精密超精密加工技术

合集下载

超精密加工技术PPT培训课件

超精密加工技术PPT培训课件
详细描述
在模具加工中,超精密加工技术能够加工出高精度、高光洁 度的模具表面,提高模具的使用寿命和制件的精度,广泛应 用于塑料模具、压铸模具等领域。
航空航天零件加工
总结词
超精密加工技术在航空航天领域的应 用,涉及发动机叶片、涡轮盘等复杂 零件的加工。
详细描述
由于航空航天领域对零件的精度和性 能要求极高,超精密加工技术能够实 现复杂零件的高精度、高效率加工, 提高航空航天器的性能和安全性。
特种加工原理
特种加工是指利用物理、化学或电学等 非传统机械能来去除材料的一种加工方 法。与传统的切削和磨削加工相比,特 种加工具有更高的加工精度和更广泛的
加工适应性。
常见的特种加工方法包括激光束加工、 电子束加工、离子束加工、等离子体加 工等。这些方法利用高能束流或等离子 体与工件表面相互作用,实现材料的快
误差补偿技术
热误差补偿
通过对机床热误差的测量和建模, 实现对热误差的有效补偿,提高
加工精度。
运动误差补偿
通过对机床运动误差的测量和建 模,实现运动误差的补偿,提高
加工精度。
综合误差补偿
综合运用热误差和运动误差补偿 技术,实现对超精密加工过程中
各种误差的有效补偿。
04 超精密加工技术的应用案 例
光学元件加工
加工精度提升
超精密加工技术面临的技术瓶颈之一是如何进一步提高加工精度 和表面质量。
材料限制
某些特殊材料在超精密加工过程中容易出现裂纹、变形等问题,如 何克服这些材料限制是亟待解决的问题。
加工效率与成本控制
提高加工效率并降低成本是超精密加工技术发展的关键,需要不断 优化工艺参数和设备性能。
新材料加工的挑战
医疗器械
超精密加工技术在医疗器械领域的 应用广泛,如人工关节、心脏瓣膜 等高精度医疗设备的制造。

精密和超精密加工技术

精密和超精密加工技术
ELID磨削的应用
电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较

精密和超精密加工

精密和超精密加工

精密和超精密加工一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等,具体如下:a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光是通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

超精密加工技术的概念

超精密加工技术的概念

超精密加工技术的概念
嘿,朋友们!今天咱来唠唠超精密加工技术。

你说这超精密加工技术啊,就好比是一位超级细腻的艺术家,在微观世界里精雕细琢。

咱平常生活里用的好多东西,可都离不开它呢!比如说你那手机,里面的芯片,那可都是经过超精密加工技术打磨出来的呀。

要是没有它,咱的手机能那么厉害吗?能那么流畅地玩游戏、看视频吗?
你再想想那些高端的医疗器械,那得精细到啥程度啊!这超精密加工技术就像是一双神奇的手,能把各种材料雕琢成我们需要的模样,而且精度高得吓人。

这就好像是在头发丝上绣花,难不难?当然难啦!但人家就是能做到。

你说这技术咋就这么牛呢?它能把误差控制在极小极小的范围内,小到你都没法想象。

就好比你要在一粒米上刻字,还得刻得特别清楚,这得有多厉害啊!而且它加工出来的东西,表面光滑得像镜子一样,这可都是技术的功劳啊。

你看看那些航天设备,里面的零件哪个不是靠超精密加工技术打造的?要是精度不够,那还不得出大问题啊!这就像是盖房子,根基不牢,房子能稳吗?超精密加工技术就是那个稳固的根基呀。

咱普通人可能觉得这离我们挺远的,其实不然。

咱生活中的点点滴滴都有它的影子呢。

就说你戴的眼镜吧,镜片的制作也得靠它呀。

还有那些精密的仪器仪表,没有超精密加工技术,它们能那么准确地工作吗?
这超精密加工技术就像是一个隐藏在幕后的英雄,默默地为我们的生活贡献着。

它让我们的科技不断进步,让我们的生活变得更加美好。

咱可得好好珍惜这技术带来的便利呀,可别不当回事儿。

反正我觉得吧,超精密加工技术就是牛,不服不行啊!它就是那个能创造奇迹的魔法,让一切不可能都变成可能。

你说呢?。

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术引言精密和超精密加工技术在现代制造业中扮演着重要的角色。

