大学物理学机械波练习题
大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。
t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) btax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C)大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。
若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反y (m) y (m) - y (m) y (m)(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
高考物理《机械振动和机械波》真题练习含答案

高考物理《机械振动和机械波》真题练习含答案1.[2023·新课标卷]船上的人和水下的潜水员都能听见轮船的鸣笛声.声波在空气中和在水中传播时的()A.波速和波长均不同B.频率和波速均不同C.波长和周期均不同D.周期和频率均不同答案:A解析:声波的周期和频率由振源决定,故声波在空气中和在水中传播的周期和频率均相同,但声波在空气和水中传播的波速不同,根据波速与波长关系v=λf可知,波长也不同,故A正确,B、C、D错误.故选A.2.[2024·浙江1月]如图1所示,质量相等的小球和点光源,分别用相同的弹簧竖直悬挂于同一水平杆上,间距为l,竖直悬挂的观测屏与小球水平间距为2l,小球和光源做小振幅运动时,在观测屏上可观测小球影子的运动.以竖直向上为正方向,小球和光源的振动图像如图2所示,则()A.t1时刻小球向上运动B.t2时刻光源的加速度向上C.t2时刻小球与影子相位差为πD.t3时刻影子的位移为5A答案:D解析:以竖直向上为正方向,根据图2可知,t1时刻,小球位于平衡位置,随后位移为负值,且位移增大,可知,t1时刻小球向下运动,A错误;t2时刻,光源的位移为正值,光源振动图像为正弦式,表明其做简谐运动,根据F回=-kx=ma可知,其加速度方向与位移方向相反,位移方向向上,则加速度方向向下,B错误;根据图2可知,小球与光源的振动步调总是相反,由于影子是光源发出的光被小球遮挡后,在屏上留下的阴影,可知,影子与小球的振动步调总是相同,即t2时刻小球与影子相位差为0,C错误;根据图2可知,t3时刻,光源位于最低点,小球位于最高点,根据光沿直线传播,光源能够在屏上留下影子的位置也处于最高点,影子位于正向最大位移处,根据几何关系有ll+2l =A+AA+x影子,解得x影子=5A,即t3时刻影子的位移为5A,D正确.3.[2024·吉林卷]某同学自制双缝干涉实验装置:在纸板上割出一条窄缝,于窄缝中央沿缝方向固定一根拉直的头发丝形成双缝,将该纸板与墙面平行放置,如图所示.用绿色激光照双缝,能够在墙面上观察到干涉条纹.下列做法可以使相邻两条亮条纹中央间距变小的是()A.换用更粗的头发丝B.换用红色激光照射双缝C.增大纸板与墙面的距离D.减小光源与纸板的距离答案:A解析:由于干涉条纹间距Δx=ldλ可知,换用更粗的头发丝,双缝间距d变大,则相邻两条亮条纹中央间距Δx变小,故A正确;换用红色激光照双缝,波长变长,则相邻两条亮条纹中央间距Δx变大,故B错误;增大纸板与墙面的距离l,则相邻两条亮条纹中央间距Δx 变大,故C错误;减小光源与纸板的距离,不会影响相邻两条亮条纹中央间距Δx,故D错误.故选A.4.[2024·浙江1月](多选)在如图所示的直角坐标系中,xOz平面为介质Ⅰ和Ⅱ的分界面(z轴垂直纸面向外).在介质Ⅰ中的P(0,4λ)处有一点波源,产生波长为λ、速度为v的波.波传到介质Ⅱ中,其速度为2v.图示时刻介质Ⅱ中仅有一个波峰,与x轴和y轴分别交于R 和S点,此时波源也恰好位于波峰.M为O、R连线的中点,入射波与反射波在O点相干加强,则()A .介质Ⅱ中波的频率为2v λB. S 点的坐标为(0,-2 λ)C .入射波与反射波在M 点相干减弱D. 折射角α的正弦值sin α=352 答案:BD解析:波从一种介质到另一种介质,频率不变,故介质Ⅱ中波的频率为f =v λ,A 错误;在介质Ⅱ中波长为λ′=2v f=2 λ,由于图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,故S 点的坐标为(0,-2 λ),B 正确;由于S 为波峰,且波传到介质Ⅱ中,其速度为2 v .