利用HFSS电磁软件仿真设计准八木天线
一种参数可调的八木天线的设计_于臻

时候,半波有源振子的输入阻抗由 73 Ω 下降到 15 ~
20 Ω 左右,很难与常用同轴线( 特性阻抗为 50 或 75 Ω) 直接匹配,为此须设法提高有源振子的输入阻抗; ②工作频带变窄。对称振子本身的工作频带较窄,再 加上若干个无源振子的影响,使其频率特性更差。
( 4) 引向器间距。可从方向性和阻抗特性 2 方面 考虑。在振子数一定的情况下,间距增加,可在一定程 度上提高增益,但当 d > 0. 4λ 后,增益开始下降,但第 一引向器和主振子的间距应略小于其它间距,增益将 会有所提高; 若要降低天线旁瓣电平,振子距离可取得 小一些,但间距过小,有源振子的输入阻抗会变得很小 且随频率变化剧烈,不便于和馈线匹配,从而减小工作 带宽,一般间距不要小于 0. 1λ。综上所述,各引向器 之间的距离 d = ( 0. 1 ~ 0. 4) λ。
由于八木天线涉及较多的参数,为了使天线几何 尺寸的确定更加快捷,方便,根据天线的工作频率与天 线振子长度和间距的关系,利用 Visual Basic 软件编写 设计了 1 个八木天线交互计算软件[12 ~ 13]。当输入天 线的中心工作频率后,该软件可以立刻计算出各个振 子的长度和振子的间距范围等几何参数,为后面的仿 真优化及参数的确定提供参考。这里选择 2. 4 GHz 为 天线的中心工作频率,得到的天线参数范围见图 2 所 示。按清零按钮后可以清除当前的数据,重新输入天 线的中心工作频率进行设计。
Langfang 065201; 2. School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
Abstract: To increase the flexibility and the bandwidth,this paper presents a parameter tunable 18 unit Yagi-Uda antenna that operate at the center frequency of 2. 4 GHz based on the theoretical analysis of traditional Yagi-Uda antennas. First,an antenna calculator was designed with Visual Basic to calculate and adjust the parameters. The antenna model for a kind of scenario was constructed,simulated and optimized as well using the HFSS. The antenna was tested by PNA3621 vector network analyzer. Measured results show that the antenna has a good characteristic with a symmetrical beam width,a broad impedance bandwidth,little side lobes and voltage standing wave ratio. The echo loss is relatively ideal in 2. 3 GHz ~ 2. 5 GHz frequency range,which agrees well with simulated results. Key words: Yagi-Uda antenna; antenna calculator; HFSS simulation; performance testing
微波仿真论坛_用HFSS 电磁软件仿真设计准八木天线

参考文献: [1] Y. Qian ,A.R. Perkons and T. itoh ”Surface wave excitation of a dielectric slab by a Yagi-Uda slot array antenna-FDTD simulation and measurement,” 1997 Topical Symposium on Millimeter Proceedings, New York: IEEE .1998.PP.137-140. [2] Y. Qian et al, “Microstrip-fed Quasi-Yagi Antenna with Broadband Characteristics,” Electronics Letters, Vol. 34, No. 23, Nov. 1998, pp. 2194- 2196. [3] N. Kaneda, Y. Qian, and T. Itoh, “A novel Yagi–Uda dipole array fed by a microstrip-to-CPS transition,” in Proc. 1998 Asia Pacific Microwave Conf. Dig., Yokohama, Japan, Dec. 1998, pp. 1413–1416.
八木天线课程设计报告

八木天线的仿真设计一、八木天线简介:上个世纪二十年代,日本东北大学的八木秀次和宇田太郞两人发明了这种天线,被称为“八木宇田天线”,简称“八木天线”。
八木天线(YaGi Antenna)也叫引向天线或波导天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。
八木天线是由一个有源激励振子和若干无源振子组成,所有振子都平行装制在同一平面上。
有源振子可以是半波振子,也可以是折合振子,一般常用折合振子,以提高八木天线的输入阻抗,便于和馈电线匹配。
主要作用是提高辐射能量。
至于无源振子根据它的功能可以分为反射器和引向器两种。
通常反射器的长度比有源振子长4~5%,而引向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。
二、工作原理:有源振子被馈电后,向空间辐射电磁波,使无源振子中产生感应电流,从而也产生辐射。
引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。
此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号迭加,得到加强。
反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用。
一个方向加强,一个方向削弱,便有了强方向性。
发射状态作用过程亦然。
三、设计要求:1、引向器的间距选择引向器间距的选择有两种方案:一种是引向器间距不相等,随着引向器数量序号的增加,相邻引向器的间距加大;另一种是引向器间距相等。
前一种方案调整麻烦,后一种方案调整简便,因此一般都采用等间距方案。
引向器间距一般在0.15-0.4波长范围内选择。
间距较大时,方向图主瓣较窄,输入阻抗的频率响应较平稳,但副瓣较大;间距选得小时,副瓣较低,抗干扰性能较好,但是增益和方向性差些。
HFSSV天线仿真基本操作指南完整版

