α=-3.又f(x)=sin(x +α)-sin(x -α)-2sin α=2cos xsin α-2sin α≥0恒成立,所以sin α≤0,∴tan α=-3,∴sin α=-310,cos α=110,所以sin ⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos αsin π4=-255,故选A . 16.设向量a =(cos α,-1),b =(2,sin α),若a⊥b,则tan ⎝⎛⎭⎪⎫α-π4=________. 解析:∵a=(cos α,-1),b =(2,sin α),a⊥b,∴2cos α-sin α=0,∴tan α=2,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tan π41+tan αtan π4=2-11+2×1=13. 答案:13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲三角恒等变换
1.[2021四省八校联考]若tan(θ-)=2,则sin 2θ的值为(
A.-
B.-
C.
D.
2.[2021江西红色七校第一次联考]若sin(α+)=,则sin(2α+)= (
A. B. C. D.
3.[2021河南省名校第一次联考]已知sin(α-)=-3cos(α-),则tan 2α=(
A.-4
B.-
C.4
D.
4.[2020石家庄二检]若cos α(1+tan 10°)=1,则α的一个可能值为(
A.70°
B.50°
C.40°
D.10°
5.[条件创新]已知角α为第一象限角,sin α=,角β的终边与角α的终边关于x轴对称,
则cos(β-2α)=(
A. B.- C. D.
6.[2021晋南高中联考]已知α∈(,),sin α=,则tan(α+)= .
7.[2021晋南高中联考]对任意两实数a,b,定义运算“*”:a*b=则函数f(x)=sin
x*cos x的值域为.
8.[2020江苏,5分]已知sin2(+α)=,则sin 2α的值是.
9.[2021浙江杭州二中、学军中学等五校联考]已知2+5cos 2α=cos
α,cos(2α+β)=,α∈(0,),β∈(,2π),则cos β的值为(
A.-
B.
C.-
D.
10.若3sin 2α-2sin2α=0,则cos(2α+)= (
A.-
B.或-
C.-或
D.
11.[角度创新]已知平面直角坐标系中,点A(1,3),B(a,b),其中点B在第一象限.若∠AOB=α,
且cos 2α=sin(α-),则的值为(
A.2
B.1
C.
D.
12.[2020广东广州天河区一模]已知函数f(x)=sin(2x-),x∈(0,π),若方程f(x)=的解为
x1,x2(0<x1<x2<π),则sin(x1-x2)= (
A.-
B.-
C.-
D.-
13.[2020太原市模拟]已知α∈(0,),β∈(0,),且sin 2α(1+sin β)=cos β(1-cos 2α),
则下列结论正确的是( A.2α-β= B.2α+β=
C.α+β=
D.α-β=
14.[2021黑龙江省六校联考]已知tan(α-β)=,tan β=-,且α,β∈(0,π),则
2α-β=.
15.[2020合肥模拟]已知函数f(x)=2cos(x+)cos(x-)+sin x,若对任意的实数x,恒有
f(α1)≤f(x)≤f(α2),则cos(α1-α2)= .
16.[角度创新]若sin 78°=m,则sin 6°=(
A. B. C. D.
17.[向量与三角函数综合]已知向量a=(sin 2α,1),b=(cos α,1),若a∥b,0<α<,则
α=.
答案
第二讲三角恒等变换
1.A ∵tan(θ-)==2,∴tan θ=-3,∴sin 2θ====-.故选A.
2.A sin(2α+)=sin[2(α+)+]=cos[2(α+)]=1-2sin2(α+)=1-2×()2=,故选A.
3.A 因为sin(α-)=-3cos(α-),所以sin α-cos α=-3×cos α-3×sin α,则2sin
α=-cos α,即tan α=-,所以tan 2α===-4,故选A.
4.C cos α(1+tan 10°)=cos α(1+)=cos α·=cos α·=1,
即2sin 40°cos α=cos 10°=sin 80°=2sin 40°cos 40°,所以cos α=cos 40°,则α的一个可能值为40°,故选C.