图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,则R 也为波峰,故P 到R 比P 到O 多一个波峰,则PR =5λ,则OR =3λ,由于||MO -PM≠2n ·λ2 或(2n +1)λ2 (n =0,1,2,…),故M 点不是减弱点,C 错误;根据n =λ′λ=2 ,则n =sin αOR PR,解得sin α=352 ,D 正确. 5.[2021·天津卷]一列沿x 轴正方向传播的简谐横波,传播速度v =10 m/s ,t =0时位于坐标原点的质点从平衡位置沿y 轴正方向运动,下列图形中哪个是t =0.6 s 时的波形( )答案:B解析:由图中可以看出该波的波长为λ=4 m ,根据v =λT可知该列波的周期为T =0.4 s ,又因为t=0时位于坐标原点的质点从平衡位置沿y轴正方向运动,当t=0.6 s时经历了1.5 T,所以此时位于坐标原点的质点从平衡位置沿y轴负方向运动,结合图像可知B正确.6.[2023·湖南卷]如图(a),在均匀介质中有A、B、C和D四点,其中A、B、C三点位于同一直线上,AC=BC=4 m,DC=3 m,DC垂直AB.t=0时,位于A、B、C处的三个完全相同的横波波源同时开始振动,振动图像均如图(b)所示,振动方向与平面ABD垂直,已知波长为4 m.下列说法正确的是()A.这三列波的波速均为2 m/sB.t=2 s时,D处的质点开始振动C.t=4.5 s时,D处的质点向y轴负方向运动D.t=6 s时,D处的质点与平衡位置的距离是6 cm答案:C解析:由图(b)的振动图像可知,振动的周期为4 s,故三列波的波速为v=λT=4 m4 s=1m/s,A错误;由图(a)可知,D处距离波源C最近的距离为3 m,故开始振动后波源C处的横波传播到D处所需的时间为t C=DC v=3 m1 m/s=3 s故t=2 s时,D处的质点还未开始振动,B错误;由几何关系可知AD=BD=5 m,波源A、B产生的横波传播到D处所需的时间为t AB=ADv=5 m1 m/s=5 s故t=4.5 s时,仅波源C处的横波传播到D处,此时D处的质点振动时间为t1=t-t C =1.5 s由振动图像可知此时D处的质点向y轴负方向运动,C正确;t=6 s时,波源C处的横波传播到D处后振动时间为t2=t-t C=3 s由振动图像可知此时D处为波源C处传播横波的波谷;t=6 s时,波源A、B处的横波传播到D处后振动时间为t3=t-t AB=1 s由振动图像可知此时D处为波源A、B处传播横波的波峰.根据波的叠加原理可知此时D处质点的位移为y=2A-A=2 cm故t=6 s时,D处的质点与平衡位置的距离是2 cm,D错误.故选C.。
《大学物理》习题库试题及答案___05_机械波习题

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是 [ b ]2.3407:横波以波速u 沿x 轴负方向传播。
t 时刻波形曲线如图。
则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零[ d ]3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B[ c ]u=λ/T C=ϖ/u4.3413:下列函数f (x 。
t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。
其中哪个函数表示沿x 轴负向传播-的行波?(A) )A(bt),tf-=cos(xaxax(bt),Atf+xcos(=(B) )(C) bttAaxxf sin(⋅),sin==(D) btt(⋅axxA),cosf cos[a]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反(B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反[ a ]6.3483:一简谐横波沿Ox轴传播。
若Ox轴上P1和P2两点相距λ /8(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同(B) 方向总是相反(C) 方向有时相同,有时相反(D) 大小总是不相等[ c ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。