为了满足高质量、高精度、高效率的加工需求,机床设备技术不断得到改进和发展。

本文将介绍精密和超精密加工的机床设备技术,并探讨其在制造业中的应用。

1. 精密加工的机床设备技术精密加工是指在工程加工中,对尺寸精度和表面质量要求较高的加工方法。

精密加工的关键在于机床设备的稳定性、刚性和精度。

以下是精密加工机床设备的几个关键技术:1.1 数控技术数控技术是精密加工中最为关键的技术之一。

通过数控技术,可以实现机床的高精度和高效率加工。

数控技术的应用可以大大提高生产效率,并且减少操作人员的工作强度。

1.2 精密传动系统精密传动系统是精密加工机床设备的核心组成部分。

精密传动系统的设计与制造涉及到轴承、传动装置、伺服驱动装置等多个方面。

通过精确的传动系统,可以提高机床的精度和稳定性。

1.3 线性驱动技术线性驱动技术是现代机床设备中的重要发展方向之一。

相比传统的滚动轴承驱动,线性驱动技术能够实现更高的速度和更高的精度。

线性驱动技术可以用于各种类型的机床设备,包括数控机床和超精密加工机床。

2. 超精密加工的机床设备技术超精密加工是指在微米甚至纳米级别下进行加工的技术。

超精密加工在光学、光电子、半导体等领域具有重要的应用。

以下是超精密加工机床设备技术的几个关键技术:2.1 超精密控制系统超精密控制系统是实现超精密加工的关键技术之一。

通过超精密控制系统,可以实现对微小位移和应力的精确控制。

超精密控制系统需要具备高精度、高灵敏度和高稳定性的特点。

2.2 超精密磨削技术超精密磨削技术是超精密加工的核心技术之一。

超精密磨削技术可以实现对工件表面的精确修整和光洁度的提高。

超精密磨削技术需要借助特殊材料和磨削工具,并配合高精度的机床设备。

2.3 超精密检测技术超精密加工过程中,对工件的检测和测量要求非常高。

超精密检测技术可以实现对工件尺寸、形状和表面质量的高精度测量。

精密和超精密加工技术

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

精密与超精密加工技术

精密与超精密加工技术

精密与超精密加工技术综述0 前言就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域1。

前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。

两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。

精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。

精密和超精密加工与国防工业有密切关系。

导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。

例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。

对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。

由此可知,惯性仪表的制造精度十分关键。

如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~0.06μm,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。

