九年级数学 二次函数的解析式三种形式

合集下载

初三数学二次函数解析式的求法

初三数学二次函数解析式的求法
单击添加副标题
二次函数解析式的 求法
单击此处添加文本具体内容,简明扼要地阐述你的观点
顶点式ya2xbxc(a0)交点式
ya(xm)2n(a0)顶 点 坐 m,n标 )
ya(xx )(xx )(a0)
1
2
回味
知识点:
条件


抛y物 a一线 .x2二一次般函式b数x解析c式常见
的三种表示形式:
与X轴交于两x点,0( )(x ,0)
(3)将抛物线作怎样的一次 平移,才能使它与坐标轴仅有 两个交点,并写出此时抛物线 的解析式。
A -1 o -2.5D
B 5x
C
讲例:
4、如图,抛物线y=ax2+bx+c与直线y=kx+4相
交于A(1,m),B(4,8)两点,与x轴交于原
点及C点,(1)求直线和抛物线的解析式;(2)
在抛物线上是否存在点D,使S△OCD= 3 S△OCB,若 存在,求出点D;若不存在,请说明理由2 。
点拔: 设一次函数的解析式为y=kx+n
则:
n 1 2k n
5
∴y=3x-1
∵抛物线y=x2+bx+c的顶点坐标为
(b, 4cb2 )
24
4c b2 4
3 b 1 2
4 2b c 5
5 2
试一试:
点拔:(1)
1 已知:抛物线y=ax2+bx+c过点(-5,0)、(0, ) (1,6)三点,直线L的解析式为y=2x-3,(1)求抛物线 的解析式;(2)求证:抛物线与直线无交点;(3)若与直 线L平行的直线与抛物线只有一个交点P,求P点的坐标。
∴y=a(x-3)2+1=ax2-6ax+9a+1

浙教版-数学-九年级上册-求二次函数解析式的三种方法

浙教版-数学-九年级上册-求二次函数解析式的三种方法

求二次函数解析式的三种方法一、已知任意三点求解析式用一般式,即2(0)y ax bx c a =++≠.方法:把三点坐标分别代入一般式,得到关于a 、b 、c 的三元一次方程组,求出a 、b 、c 的值,即可得到二次函数的解析式.例1、(2010 天津)已知二次函数2y ax bx c =++(0a ≠)中自变量x 和函数值y的部分对应值如下表:则该二次函数的解析式为 .分析:表格给出了自变量x 和函数值y 的六组对应数值,也就知道了二次函数的图像经过的六个点的坐标,在其中任选三点,将它们的坐标代入一般式,即可求出抛物线的解析式.解:设抛物线的解析式为2y ax bx c =++,由图像可知,抛物线经过点(-1,-2)、(0,-2)、C (1,0)三点,所以220a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩,解得112a b c =⎧⎪=⎨⎪=-⎩,所以该二次函数的解析式为22y x x =+-.二、已知顶点或最大(小)值求解析式用顶点式,即2()(0)y a x h k a =-+≠ 方法:先将顶点坐标(h ,k )或最大(小)值代入顶点式,再把另一点的坐标代入求出a ,即可得抛物线的解析式.例2、如图(1)所示是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .22y x =-B .22y x =C .212y x =-D .212y x =分析:由图可知二次函数的顶点坐标为(0、0),所以二次函数的解析式可以设为2y ax =进行求解.解:设二次函数为2y ax =,把点(2,-2)代入解析式,得222a -=⨯,解得12a =-,所以二次函数的解析式为212y x =-,故选C.三、已知与x 轴两交点坐标求解析式用交点式,即12()()(0)y a x x x x a =--≠ 方法:将抛物线与x 轴两个交点的横坐标1x 、2x 代入交点式,然后将抛物线上另一点的坐标代入求出a ,即可得抛物线的解析式.例3、已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 . 分析:二次函数的图象经过原点,且图象与x 轴的另一交点到原点的距离为1,所以另一个交点的坐标为(-1,0)或(1,0),然后利用交点式即可求出二次函数的解析式.解:因为二次函数的图象经过原点,并且图象与x 轴的另一交点到原点的距离为1,所以另一个交点的坐标为(-1,0)或(1,0),当另一个交点的坐标为(-1,0)时,设所求的二次函数的解析式为(1)y ax x =+.因为二次函数的图像经过点(12-,14-),所以111()(1)422a -=⨯--+,解得1a =,所以二次函数的解析式为2y x x =+,当另一个交点的坐标为(1,0)时,设所求的二次函数的解析式为(1)y ax x =-.因为二次函数的图像经过点(12-,14-),所以111()(1)422a -=⨯---,解得13a =-,所以二次函数的解析式为21133y x =-+,综上所述,该二次函数的解析式为2y x x =+或21133y x =-+.图(1) 图(2)。