维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大(D) 振动频率越低,波速越大[ B ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。
大学物理三习题机械波

1. 一平面简谐波,波速u = 5 m/s,t = 3 s时波形曲线如图, 则x = 0处质点的振动方程为 y (m)
1 1 2 y 2 10 cos( πt π) 2 2
u O x (m) 5 10 15 20 25 -2×10 2
y 2 102 cos( πt π)
X1处0时刻位移为零 ¼ 周期后 正向最大值
4. 已知波源的振动周期为 4.00 10 秒, 波的传播速度为 300m/s,波沿 x 轴正向 传播,则位于 x1 10.0 m 和 x2 16.0 m 的两质点振动位相差为_______________
2
6m 0.02s ½ 周期
5. 如图,一平面波在介质中以波速 u = 20 m/s 沿 x 轴负方向传播,已知 A 点的振动方程 为
(2) 因波速与传播方向相反,先设波动方程为 y A cos2 因为以 x 为原点,则表达形式应该为
t x , T
t x t x y A cos2 A cos[ 2 ( ) ] T T
2A/ 2
O -A 100
P x (m)
T=1/250=0.004 w=2π/0.004
1. 如图所示,两列波长为 的相干波在P点相遇.波在S1点振 动的初相是 1,S1到P点的距离是r1;波在S2点的初相是 2, S2到P点的距离是r2,以k代表零或正、负整数,则P点是干涉 极大的条件为:
r2 r1 k
S1 S2
r1 r2
P
2 1 2kπ
2 1 2π(r2 r1 ) / 2kπ
2 1 2π(r1 r2 ) / 2kπ
《大学物理学》(网工)机械波练习题(解答)

合肥学院《大学物理 B》(网工)自主学习材料
4.一列机械波沿 x 轴正向传播, t =0 时的波形如图所示,
已知波速为10 m/s,波长为2m,求: (1)波动方程;
(2) P 点的振动方程及振动曲线; (3) P 点的坐标; (4) P 点回到平衡位置所需的最短时间
(D)
53
53
(A) y 4sin 2 ( t x) ; (B) y 4sin 2 ( t x) ;
22
22
53
53
(C) x 4sin 2 ( t y) ; (D) x 4sin 2 ( t y) 。
22
22
【提示:找出正好方向相反的那个波】
拓展题:平面简谐波 y 4 cos(5 t 3 x) 与下面哪列波相干可形成驻波?
由波速 5m/s 知: ku 5 ,
由于是 y-t 图,可直接作旋转矢量知
2 波动方程为: y 0.1cos(5 t x ) 22
(2)将 x=0.5 代入波动方程,有:
3 y0.5 0.1cos(5 t 4 ) 则 t =0 时的波形图
2 x
4.一驻波的表达式为 y 2A cos( ) cos 2 t ,两个相邻的波腹之间的距离为
。
【提示:驻波相邻两波腹之间的距离为半个波长,即为 / 2 】
三、计算题
1.沿绳子传播的平面简谐波的波动方程为 y 0.05cos(10 t 4 x) ,求:(1)绳子上各质点振动时
6-7.某时刻驻波波形曲线如图所示,则 a,b 两点位相差是 (A)π; (B)π/2 ; (C)5π/4; (D) 0。
【提示:驻波波节两边的相位相反,两波节之间各点的振动相位相同】
大学物理波动篇机械波复习题及答案课件

种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)
《大学物理》习题训练与详细解答四(机械波)

2 2 u Tu
x 2 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4 3 x 2 3 x 的 振 动 方 程 为 : y A c o s ( t ) A c o s ( t . ) 8 u 2 8 2 y A c o s ( t ) 4
答案为:(A)
4
4.图2所示,一平面简谐波沿OX轴正向传播,波长为 A c o s ( 2 v t ) ,则P2点 若P1点处质点的振动方程为 y 1 处质点的振动方程为
与P1点处质点振动状态相同的那些点的位置是
L L y c o s [2 ( t 1 2) ] 2 A x L k (k 1 , 2 ......) 1
( 2 )试以 A 点 距 5 cm 处的 B 点 (A 在 的左边)为坐标 出 原 波 点写
A c o s ( t ) 解:(1)对照振动方程的标准形式 y 0 可得 A 0 . 0 3 m ,, 0 = 4 0
