喇叭音腔设计原理

合集下载

喇叭结构以及发声原理PPT课件

喇叭结构以及发声原理PPT课件
盆架:是使各部分(振动系统、磁路系统、支撑系统)牢固地结合 在一起,起着整体附着和连接的作用。
端子板:主要是起焊接外接引线,是外接线和音圈线的连接部件。 锦丝线:主要起音圈与端子板连接的作用。
发声原理
发声原理:弗来明左手定则。
手势: 食指/中指/拇指伸直,各为90度. (流)中指 : 导电体上供应电流的方向 (磁)食指 : 磁场方向(N极到S极) (力)拇指 : 导电体的运动方向
• 防尘帽:主要是防止灰尘及其它杂物进入磁路系统以及美观的作用。 对音质表现部分主控高频表现,因材质软硬 / 弧度大小而异, 材质有
Mylar / 绢布 / 铝 等。 • 悬边:其使用的材质会影响单体的低频,而其表现因材质软硬 / 弧度
大小 而异。一般材质包括泡棉边、橡樛边、布边(W形及M形)。 • 振膜:藉由推动振膜的快慢,来产生高低频率。包括铝膜、陶瓷膜、
藉由金属线圈依圆周方式缠绕的音圈,其导通电流产生电能,磁铁经由 电流导通而产生磁场极性排列,再藉由电流与磁场产生直角相交作用力 ,使音圈上下作用推动振膜,这瞬间一收一扩的节奏会造成WAVE-声波 或气流,而产生声音,发出声音。
发声原理
能量转换:
电能
磁能
动能
声能
音圈(线圈):
缠绕的方向会影响单体的相位;使用的金属线的粗细形状及材质则会 影响单体的整体效率与耐热的程度,是否可承受大功率的阻抗。 ( 阻抗越高圈数越多、越细 )
全音域:即以一支单喇叭单体,可以涵盖大部份的频率(除了低频 及高频)表现,故名全音域。 同轴式:即在低音单体的轴心上,再加上一个高音或者再加上一 个中音喇叭而型成,所谓的同轴二音路或同轴三音路喇叭即是。 组合式:是透过几个大小不同的单体,在配合上由电容器、电阻、 电感等电子零件,所构成的被动式分音器,来分配不同的频率范 围,让大小不同的单体,接受不同的频率各司其职,称之组合式 或分离式喇叭。

扬声器音腔设计

扬声器音腔设计

优秀案例二:影院扬声器音腔设计
总结词
沉浸式音效
详细描述
影院扬声器音腔设计注重营造沉浸式的音效体验,通过大型 低音喇叭、环绕立体声技术以及特殊音腔结构,实现宽广的 音场和深沉的低音效果,让观众仿佛置身于电影场景之中。
优秀案例三:便携式扬声器音腔设计
总结词
轻便与音质兼备
详细描述
便携式扬声器音腔设计追求轻便与音质的高度结合,通过采用先进的材料和音腔结构优 化技术,减小体积和重量,同时保持出色的音质表现,方便用户在外出时随时随地享受
扬声器音腔设计
目录 CONTENT
• 扬声器音腔设计概述 • 音腔结构设计 • 材料选择与声学特性 • 优化与改进 • 案例分析
01
扬声器音腔设计概述
设计概念与目标
设计概念
扬声器音腔设计是指对扬声器内 部结构的规划和优化,旨在提高 扬声器的声音品质和性能。
设计目标
通过合理的音腔设计,实现更清 晰、更纯净的声音输出,同时减 小失真和噪音,提升扬声器的整 体表现。
实验测试
通过实验测试,验证仿真结果的准确性,并对音 腔设计进行进一步分析,找出差异 原因,提高仿真精度。
参数调整
根据实验结果,调整仿真模型中的参数,使仿真 结果更接近实际表现。
用户反馈与持续改进
用户调研
收集用户对扬声器性能的反馈,了解用户需求和期望。
迭代改进
总结词
材料的非线性行为是导致声音失真的主要原因。
详细描述
当声音强度达到一定水平时,许多材料会表现出非线性行为,这意味着它们的声学特性不再是线性的 ,而是随着声音强度的增加而发生变化。这种非线性行为会导致声音失真,使音质变差。因此,在扬 声器音腔设计中,选择具有较低非线性行为的材料可以减少声音失真,提高音质。

