人教版,六年级数学上册,概念与公式整理与总结

合集下载

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。

2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数.所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。

的27×512.27 表示: 512 是多少。

(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

人教版六年级数学上册概念与公式总结

人教版六年级数学上册概念与公式总结

人教版六年级数学上册概念与公式总结1. 数与代数运算- 自然数概念:自然数是由1、2、3……无限延伸下去的数。

- 小于1000的整数概念:小于1000的整数是由0、1、2、3……999这些数字构成的数。

- 两位数、三位数的概念:两位数是由10~99之间的整数组成,三位数是由100~999之间的整数组成。

- 加减法概念与运算规律:加法是将两个或更多数合并在一起求和,减法是从一个数中减去另一个数。

- 乘法与除法概念与运算规律:乘法是将两个或多个数相乘得到乘积,除法是将一个数分成若干个相等的部分。

2. 分数与小数- 分数的概念与表达方式:分数表示一个整体被等分成若干份的其中之一。

- 看、说、读、写带分数- 小数的概念与表达方式:小数是有整数部分和小数部分组成的数。

3. 平面图形- 点、线、线段、射线的概念与特点- 正方形、长方形、三角形、平行四边形的特点与区别- 镜面对称与图形的判断4. 量的转换- 长度的转换:厘米、分米、米、千米之间的转换- 重量的转换:克、千克、吨之间的转换- 容积的转换:毫升、升之间的转换- 还原图解决实际问题5. 有关时间、温度和人民币的计算- 时、分的概念与基本运算- 摄氏度、华氏度的概念与转换- 人民币的基本面值与简单计算6. 图形的位置与方向- 表示物体位置和方向的依据- 平面图中表示位置和方向的方法- 描写物体位置和方向的语言表达7. 正数与负数- 数轴与正数、负数的表示- 正数与负数的加法与减法- 温度计中的正数和负数以上是人教版六年级数学上册的概念与公式总结,对于每个概念和知识点,可以进一步进行学习与巩固。

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。

都是求几个一样加数的和的简便运算。

2、分数乘分数是求一个数的几分之几是多少。

〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。

〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。

〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。

一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。

一个数〔0除外〕乘1,积等于这个数。

〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。

〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。

〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。

〔4〕、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

人教版,六年级数学上册,概念与公式归纳整理汇总

人教版,六年级数学上册,概念与公式归纳整理汇总

人教版,六年级数学上册,概念与公式归纳整理汇总本文档整理了人教版六年级数学上册的概念与公式,旨在帮助学生们系统地复与整理课本中的重要内容。

第一章:数字与运算1. 数字的分类- 自然数:1, 2, 3, ...- 整数:... -2, -1, 0, 1, 2, ...- 有理数:可以表示为两个整数的比例,例如:$\frac{1}{2}$, $\frac{2}{3}$, ...- 无理数:无法表示为两个整数的比例,例如:$\sqrt{2}$, $\pi$2. 基本运算法则- 加法:$a + b = b + a$- 减法:$a - b ≠ b - a$- 乘法:$a \times b = b \times a$- 除法:$a \div b ≠ b \div a$3. 运算顺序- 括号内先计算- 乘法与除法优先于加法与减法4. 基本性质- 0 是加法和乘法的单位元素- 1 是乘法的单位元素- 负数与正数相乘为负数:$(-a) \times b = -(a \times b)$ 第二章:小数1. 小数的表示方法- 十分位:小数点后一位- 百分位:小数点后两位- 千分位:小数点后三位- ...2. 小数的运算- 加法与减法- 乘法与除法3. 百分数- 百分数的表示方法:$10\% = 0.1$第三章:图形的认识1. 点、线、面- 点:没有长度、宽度、高度,只有位置- 线:延伸无限,没有宽度- 面:由线围成的平面2. 常见图形的名称与特征- 点- 直线、射线、线段- 角- 三角形、四边形、正方形、长方形、平行四边形、菱形、梯形、圆形3. 对称- 线对称:图形按某条直线对折后重合- 点对称:图形按某个点对折后重合第四章:数据处理1. 统计与调查- 调查的目的与方法- 数据的整理与分类2. 图表的表示- 条形图- 饼图- 表格3. 数据的分析与预测- 平均数- 众数- 极差- 中位数以上总结了人教版六年级数学上册的部分概念与公式,仅供参考。

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总
结与归纳
概念与公式总结与归纳:
1. 数的概念:
- 数是人们用来表示事物数量的符号,包括自然数、整数、分数、小数、负数等。

- 自然数由0和比0大的正整数组成,用N表示。

- 整数由正整数、0和负整数组成,用Z表示。

- 分数由整数和真分数组成,用Q表示。

- 小数是不能化成整数的有理数或无理数,用R表示。

2. 四则运算:
- 加法:两个数相加,结果为和。

- 减法:一个数减去另一个数,结果为差。

- 乘法:两个数相乘,结果为积。

- 除法:一个数除以另一个数,结果为商。

3. 数的大小比较:
- 两个数的大小比较可以使用不等号进行表示。

- 大于:用>表示。

- 小于:用<表示。

- 大于等于:用≥表示。

- 小于等于:用≤表示。

4. 使用等式:
- 等式是指两个数或两个代数式之间相等的关系。

- 等号的左右两边的值相等,可以用等号表示。

- 可以进行等式的运算、变形和求解。

5. 坐标系与图形:
- 坐标系是由两条相互垂直的直线组成的,用于表示点在平面
上的位置。

- x轴和y轴是两条相互垂直的直线,它们交叉的点称为原点O,表示为(0, 0)。

- 横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

- 平面上的点可以用坐标来表示。

以上是人教版六年级数学上册的概念与公式总结与归纳。

希望对你的学习有所帮助!。

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512 ,表示:6的512 是多少。

27 ×512 ,表示:27 的512 是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤. (1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