c20 m /s ,沿x轴正向传播的波的波 以A为坐标原点、 动方程 y Acos[ (t x) ] 0 u x y 0.03cos4 (t ) (m ) 注意单位转换 20
t x y Acos[2 ( ) 0 ] T x y 0.1cos[4 (t ) 0 ] 20
15
又t 0 , y A c o s A , 0 0 0
x y 0 . 1 cos 4 ( t ) ( m ) ( x 0 ) 20 (2)由波动方程求t0时刻的波形方程,只须令波动方程 的t为常数t0. 则所求t=T/4时刻的波形方程为
大学物理学 习题六 机械波

一、选择题1.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 [ ](A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.2. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:[ ](A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .3.在简谐波传播过程中,沿传播方向相距为λ1(λ 为波长)的两点的振动速度必定[ ](A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.4.沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和)/(2c o s 2λνx t A y +π=. 叠加后形成的驻波中,波节的位置坐标为[ ](A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x .5.两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:[ ](A) 0. (B)π21. (C) π. (D) π23. 6.在弦线上有一简谐波,其表达式为 ]34)20(100cos[100.221π-+π⨯=-x t y (SI),为了在此弦线上形成驻波,并且在x = 0处为一波腹,此弦线上还应有一简谐波,其表达式为:[ ] (A) ]3)20(100cos[100.222π+-π⨯=-x t y . (B) ]34)20(100cos[100.222π+-π⨯=-x t y . (C)]3)20(100cos[100.222π--π⨯=-x t y .(D) ]34)20(100cos[100.222π--π⨯=-x t y .二、填空题1.设入射波的表达式为 )(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________.2.一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.3.一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.4.如图所示,两列相干波在P 点相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理学》机械波部分自主学习材料(解答)一、选择题10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A )均为2π; (B )均为π-; (C )π与π-; (D )2π-与2π。
【提示:图(b)为振动曲线,用旋转矢量考虑初相角为2π-,图(a )为波形图,可画出过一点时间的辅助波形,可见0x =处质点的振动为由平衡位置跑向负方向,则初相角为2π】10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A )波长为5m ; (B )波速为110m s -⋅;(C )周期为13秒; (D )波沿x 正方向传播。
【提示:利用2k πλ=知波长为1003λ=m ,利用u k ω=知波速为1100u m s -=⋅,利用2T πω=知周期为13T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4Tt =时刻的波形如图所示,则该波的表达式为( D )(A )cos[()]xy A t u ωπ=-+; (B )cos[()]2x y A t u πω=--;(C )cos[()]2x y A t u πω=+-;(D )cos[()]xy A t uωπ=++。