喇叭口的制作方法

喇叭口的制作方法

喇叭口的制作方法喇叭是将电能转化为声能的装置,常被广泛应用于扩音器、音响设备、汽车音响等领域。

在本文中,我们将介绍喇叭口的制作方法。

喇叭口,也称为喇叭箱体,是喇叭的外部结构,用于装载和扩散声音的。

一、喇叭口的设计原理首先,我们需要了解一些基本的声学原理。

聲音是通过空氣的震动传播而形成的,而喇叭口的设计原理就是通过改变空气的流动方式来扩散声音。

喇叭口的设计主要涉及到一些参数,如喇叭口的形状、面积、长度、角度等。

1. 喇叭口的形状:喇叭口的形状对声音的扩散产生影响。

一般来说,较大的圆形或椭圆形喇叭口能够提供更好的声音扩散效果。

2. 喇叭口的面积:喇叭口面积的大小决定了喇叭的发声效果。

较大面积的喇叭口能够提供更大的声压级,而较小的面积则能提供较为准确的声音。

3. 喇叭口的长度:喇叭口的长度决定了声音的频率响应范围。

通常来说,较长的喇叭口适用于低频音源,而较短的喇叭口适用于高频音源。

4. 喇叭口的角度:喇叭口的角度决定了声音的扩散范围。

较大的喇叭口角度适用于大范围的声音扩散,而较小的角度适用于更为集中的声音。

二、喇叭口的制作步骤下面,我们将介绍一种常见的喇叭口制作方法。

1. 准备材料和工具制作喇叭口所需要的材料有MDF(中密度纤维板)、喇叭皮(可选择进口的厚度为2mm左右的合成纤维板材)、胶水和螺丝等。

制作时可以使用锯、锉刀、修边机等工具。

2. 绘制喇叭口的图纸根据所需的喇叭型号和口径大小,绘制喇叭口的三维立体图。

可以借助计算机辅助设计软件来完成。

3. 制作喇叭箱体根据绘制好的图纸,用锯具将MDF板切割成各个板块,如前、后、底、两侧等。

再用螺丝将板块组合成箱体结构。

4. 制作喇叭口板根据图纸,将MDF板切割成与喇叭口尺寸相同的板块。

再用锉刀将板块修边,使其边缘平整。

5. 安装喇叭皮将切割好的喇叭皮用胶水粘贴在喇叭口板上。

使用夹子等固定,等待胶水干燥。

6. 安装喇叭口板将安装好喇叭皮的喇叭口板固定在喇叭箱体的合适位置。

扬声器原理及音腔设计

扬声器原理及音腔设计

SPL[dB]
120 110 100
90 80 70 60
100
φ14扬声器背面容积変化时的频率特性変化(0.2W/0.1m)
容積可 変
1000 0.5cc
Frequnecy[Hz]
10000
1cc 3cc 5cc 45cc
100000
Ⅱ- 2)背面容积和 Fo 的变化
由于φ14,16,18扬声器容积変化Fo変化的数据 (扬声器的Fo为800Hz)
2)F h(高域限界周波数): 表示高域再生能力 (Hz)
3)S P L(音压)
: 表示声音的大小 (dB)
3)手机实装时的特性变化
Ⅰ- 1)扬声器背面密封的必要性 通常扬声器的背面都有密封。从扬声器振动板上面产生的声波和其下面产生的声波的相差
为180度。因此若不遮断其上下声波就会由于相差干扰而使声音消失。特别是波长长的低 频是很显著的。因此理想的方法是完全遮断背面声波,使其不再有相差干扰。 ⇒ 手机实装时、若前盖后盖的卡合部或转轴等其他连接部有间隙,背面声波就会漏音、尤 其是波长长的低音会消失、低音质感也会耗损。
4000
3500 3000 2500
・容积和Fo的关系如下图表所示:3cc以下的时候 突然变化很大。 ⇒容积3cc时为重要背景 (3cc时勉强在1kHz的再生帯域)
Foc[Hz]
2000
1500
1000
500
0
0
1
2
3
4
5
6
7
8
9
10
Cavity[cc]
φ14ス扬ピ声ー器カ
φ16ス扬ピ声ー器カ
在干扰 部分声 音消失
密封盒
音圧 [dB] 音圧 [dB]