超精密加工技术的发展现状

超精密加工技术的发展现状

超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。

它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。

现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。

想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。

在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。

光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。

超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。

激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。

不过,话说回来,技术再先进,也得面对一些挑战。

比如说,成本问题。

超精密加工的设备可不是白菜价,维护保养更是个大开销。

这让很多小企业在这条路上犹豫不决,真是让人心疼。

材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。

为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。

还有就是人才的培养。

这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。

现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。

真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。

说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。

你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金刚石的晶体结构: 根据晶体学原理,金刚石属于六方晶系,与(100)垂直的晶轴为4次 对称轴,与(111)垂直的晶轴为3次对称轴,与(100)垂直的晶轴 为2次对称轴。 解理现象:解理现象是某些晶体特有的现象,晶体受到定向的机械力作用 时,沿平行于某个平面平整的劈开的现象。 (111)面的宽的面间距(0.154nm)是金刚石晶体中所有晶面间距 中的最大的一个,并且其中的连接共价键数最少,只需击破一个价键就 可使其劈开。金刚石的解理现象即沿解理面(111)平整的劈开两半, 且金刚石的破碎和磨损都和解理现象直接有关。
超精密切削时的最小切削厚度
精度:纳米级; 切削刃与钝圆半径:
F F 1 y x rn 1 hD min rn (1 cos ) rn rn 1 1 2 2 1 tan2 ( Fx Fy )(1 2 ) Fy Fx Fy 2 2 1 F 1 x
三个晶面特征:(100)晶面的摩擦系数曲线有4个波峰和波谷;(110)晶面有2个波 峰和波谷;(111)晶面有3个波峰和波谷;(100)晶面的摩擦系数最低;(110)最 高;(100)晶面的摩擦系数差别最大;(111)晶面最小。
晶面不同对切削变形的影响
用(100)晶面的1号车刀切屑时的切屑变形小于用(110)晶面的2号车刀。 晶面不同对加工表面质量的影响 摩擦系数小的(100)晶面作金刚石刀具的前、后面,可使切削变形减小,并可减小 后面与加工表面间的摩擦,从而减小加工表面残余应力。 晶面不同对刀具磨损的影响 (110)晶面的刀具磨损较快,切削相当时间后,加工表面的粗糙度已经超过0.05μ m; (100)晶面的刀具磨损较慢,切削较长时间后,加工表面粗糙度仍<0.05μ m,即刀 具耐用度明显较高。
刀具的要求及金刚石的性能和晶体结构
超精密切削对刀具的要求
1)极高的硬度、极高的耐磨性和极高的弹性模量。 2)刃口能磨得极其锋锐,刃口半径值极小,能实现超薄切削厚度。 3)刀刃无缺陷,切削时刃形将复制在被加工表面上,从而得到超光滑的镜面。 4)与工件材料的抗粘性好、化学亲和性小、摩擦系数低,以得到极好的加工表 面完整性。 不可替代的超精密切削刀具材料:单晶金刚石。 金刚石晶体的性能 硬度最高,各向异性,不同晶向的物理性能相差很大。 优质天然单晶金刚石:多数为规整的8面体或菱形12面体,少数为6面立方体或其 他形状,浅色透明,无杂质、无缺陷。 大颗粒人造金刚石在超高压、高温下由子晶生长而成,并且要求很长的晶体生长 时间。 人造单晶金刚石已用于制造超精密切削的刀具。
积屑瘤
一、切削参数对积屑瘤生成的影响
切削速度:当切削速度较低时,积屑瘤高度较高,当切削速度达到一定值时, 积屑瘤趋于稳定,高度变化不大。 进给量:进给量很小时,积屑瘤的高度很大,在进给量=5μm/r时,积屑瘤 的高度值最小,进给量值再增大时,积屑瘤的高度值稍有增加。 背吃刀量:背吃刀量<25μm时,积屑瘤的高度变化不大,但在背吃刀量> 25μm后,积屑瘤的高度值将随着背吃刀量的增加而增加。
二、积屑瘤对切削力和加工表面粗糙度的影响及预防措施
积屑瘤高时切削力也大,积屑瘤小时切削力也小。与普通切削规律正好相反。 积屑瘤高度大,表面粗糙度大,积屑瘤小表面粗糙度小。并且可以看出,切削 液减小积屑瘤,减小加工表面粗糙度。 原因:有效刃口半径增大;摩擦增加;实际切削厚度增加。 预防措施:使用切削液减小积屑瘤,减小加工表面粗糙度。
刀刃锋锐度对切削变形和加工表面质量的影响
刀刃锋锐度对切削变形:金刚石车刀具锋锐度对表面粗糙度是有 一定影响的,特别是在进给量和背吃刀量较小的时候。
刀刃锋锐度对加工表面质量:
切削表面层的冷硬和组织位错:刃口半径不同,加工表面变质层 的冷硬和显微硬度有很大区别;刃口半径越小,加工表面变质层 的冷硬度越小。刃口半径越小,表面组织位错密度越小,切削变 形越小,表面质量越高。 加工表面残留应力:刃口半径越小,残留应力越低;背吃刀量越 小,残留应力越小,但当背吃刀量减小到临界值时,背吃刀量减 小,残留应力增大。
切削参数变化对加工表面质量的影响
切削速度:在有切削液的条件下,切削速度对加工表面粗糙度的 影响很小。 进给量和修光刃:使用很小的进给量,刀具制成带修光刃。 切削刃形状:直线修光刃、圆弧刃,要精确对刀。 背吃刀量:在刀具刃口半径足够小时,超精密切削范围内,背吃 刀量变化对加工表面粗糙度影响很小。背吃刀量减少,表面残留应 力也减少,但超过某临界值时,背吃刀量减少反而使加工表面残留 磨方向
耐磨性:在高磨削率方向时,(110)晶面的磨削率最高,最易磨削; (100)次之, (111)最低。高磨削率方向称为“好磨方向”,低 磨削率方向称为“难磨方向”。 摩擦因数:(110)晶面摩擦系数最大, (100) 晶面次之,(111) 晶面最小。摩擦系数高时磨削率亦高,摩擦系数低时磨削率也低。 摩擦系数曲线的波峰方向即是磨削率最高的“好磨方向”;摩擦系 数曲线的波谷方向即是磨削率最低的“难磨方向”。根据摩擦力的 大小可找出所磨晶面的好磨方向。
当刀刃刃口半径 rn为某值时,切下的最小切削厚度 hD min 和临界点处的 比值有关,并和刀具工件材料之间的摩擦系数有关。 根据经验,A点处的 F 比值一般在0.8~1范围内,对于金刚石刀具进 行超精密切削,取 Fy 0.9Fx 。
x
Fy
刀具晶面选择对切削变形和加工表面的影响 Pro/Engineer软件
第二章 超精密切削与金刚石刀具
超精密切削应用范围与切削速度
应用范围:陀螺仪、激光反射镜、天文望远镜的反射镜、红外反 射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印 机的多面棱镜、录像机的磁头、复印机的硒鼓、菲尼尔透镜等 由有色金属和非金属材料制成的零件。 选择依据:根据所使用的超精密机床的动特性和切削系统的动特 性选取,即选择振动最小的转速。
相关文档
最新文档