【提示:可画出过一点时间的辅助波形,可见在4Tt =时刻,0x =处质点的振动为由平衡位置向正方向振动,相位为2π-,那么回溯在0t =的时刻,相位应为π】OO10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相是1ϕ,到P 点的距离是1r 。
波在点2S 振动的初相是2ϕ,到P 点的距离是2r 。
以k 代表零或正、负整数,则点P 是干涉极大的条件为( D ) (A )21r r k π-=; (B )212k ϕϕπ-=; (C )212122r r k ϕϕππλ--+=; (D )122122r r k ϕϕππλ--+=。
【提示:书上P62页原公式为212122r r k ϕϕππλ---=】10-5.在驻波中,两个相邻波节间各质点的振动( B )(A )振幅相同,相位相同; (B )振幅不同,相位相同; (C )振幅相同,相位不同; (D )振幅不同,相位不同。
【提示:由书上P67页驻波两波节间各点振动相位相同】10--1.如图所示,有一横波在时刻t 沿Ox 轴负方向传播,则在该时刻( C ) (A )质点A 沿Oy 轴负方向运动;(B )质点B 沿Ox 轴负方向运动;(C )质点C 沿Oy 轴负方向运动;(D )质点D 沿Oy 轴正方向运动。
【提示:可画辅助波形来判断】10--2.设有两相干波,在同一介质中沿同一方向传播,其波源相距32λ,如图所示,当A 在波峰时,B 恰在波谷,两波的振幅分别为A 1和A 2,若介质不吸收波的能量,则两列波在图示的点P 相遇时,该处质点的振幅为( A ) (A )12A A +; (B )12A A -; (C; (D。
【提示:利用书上P62页公式为:212123222r r πλϕϕπππλλ---=-⋅=-,加强】8.如图所示,两相干平面简谐波沿不同方向传播,波速均为s m u /40.0=,其中一列波在A 点引起的振动方程为11cos(2)2y A t ππ=-,另一列波在B 点引起的振动方程为22cos(2)2y A t ππ=+,它们在P 点相遇,m AP 80.0=,m BP 00.1=,则两波在P 点的相位差为: ( A ) (A )0; (B )π/2; (C )π; (D )3π/2。
【同上题提示】10--3.当波在弹性介质中传播时,介质中质元的最大变形发生在( D )(A )质元离开其平衡位置最大位移处; (B )质元离开其平衡位置A /2处; (C)质元离开其平衡位置A 处; (D )质元在其平衡位置处。
(A为振幅)AB1S 2S r•••32λP Buu【书P56页:体积元的动能和势能具有相同的相位,在平衡位置处动能和势能都达最大值】10.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。
x =0处,质点振动曲线如图所示,则该波的表式为B ) (A ))2202cos(2πππ++=x t y m ;(B ))2202cos(2πππ-+=x t y m ;(C ))2202sin(2πππ++=x t y m ;(D ))2202sin(2πππ-+=x t y m 。
【提示:给出的是y -t 图,图中可定出振幅和周期、初相位,波数k 可由ukω=得出】11.一个平面简谐波沿x 轴正方向传播,波速为u =160m/s ,t =0时刻的波形图如图所示,则该波的表式为 (A )3cos(40)42y t x πππ=+-m ;(B )3cos(40)42y t x πππ=++m ; (C )3cos(40)42y t x πππ=--m ;(D )3cos(40)42y t x πππ=-+m 。
【提示:给出的是y -x 图,图中可定出振幅和波长,圆频率ω可由ukω=得出,初相位可用辅助波形判断,本题可判断出x =0处,质点的振动是从平衡位置向正方向,则初相位为2π-】12.一个平面简谐波在弹性媒质中传播,媒质质元从最大位置回到平衡位置的过程中( C ) (A )它的势能转化成动能; (B )它的动能转化成势能;(C )它从相邻的媒质质元获得能量,其能量逐渐增加;(D )把自己的能量传给相邻的媒质质元,其能量逐渐减小。
【同9题提示】13.一平面简谐波在弹性媒质中传播时,在传播方向上某质元在某一时刻处于最大位移处,则它的 ( B ) (A )动能为零,势能最大; (B )动能为零,势能也为零; (C )动能最大,势能也最大;(D )动能最大,势能为零。