自制小喇叭的原理

自制小喇叭的原理

自制小喇叭的原理
制作小喇叭需要用到振动器和共鸣腔。

当振动器被电流或信号激励时,它会产生振动,这些振动会传播到共鸣腔中。

共鸣腔的设计可以帮助放大声音并调整音调。

具体来说,振动器可以是一个电动机或电磁铁,它们都可以将电能转化为机械振动。

当电流通过振动器时,它会引起磁场变化或电动力作用,从而使振动器产生机械振动。

共鸣腔可以是一个简单的空心盒子,它可以放大振动器产生的声音。

共鸣腔的大小和形状可以影响音调和声音的质量。

例如,较大的共鸣腔可以产生低音,而较小的共鸣腔则可以产生高音。

在制作小喇叭时,需要选择合适的振动器和共鸣腔,并将它们组装在一起。

然后,通过将电流或信号输入振动器,就可以激励它产生振动,从而产生声音。

扬声器音腔设计课件-PPT

扬声器音腔设计课件-PPT

2~3
开孔面积在10%左右是可减小尖锐的高频声音和高频破音。
出声孔:131、尽量不要开2在.5±正1中,这样高频较多,声A音、B做不大,并且伴随高频燥2声~3。
5%~15% 5%~15%
4、让声1音5 真实的还原。2.5±1
A、B
2~5
5%~15%
密封性后腔和泄露性后腔对比曲线
如果是两16个相同规格的喇2.叭5±,1 出声面积最好一个控制A、在B10%以内,另一个控制2在.5~145.5%左右,位置5可%~以15适% 当区别。
配合),中频转换效率越高,高频成份越小。
前腔设计形状1
这种锥形结构对声音 反射有影响,因为声 音反射回来,不能提 高声音的利用率。
前腔设计形状2
• 倒锥形和指数性 结构的前腔壁都 可以提高扬声器 的利用率,起到 提高中频音量作 用。
前腔设计形状3
前腔设计形状4
垂直前腔对中高频 段的峰谷没有指数 和倒锥形大
4、电池槽,卡槽孔要远离手机扬声器。
5、前后腔要完全隔开,后腔要密封好。
出声孔设计
• 出声孔作用: • 1、出声。 • 2、出声孔面积影响高频截止频率、中低频的灵敏度。 • 3、出声孔面积一般在扬声器振动面积的5%-15%之间,
过大可导致高频燥音过多,过小可能导致声音变小。
出声孔设计注意点
• 出声孔:1、尽量不要开在正中,这样高频较多,声音 做不大,并且伴随高频燥声。2、开孔面积也不能太大, 因为扬声器本身的原因和后腔因素,高音会显得比较尖 锐,听起来声音刺耳。
机壳尽量要密封,最好不能有声泄露孔。
2、对声音进行修正,防止噪音。
后腔结实构际2 后腔结构2
后腔
减小了机壳处声音泄露、 延长 声音传播路径。扩大了后 腔容积。