5.C因为角α为第一象限角,sin α=,所以cos α==,所以cos 2α=2cos2α-1=,sin 2α=2sin αcos α=.又角β的终边与角α的终边关于x轴对称,所以角β为第四象限角,sin β=-,cos β=,由两角差的余弦公式可得cos(β-2α)=cos β·cos 2α+sin βsin 2α=×+(-)×=.故选C.
6.-由题知,cos α=-=-,∴tan α==-,∴tan(α+)==-.
7.[0,2]由题知a*b=2|a-b|,则f(x)=sin x*cos x=2|sin x-cos x|=2|sin(x-)|∈[0,2].
8.因为sin2(+α)=,所以=,=,得sin 2α=.
9.B 由2+5cos 2α=cos α结合二倍角公式可得,10cos2α-cos α-3=0,解得cos α=或cos α=-,因为α∈(0,),所以cos α=,sin α=,所以cos 2α==-,sin 2α=2sin αcos α=,所以<2α<π.因为β∈(,2π),所以2α+β∈(2π,3π),又cos(2α+β)=,所以2α+β∈(2π,),所以sin(2α+β)=,所以cos β=cos[(2α+β)-2α]=cos(2α+β)cos 2α+sin(2α+β)sin 2α=.故选B.
10.B 由题可得3sin αcos α-sin2α=0,即sin α(3cos α-sin α)=0,所以sin α=0或tan α=3.又cos(2α+)=cos 2αcos-sin 2α·sin=(cos 2α-sin 2α),所以当sin α=0时,即α=kπ,k∈Z,则cos(2α+)=cos =.当tan α=3
时,cos(2α+)=(-)=-.故选B.
11.C
图D 4-2-1
由cos 2α=sin(α-),得cos2α-sin2α=sin α-cos α,即(cos α+sin α+1)(sin α-cos α)=0.由于点B在第一象限,因而cos α+sin α+1≠0,故sin α-cos α=0,即tan α=1.如图D 4-2-1,设∠AOx=β,则tan β=3,所以=tan(β-α)===,故选C.
12.A 因为0<x<π,所以2x-∈(-,).令2x-=+kπ(k∈Z),可得f(x)对称轴方程为x=+(k∈Z).因为方程f(x)=的解为x1,x2(0<x1<x2<π),所以=,所以x2=-x1,所以sin(x1-x2)=sin(2x1-)=-cos(2x1-).因为x1<x2,x2=-x1,所以0<x1<,所以2x1-∈(-,).由f(x1)=sin(2x1-)=,得cos(2x1-)=,所以sin(x1-x2)=-.故选A.
13.A 由题可知,2sin αcos α(1+sin β)=cos β·2sin2α,因为α,β∈(0,),所以sin α≠0,所以cos α(1+sin β)=cos βsin α,即cos α=sin(α-β),因为cos α=sin(+α)=sin(-α),所以α-β=+α(舍)或α-β=-α,即2α-β=,故选A.
14.-易知tan(2α-β)=tan[2(α-β)+β].因为tan(α-β)=,所以tan 2(α-β)==,故tan(2α-β)==1.由tan β=-∈(-,0),知<β<π,由tan α=tan[(α-β)+β]=∈(0,), 知0<α<,所以2α-β∈(-π,-),故2α-β=-. 15.-因为f(x)=2(cos x-sin x)(cos x+sin x)+sin x=2(cos2x-sin2x)+sin x=1-2sin2x+sin x=-2(sin x-)2+,且f(x)对任意实数x恒有f(α1)≤f(x)≤f(α2),所以sin
α1=-1,sin α2=.则cos α1=0,cos(α1-α2)=cos α1cos α2+sin α1sin α2=-sin α2=-.
16.D 因为sin 78°=m,所以cos 12°=m,则sin26°==,又sin 6°>0,所以sin 6°=,故选D.
17.若a∥b,则sin 2α-cos α=0,即2sin αcos α=cos α.又0<α<,∴cos α≠0,∴sin α=,∴α=.。

相关文档
最新文档