【同9题提示】14. 电磁波在自由空间传播时,电场强度E 与磁场强度H( C )(A )在垂直于传播方向上的同一条直线上;(B )朝互相垂直的两个方向传播; (C )互相垂直,且都垂直于传播方向; (D )有相位差π/2。
【提示:参看电磁波示意图】15. 在同一媒质中两列相干的平面简谐波强度之比是4:21=I I ,则两列波的振幅之比21:A A 为 ( B )-)-(A ) 4; (B ) 2; (C ) 16; (D ) 1/4。
【提示:强度定义为振幅的平方】16. 在下面几种说法中,正确的是:( C )(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上,任一质点的振动相位总是比波源的相位滞后; (D )在波传播方向上,任一质点的振动相位总是比波源的相位超前。
【中学问题】17.两个相干波源的相位相同,它们发出的波叠加后,在下列哪条线上总是加强的?( A ) (A )两波源连线的垂直平分线上; (B )以两波源连线为直径的圆周上;(C )以两波源为焦点的任意一条椭圆上; (D )以两波源为焦点的任意一条双曲线上。
【提示:找出距离相同的那些点】18.平面简谐波4sin(53)x t y ππ=+与下面哪列波相干可形成驻波?( D )(A ))2325(2sin 4x t y +=π; (B ))2325(2sin 4x t y -=π;(C ))2325(2sin 4y t x +=π; (D ))2325(2sin 4y t x -=π。
【提示:找出正好方向相反的那个波】19.设声波在媒质中的传播速度为u ,声源的频率为S ν,若声源S 不动,而接收器R 相对于媒质以速度R υ沿S 、R 连线向着声源S 运动,则接收器R 接收到的信号频率为:( B ) (A )S ν; (B )R S u u υν+; (C )RS u uυν-; (D )S R u u νυ-。
【提示:书中P71页,多普勒效应中,迎着静止波源运动频率高,公式为0'u uυνν+=,远离静止波源运动频率低,公式为0'u uυνν-=】20.两列完全相同的平面简谐波相向而行形成驻波。
以下哪种说法为驻波所特有的特征:( C )(A )有些质元总是静止不动; (B )迭加后各质点振动相位依次落后; (C )波节两侧的质元振动相位相反; (D )质元振动的动能与势能之和不守恒。
【提示:书中P67页,驻波波节两边的相位相反,两波节之间各点的振动相位相同】 二、填空题10-7.一横波在沿绳子传播时的为0.20cos(2.50)y t x ππ=-,采用国际单位制,则(1)此横波沿x 的正向传播,波的振幅为0.20m 、频率为1.25Hz 、波长为2m 、波传播的波速为2.5/m s ;(2)绳上的各质点振动时的最大速度为0.5/m s π。
【提示:波动方程中的负号表明波沿x 的正向传播,利用波动标准方程cos()y A t k x ωϕ=-+比较可知振幅为0.20m 、频率为1.25Hz 、波长为2m 、波传播的波速为/k υω=,得2.5/m s ;振动速度不同于波速,应该用波动方程对时间求导,得最大速度为0.5/m s π。
】 10--4.图示中实线表示t =0时的波形图,虚线表示t =0.1秒时的波形图。
由图可知该波的角频率ω=2.51s π-;周期T =0.8 s ;波速u =0.2 /m s ;波函数为y =250.03cos(2.5)22t x πππ-+【提示:注意图中标的是厘米,图中可见波长为16厘米,可求出波数252k π=;0.1秒波形向右跑了2厘米,可求出波速0.2u=,利用u kω=知 2.5ωπ=,0.8T =;初相位看O 位置,O 位置在t =0和t =0.1秒时间从平衡位置向下振动,旋转矢量初相位是2πϕ=】10-10.一周期为0.02秒,波速为100/m s 的平面简谐波沿ox 轴正向传播,0t =时,波源处的质点经平衡位置向正方向运动,则其波动方程为 ,距离波源15m 处的M 点的振动方程为 ,距离波源5m 处的N 点的振动方程为 。
【提示:∵0.02T =,∴2100Tπωπ==,利用k uω=知波数k π=,由旋转矢量法知初相位2πϕ=-,故波动方程为cos(100)2y A t x πππ=--;将15x =代入,有cos(100)2M y A t ππ=+,将5x =代入,有cos(100)2N y A t ππ=+】4.一平面简谐波的周期为2.0s ,在波的传播路径上有相距为2.0cm 的M 、N 两点,如果N 点的相位比M 点相位落后π/6,那么该波的波长为 ,波速为 。