九年级上数学导学案二次函数三种解析式学生用教案含配套课时作业有答案

九年级上数学导学案二次函数三种解析式学生用教案含配套课时作业有答案

二次函数的解析式【教学目标】熟练地求出二次函数的解析式是解决二次函数问题的重要保证.【要点呈现】二次函数的解析式有三种基本形式: 1.一般式:y =a x 2+bx +c (a ≠0).2.顶点式:y =a (x -h )2+k (a ≠0),其中点(h ,k )为顶点,对称轴为x =h .3.交点式:y =a (x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标. 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1.若给出抛物线上任意三点,通常可设一般式.2.若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式.3.若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式.【典例剖析】例1 已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.练:①已知二次函数的图象经过(0,4),(1,4),(-2,2).求这个二次函数的解析式.②已知二次函数的图象经过(0,0),(1,2),(2,3).求这个二次函数的解析式. ③(2011甘肃兰州)如图所示,在平面直角坐标系xoy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B 和D (4,23-)。

求抛物线的表达式。

例2 已知抛物线的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式.练:①已知抛物线的顶点坐标为(2,-1),并且经过点(-1,2),求这条抛物线的解析式②(2011黑龙江绥化)已知:二次函数c bx x y ++=24,其图象对称轴为直线1=x ,且经过点(2,49-).求此二次函数的解析式.③.(2011福建莆田)已知抛物线y=ax 2+bx+c 的对称轴为直线x=2,且与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (1,0),C (0,-3)。

初中数学-二次函数的解析式

初中数学-二次函数的解析式

∴a(2-1)2-2=3,得:a=5,
∴解析式为y=5(x- 1)2-2
注:此题运用了二次函数的顶点式
2.已知抛物线过三点:A(-1,2),B(0,1), C(2,-7),求二次函数的解析式.
解:设二次函数的解析式为: y ax bx 1
2
a b 1 2 由已知得: 4a 2b 1 7
∵抛物线过点C(1,2)
注:此题运用了
二次函数的双根式
解析式为: 1 y ( x 1)(x 3) 2
∴ a (1 1)(1 3) 2
4a 2 1 a 2
3 3.已知抛物线和y轴的交点(0,- 2 )
和x 轴的一个交点(-1,0),对称轴是x =1. (1)求图象是这条抛物线的二次函数的解析式; (2)判断这个二次函数是有最大值还是有最小值, 并求出这个最大值或最小值
2 2
y
A O
B
x
公式:AB | x2 x1 | |a|
b 2 4ac |a| |a|
y ax2 bx c, (a 0)
6.抛物线y=-2x2+4x+1 在 x轴上截得的线段长度

6
.
y
16 8 6 解: AB |a| 2
A O B
当x
b 1 1时 1 2a 2 2
y最小值
4ac b 2 4a
1 3 4 ( ) (1) 2 2 = 2 =-2 1 4 2
b 1 当x 1时函数有最小值 1 2a 2 2 1 2 3 y最小值 1 1 2 2 2
x1, x2 为方程: a(x-x1)(x-x2)=0的两个 根,即抛物线与x的两个交点的横坐标,