人教版六年级数学上册各单元知识点汇总

第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。

易错点:单位“1”的选取容易出错。

举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。

小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。

2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。

2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。

第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。

2.1的倒数是1,0没有倒敬。

分数除法除以一个数(0除外),等于乘这个数的倒数。

整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。

1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。

2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。

人教版,六年级数学上册,概念与公式总结与整理汇总

人教版,六年级数学上册,概念与公式总结与整理汇总一、数字与计算1. 数的分类- 自然数:1、2、3、4、...- 整数:...、-3、-2、-1、0、1、2、3、...- 分数:两个整数的比,如1/2、2/3等- 小数:带有小数点的数,如0.5、3.14等2. 加法与减法- 加法:用"+"表示,求两个数的和- 减法:用"-"表示,求两个数的差3. 乘法与除法- 乘法:用"×"表示,求两个数的积- 除法:用"÷"表示,求两个数的商4. 概念与公式- 数字的位数:一个数使用的十进制数的个数- 十进制数:由0至9这10个数字组成的数- 进位和退位:个位数满10向高一位进位,高位数满10向低一位退位- 数根:将一个数的各个数字相加,直到得到个位数为止,所得数即为数根二、图形与空间1. 图形的分类- 点:没有长度、宽度、高度,只有位置- 线段:由两个端点确定的部分- 直线:无限延伸的线段- 射线:有一个起点,无限延伸的一部分- 角:由两条线共同围成的部分2. 长度与面积- 长度:用来度量线段的大小- 面积:用来度量二维图形的大小3. 概念与公式- 周长:封闭曲线的长度- 面积:二维图形所包围的空间的大小- 相似图形:形状相同,但大小可以不同的图形- 对称图形:存在中心轴,两边是相同的三、数据与统计1. 数据的收集- 调查法:通过问卷、访问等方式进行数据收集- 取样法:对整体数据进行抽样,以代表整体- 摸底法:逐一统计全部数据2. 数据的整理与处理- 统计表:将数据按照一定的顺序进行整理- 条形图:用长短不同的条形表示数据的大小- 折线图:用折线表示数据的变化情况3. 概念与公式- 数据集:所收集到的全部数据- 平均数:所有数据的和除以数据的个数- 极差:最大值与最小值之间的差距- 频数:某个数出现的次数。

人教版六年级上册数学知识要点(背)打印

分数乘、除法一、分数乘法(一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:98×5表示:5的98是多少;5个98的和是多少;98的5倍是多少;2.分数乘分数是求一个数的几分之几是多少。

例如:98×43表示:98的43是多少;43的98是多少。

(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

画一画98×4365×32说一说3.为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a一个数(0除外)乘小于1的数(0除外),积小于这个数。

a×b=c,当b <1时,c<a(b≠0)一个数(0除外)乘1,积等于这个数。

a×b=c,当b =1时,c=a在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

二、分数乘法的解决问题已知单位“1”的量,求单位“1”的几分之几是多少用乘法计算1.巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

2.求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

3.写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;4.什么是速度?速度是单位时间内行驶的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版,六年级数学上册,概念与公式整
理与总结
本文档是对人教版六年级数学上册中的概念和公式进行整理与总结。

下面将列出教材中的重要概念与公式,并简要说明其含义和应用。

一、整数
整数是包括负整数、零和正整数的集合。

在数轴上,负整数位于零的左边,正整数位于零的右边。

二、有理数
有理数包括整数和分数,可以用分数形式或小数形式表示。

分数是数的比值,由分子和分母组成,分母不能为零。

三、平方数和平方根
平方数是某个整数乘以自己所得到的数,平方根则是指某个数
的平方等于该数的正整数根。

例如,9是平方数,它的平方根是3。

四、倍数和公倍数
倍数是指一个数可以被另一个数整除的数,而公倍数则是指同
时是两个或更多数的倍数的数。

五、约数和公约数
约数是指一个数可以整除另一个数的数,而公约数则是指同时
是两个或更多数的约数的数。

六、简便计算法则
简便计算法则是指通过一些简单的规则进行计算的方法。

例如,可以利用数的相等性质进行合理的计算,使用分配率进行加减运算等。

七、图形的周长和面积
图形的周长是指封闭图形边界上的长度总和,而面积则是指图形所包含的平面区域的大小。

八、分数的加减运算
分数的加减运算可以通过通分、相加减、约分等步骤进行。

通分是指将不同分母的分数转换为相同分母的分数,相加减是指在相同分母的基础上进行分子的加减运算,约分是指将得到的结果化简为最简形式。

九、线段的长短比较
线段的长短比较可以通过比较线段两个端点的坐标或使用尺规作图等方法进行。

以上是人教版六年级数学上册中的一些重要概念与公式的整理与总结。

通过理解和掌握这些内容,可以帮助学生巩固基本知识,提升数学能力。

相关文档
最新文档