喇叭结构以及发声原理 ppt课件

ppt课件 10
喇叭参数测试方法:
当反馈给扬声器的恒定的电压时,扬声器在参考轴上所辐射的声压随频率而变化的曲 线称为声压频率响应曲线。
ppt课件
11
频率响应曲线SPL vs Freq.
ppt课件
12
频率响应曲线 SPL vs Freq.
人耳所能听到的频率范围为20Hz─20KHz, ( <20Hz称为次声,>20KHz称为超声 ) 图标纵坐标─表示声压级,单位是dB。 图标横坐标─表示频率,单位是Hz。 图标左侧为低音单体频响曲线,右侧为高音单体,包含左右的是音箱。 从频响曲线可以知道几个重要参数: 特性灵敏度(SPL): 以一瓦电功率,在一米距离处所测得的声压,并由频响曲线取四个点所得 平均值即为平均音压。 有效频率范围(F0~20KHz): 可由SPL-10 dB,这样一条直线与曲线相交两点,这两点之间就是有效频率 范围。如上图音箱的有效频率范围是45Hz─20KHz,低音单体有效频率范 围是40Hz─3KHz,高音单体有效频率范围则是1800Hz─20KHz。
垫圈(气密)
音圈 (通电导电)
弹波 (保持磁间隙与增加功率承受) 华司(导磁与增加磁场)
ppt课件
磁铁(产生磁场)
U铁(内增加磁场与外防磁)
3
喇叭单体结构(外磁)
ppt课件
4
结构作用及特性
• 喇叭是由三大部分组成:振动系统,磁路系统和支撑系统。 振动系统包括:音圈、弹波、振膜。 磁路系统包括:U铁(T铁)、磁铁、华司。 支撑系统包括:盆架、垫圈、防尘盖、端子板、引线。
在一起,起着整体附着和连接的作用。

端子板:主要是起焊接外接引线,是外接线和音圈线的连接部件。

锦丝线:主要起音圈与端子板连接的作用。

腔体喇叭的制作方法

腔体喇叭的制作方法
腔体喇叭是一种广泛应用于广播、音乐和电影等领域的电子设备,其工作原理是通过将音频信号通过一个腔体内部的声音传播路径来放大声音。

以下是腔体喇叭的制作方法:
1. 设计腔体结构:在设计腔体喇叭时,需要考虑声音传播的路径、腔体的大小和形状等因素。

一般来说,腔体喇叭可以分为两个主要部分:腔体和喇叭罩。

腔体通常是一个圆柱形的实体,而喇叭罩则是一个可以覆盖腔体的部分,用于放大
声音。

2. 确定材料:腔体喇叭的材料选择非常重要。

通常来说,最好的材料是陶瓷或玻璃。

这些材料具有良好的折射和反射能力,可以放大声音并提供更好的音质。

此外,其他材料如铜、铝等也可以使用,但可能会降低音质。

3. 制造腔体:根据设计好的腔体结构,可以使用陶瓷或玻璃等材料制造腔体。

在制造腔体时,需要注意使其具有足够的强度和耐用性。

4. 制造喇叭罩:喇叭罩是腔体的一部分,用于放大声音。

喇叭罩的材料通常是金属或塑料。

在制造喇叭罩时,需要注意其形状和大小,以便能够覆盖腔体并放大声音。

5. 校准和测试:制造完成后,腔体喇叭需要进行校准和测试,以确保其音质
和性能符合要求。

校准可以包括对腔体和喇叭罩进行调音,以确保声音的均衡和清晰。

测试可以包括听音测试和频率响应测试等,以验证腔体喇叭的性能。

腔体喇叭的制作方法需要涉及到设计、制造和测试等多个环节。

在制造过程中,需要确保腔体和喇叭罩的材料和结构符合要求,并校准和测试以确保其性能
符合要求。

有关喇叭的音腔的设计规范


电压(V)
声压级(dB)
F1 F2
频率(Hz)
F1 F2
频率(Hz)
Speaker的关键参数
❖ 频率响应曲线 ❖ 谐波失真 ❖ 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。
SPL=20log(P/P0)dB
低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
SPEAKER常用种类
❖ 圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. ❖ 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm
泄漏尽量小,离SPK尽量远。
音腔设计参数建议
Thank you for your support !
谐波失真(THD)
<0.15% 0.5W
<5% 300~3400Hz 179mV
谐振频率Fo
900+/-20%Hz
600+/-20%Hz
额定阻抗
8+/-15%ohm
32+/-15%ohm
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: ❖ 腔体的目的是为了隔开前后声波,避免二者干涉 ❖ 腔体的大小左右着SPK/RVR的低频重放

【设计规范_05】喇叭(speaker)原理及音腔设计规范

【设计规范_05】喇叭(speaker)原理及音腔设计规范导读喇叭又名扬声器,现如今,人们对手机的要求越来也高,声音也是一个评价手机好坏的因素。

为提高音质,喇叭的结构形式也发生了很多变化,由正出音变成侧出音,有单喇叭变成双喇叭,甚至是喇叭BOX;很多手机厂商都推出音乐手机,试想一下如果音质不好的音乐手机是什么样的,而对于音质的好坏,结构设计及音腔设计都有影响,本文就介绍下音腔的结构设计要求;一、喇叭的基本结构及工作原理喇叭的基本结构图如下:喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。