二次函数的解析式的三种形式

二次函数的解析式的三种形式

二次函数的解析式的三种形式二次函数是一种标准形式为y=ax^2+bx+c的函数,其中a、b、c为实数且a不等于零。

在数学中,为了研究和解答与二次函数相关的问题,有时会使用不同的解析式表达二次函数。

下面将详细介绍二次函数的三种常见解析式形式。

第一种形式:标准形式二次函数的标准形式是y=ax^2+bx+c,其中a、b、c为实数且a不等于零。

在标准形式中,a控制着二次曲线的开口方向和形状,b控制着二次曲线的位置和对称轴的斜率,c控制着二次曲线与y轴的交点。

通过标准形式,可以直观地根据a、b、c的值来了解二次函数的特征。

在二次函数的标准形式中,a的值决定了二次曲线的开口方向。

当a大于零时,二次曲线的开口朝上;当a小于零时,二次曲线的开口朝下。

当a的绝对值越接近于零时,二次曲线越趋近于直线。

接下来,我们将讨论二次函数标准形式中各系数的作用:1.系数a:控制二次曲线的开口方向和形状。

二次曲线开口向上或向下,其开口的角度与a的大小有关。

当a的值越接近于零时,二次曲线越趋近于直线。

2.系数b:控制二次曲线的位置和对称轴的斜率。

当b的值等于零时,二次曲线在y轴上对称;当b的值不等于零时,二次曲线发生平移。

3.系数c:控制二次曲线与y轴的交点。

当c的值等于零时,二次曲线过原点。

第二种形式:顶点形式二次函数的顶点形式是y=a(x-h)^2+k,其中a、h、k为实数且a不等于零。

在顶点形式中,顶点坐标为(h,k),a控制二次曲线的开口方向和形状,h控制二次曲线沿x轴平移,k控制二次曲线沿y轴平移。

在二次函数的顶点形式中,a的值决定了二次曲线的开口方向。

当a 大于零时,二次曲线的开口朝上;当a小于零时,二次曲线的开口朝下。

当a的绝对值越接近于零时,二次曲线越趋近于直线。

顶点形式中,二次函数的顶点坐标为(h,k)。

顶点坐标(h,k)表示二次曲线的最低或最高点,也是对称轴与x轴的交点。

通过顶点形式,我们可以直观地了解二次函数的特征和性质。

九年级数学讲义二次函数解析式的三种形式及求法讲解

九年级数学讲义二次函数解析式的三种形式及求法讲解

二次函数是一种常见的数学函数,其解析式可以有三种常见的形式。

下面我将逐一介绍这三种形式及其求法。

1.顶点形式:y=a(x-h)²+k顶点形式是一种常见的二次函数解析式形式。

其中a,h和k分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,h表示抛物线的横向平移,k表示抛物线的纵向平移。

求解二次函数顶点形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后找出顶点坐标(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

2. 一般形式:y = ax² + bx + c一般形式是另一种常见的二次函数解析式形式。

其中a,b和c分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,b表示抛物线的横向平移,c表示抛物线的纵向平移。

求解二次函数一般形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后利用求根公式(-b ± √(b² - 4ac)) / 2a,计算出二次函数的根;接着可以利用根的性质求出顶点的横坐标-x = b / 2a,并将x代入二次函数求得顶点的纵坐标y。

3.描点形式:y-y₁=a(x-x₁)(x-x₂)描点形式是一种通过抛物线上两个已知点求解二次函数解析式的形式。

其中a表示抛物线的开口方向和大小,(x₁,y₁)和(x₂,y₂)分别表示已知点的坐标。

求解二次函数描点形式的步骤如下:首先计算a的值,可以利用已知点的坐标代入公式求解;接着将(x₁,y₁)和(x₂,y₂)分别代入描点形式,得到两个方程,再解这个方程组得到二次函数的解析式。

以上介绍了二次函数解析式的三种形式及其求法。

不同形式的解析式适合不同的问题,根据具体情况选取合适的形式求解可以提高解题效率。

希望对你的学习有所帮助!。

人教版初三数学:待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式. 【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax 2+bx+c(a ≠0),由题意得:⎪⎩⎪⎨⎧-=++-=++-=+-53939c b a c b a c b a 解得⎪⎩⎪⎨⎧-==-=531c b a ∴所求的二次函数的解析式为y=-x 2+3x-5.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c ,把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【高清课程名称:待定系数法求二次函数的解析式 高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是 .当x时,y >0.【思路点拨】观察可知抛物线的图象经过(1,0),(3,0),(0,3),可设交点式用待定系数法得到二次函数的解析式.y >0时,求x 的取值范围,即求抛物线落在x 轴上方时所对应的x 的值. 【答案】y=x 2﹣4x +3.x <1,或x >3 【解析】解:观察可知抛物线的图象经过(1,0),(3,0),(0,3), 由“交点式”,得抛物线解析式为y=a (x ﹣1)(x ﹣3), 将(0,3)代入, 3=a (0﹣1)(0﹣3), 解得a=1.故函数表达式为y=x 2﹣4x +3.由图可知当x <1,或x >3时,y >0.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△.【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直CBAO长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB ,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.449-π B.849-π C.489-π D.889-πAEB F P图(1)【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

二次函数解析式的三种形式

二次函数解析式的三种形式
二次函数也被称为平方函数,是数学中最常见的函数之一,其解析式有三种形式。

在本文中,我们将概述这三种形式以及它们的特点和应用。

首先让我们介绍第一种形式,即一般形式。

一般形式的二次函数是y=ax2+bx+c的形式,其中a是一个不为零的常数,b和c也是常数。

我们可以通过这个函数得到如抛物线和双曲线等曲线的二次函数。

此外,我们可以通过求解一元二次方程来求解该函数。

这种常见的二次函数的应用非常广泛,可以在金融、物理等领域中使用它以解决一些复杂的问题。

接下来,我们讨论另一种常见的二次函数,即标准形式。

标准形式的二次函数是y=a(x-h)2+k的形式,其中a是一个不为零的数,h
和k是常数。

我们可以通过这个函数得到上下颠倒或者平移的二次函数。

此外,标准形式的二次函数具有较强的可视性和模型可控性,因此它被广泛应用在几何学和数学中,以帮助我们更好地研究问题及其实际应用。

最后,我们要介绍的是另一种常见的二次函数,即展开形式。

展开形式的二次函数是y=a(x-p)(x-q)的形式,其中a是一个不为零的常数,p和q是常数。

我们可以通过这个函数得到同时包含p和q两个数字的二次函数。

此外,展开形式的二次函数特点是可以进行多算术运算,从而有助于解决很多可以简化成二次函数的复杂问题。

综上所述,二次函数解析式有三种常见的形式,分别为一般形式、
标准形式和展开形式。

它们各自具有特定的特点和应用,可以很好地帮助我们解决一些复杂的问题。

因此,了解这三种形式非常重要,有助于我们更好地理解和应用二次函数。

求二次函数解析式的常用方法

求二次函数解析式的常用方法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。

熟练地求出二次函数的解析式是解决二次函数问题的重要保证。

一、二次函数的解析式有三种基本形式: 1、一般式:y=ax 2+bx+c (a ≠0)。

2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。

3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

二、求二次函数解析式的方法.求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。

2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。

3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。

三、探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。

解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。

例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。

分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。

解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

∴a(0-4)2-1=3 ∴a=41 ∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3。

二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。

本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。

每种方法的步骤和注意事项都将被详细介绍。

一、公式法公式法是一种求解二次函数解析式的基本方法。

二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。

一个常见的二次函数的例子为y = x²。

1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。

通常情况下,这些值可以从已知的条件中直接得到。

如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。

可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。

可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。

具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。

如果二次函数的解析式没有实数根,则说明这个二次函数不存在。

在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的解析式三种形式
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:(a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式
,二次函数可转化为两根式。

如果没有交点,则不能这样表示。

二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。

定义:
一般地,如果(a,b,c是常数,a≠0),那么y 叫做x 的二次函数。

①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a 是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。

③二次函数(a≠0)与一元二次方程
(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成
(a≠0)的形式,那么这个函数就是二次函数,否则就不是。

考点分析
1.二次函数的概念、图像和性质
2.二次函数的图像与字母系数的关系
3.确定二次函数的解析式
4.二次函数与一元二次方程以及不等式之间的关系
5.二次函数图像常见的变换
思想方法
基本思想:
数形结合,从二次函数的图像研究其开口方向、对称轴、顶点坐标、增减性、最值及其图像的平移变化,到利用二次函数图像求解方
程与方程组,再到利用图像求解析式和解决实际问题,都体现了数形结合的思想
真题精选
例题精讲
类型一二次函数的解析式
【解后感悟】解题关键是选择合适的解析式:当已知抛物线上三点求二次函数的关系式时,一般采用一般式y=ax^2+bx+c(a≠0);当已知抛物线顶点坐标(或对称轴及最大或最小值)求关系式时,一般采用顶点式y=a(x-h)^2+k;当已知抛物线与x轴的交点坐标求二次函数的关系式时,一般采用交点式y=a(x-x1)(x-x2).类型二二次函数的图像、性质
【解后感悟】解题关键是正确把握解析式的特点、图像的特点、二次函数的性质,注意数形结合.
类型三二次函数的图像变换
【解后感悟】①平移的规律:左加右减,上加下减;②对称的规律:关于x轴对称的两点横坐标相同,纵坐标互为相反数;关于y轴
对称的两点纵坐标相同,横坐标互为相反数;关于原点对称的两点横、纵坐标均互为相反数;③旋转的规律:旋转后的抛物线开口相反,顶点关于旋转点对称.
类型四二次函数的综合问题
【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;
(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.
【解后感悟】抛物线与x轴的交点问题;二次函数的性质;待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的判定和性质.
类型五二次函数的应用
【解后感悟】此题是二次函数的应用,准确分析题意,列出y与
x之间的二次函数关系式是解题关键.
热点题型
专题小结
二次函数是中考必考题型。

复习本专题题时一定要熟练掌握二次函数解析式的几种求法:(1)待定系数法;(2)顶点式法;(3)交点式法。

同时,二次函数的图形及其性质一定要非常熟悉。

比如对称性、增减性、最大最小值以及字母的正负性。

二次函数的应用的解题关键是抓紧基本的应用公式,列出函数解析式,然后利用函数的性质解决实际问题。

第31页共31页。

相关文档
最新文档