喇叭实际上是一个电声换能器。

二、喇叭音质的影响因素对手机而言,Speaker、喇叭音腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。

Speaker单体的品质对于音质的各个方面影响都很大。

其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

喇叭音腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。

这里就涉及到结构设计及音腔的设计;音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。

例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。

此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。

三、音腔结构设计规范3.1音腔的基本结构和作用先看一下一般正音腔的结构,如下图:手机的声腔设计主要包括后声腔、前声腔、出声孔、防尘网,密闭性五个方面;每部分的作用和设计都有所不同:后音腔的作用,1.防止扬声器中低频的声短路;2.使低频声音有利,让人感觉声音圆润;后音腔的设计很重要,直接影响手机音质的好坏和大小;前音腔的作用1.前音腔是让声音产生一个高频段的截止频率,并产生一个高频峰2.修正高频噪声3.好的前腔可提高中频,减小高频噪声,降低高频段延伸,提高声音转换效率;出音孔的作用:1.出音2.出音孔面积影响高频截止频率,中低频的灵敏度;出音面积过大导致高频噪音过多,过小可能导致声音变小;防尘网和密封性的作用很明显,就是防尘和密封;具体影响见下表:3.2相关设计要求1.speaker前音腔泡棉高度一般在0.3~1.0mm,同时要避开喇叭震膜范围,注意防尘网的位置,不能让喇叭的震动膜在震动时碰到防尘网,否则会引起异响;2. Speaker出声孔及声腔内部设计要圆滑过渡,尽量避免尖角﹑锐角,否则容易产生异响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

For personal use only in study and research; not for
commercial use
关于喇叭音腔设计的基本原理
新闻出处:21ic 发布时间: 2007-10-20
lldwsw 发布于 2007-10-20 9:39:00关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。

我们知道的音腔设计,往往是如下的理解:1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。

2:音腔要求密封,若密封不好,则导致低音很差。

3:音腔孔不能开的太大,若开的太大,会导致音量变小。

以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。

本人试着用射频理论推导喇叭音腔设计:对比天线与喇叭天线喇叭媒质真空空气作用电能转换成电磁场能量电能转换成声音能量主要器件天
线喇叭附属器
件匹配电路音腔原理电磁场理论震动波理论目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。

先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于0。

对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。

那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。

我们用以下公式来看:P =F × V P为功率,对外界做功的功率,F为力的大小,V为速度。

这个公式说明F太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。

接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。

因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量:对比P =F × V公式,我们对喇叭提出一个具体对外做功的简易公式。

因为F正比振膜面积(S),所以写成 F =K × S,K为系数。

V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。

对于音响系统来说K×S一般远远小于Fz。

这个原因如下。

看一个音响系统,动不动就是100 W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。

所以空气不能影响动力线圈,可以认为V一定。

那么公式就成了P =K × S * V因为信号一定,喇叭的振膜面积S也一定,若想改变P,则只能改变K,目的是提高K,其实K就由音腔决定,如下:假如我们现在的空气密度增加一倍,则K增加一倍,假如只对一部分空气做功,则产生的力就能提升,这是因为空气动力学原理dV / V = dF / F,也就是说在一定的空间内对空气做功,空气体积的变化跟力的变化成正比。

这个就是音腔原理,就是要划出一部分空气,提高K值,让喇叭对这部分空气做功,产生声音,之后这部分能量再传到整个空间中,在这儿音腔当作了能量传递的中间环节。

以上合理的解释了上面提到的第一点,为什么要有音腔,对于2,3都可以类似的分析,对于2,还需要分析声音的相位问题,因为喇叭有两面,可以当作两个音源来考虑,相位差180°,对于第三点,可以整合到第一点里,都是影响K值。

主要针对便携式小音腔设计,比如手机,随身听之类。

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。

相关文档
最新文档