H F S S V天线仿真基本操作指南HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】HFSS v13.0高频仿真软件操作指南目录第一章创建工程 Project一、前期准备第二章创建模型 3DModeler一、绘制常见规则形状二、常用操作三、几种常见天线第三章参数及条件设置(材料参数、边界条件和激励源等) Setting一、设置材料参数二、设置辐射边界条件三、设置端口激励源四、特定边界设置第四章设置求解项并分析 Analyze一、设置分析Add Solution Setup二、确认设置并分析Validation Check Analyze All第五章查看结果 Results一、3D极化图(3D Polar Plot)二、3D直角图(3D Rectangular Plot)三、辐射方向图(Radiation Pattern)四、驻波比(VSWR)五、矩阵数据(Matrix Date)第一章创建工程一、前期准备1、运行HFSS后,左侧工程管理栏会自动创建一个新工程:Project n 。
由主菜单选File > Save as,保存到一个方便安全的文件夹,并命名。
(命名可包括下划线、字母和数字,也可以在Validation Check之前、设置分析和辐射场之后保存并命名)2、插入HFSS设计由主菜单选Project > Insert HFSS Design 或点击图标,(大口径的由主菜单选Project > Insert HFSS-IE Design)则一个新的项目自动加入到工程列表中,同时会出现3D画图窗口,上侧出现很多画图快捷图标。
3、选择求解类型由主菜单选HFSS > Solution Type(求解类型),选择Driven Model或DrivenTerminal(常用)。
注:若模型中有类似于耦合传输线求耦合问题的模型一定要用Driven Terminal,Driven Model适于其他模型,不过一般TEM模式(同轴、微带)传输的单终端模型一般用Driven Terminal分析。
微波技术与天线仿真实验报告.docx

微波技术与天线仿真实验报告.docx《微波技术与天线》HFSS仿真实验报告实验⼆H⾯T型波导分⽀器设计⼀.仿真实验内容和⽬的使⽤HFSS设计⼀个带有隔⽚的H⾯T型波导分⽀器,⾸先分析隔⽚位于T型波导正中央,在8~10GHz的⼯作频段内,波导输⼊输出端⼝的S参数随频率变化的关系曲线以及10GHz时波导表⾯的电场分布;然后通过参数扫描分析以及优化设计效⽤分析在10GHz处输⼊输出端⼝的S参数随着隔⽚位置变化⽽变化的关系曲线;最后利⽤HFSS优化设计效⽤找出端⼝三输出功率是端⼝⼆输出功率两倍时隔⽚所在位置。
⼆.设计模型简介整个H⾯T型波导分为两个部分:T型波导模型,隔⽚。
见图1。
图1三.建模和仿真步骤1.运⾏HFSS并新建⼯程,把⼯程另存为Tee.hfss。
2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。
3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英⼨。
4.创建长⽅体模型1)从主菜单选择draw→box,进⼊创建长⽅体模型的⼯作状态,移动⿏标到HFSS⼯作界⾯的右下⾓状态栏,在状态栏输⼊长⽅体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输⼊长⽅体的长宽⾼分别为2,0.9,0.4。
2)再次按下回车键之后,在新建长⽅体的属性对话框修改物体的位置,尺⼨,名称,材料和透明度等属性。
在attribute选项卡中将长⽅体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。
3)设置端⼝激励4)复制长⽅体第⼆个和第三个臂5)合并长⽅体5.创建隔⽚1)创建⼀个长⽅体并设置位置和尺⼨2)执⾏相减操作上诉步骤完成后即可得到H⾯T型波导的三维仿真模型图如图2所⽰图26.分析求解设置1)添加求解设置:在⼯程管理窗⼝中展开⼯程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后⼯程管理窗⼝的analyse节点下会添加⼀个名称为setup1的求解设置项2)添加扫频设置:在⼯程管理窗⼝中展开analysis节点,右键单击前⾯添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等参数。
基于开槽型接地板的新型双频准八木天线设计

基于开槽型接地板的新型双频准八木天线设计作者:黄文静孙俊胡耀文王行来源:《现代电子技术》2019年第15期摘 ;要:利用电磁仿真软件ANSYS HFSS设计一种基于开槽型接地板的新型双频准八木天线。
首先,设计一种新型巴伦结构的准八木天线,该天线的馈电由微带线实现,阻抗匹配通过一段[λ4]阻抗变换器实现,这不仅实现了微带线到共面带状线的转换,也改良了典型八木天线复杂的巴伦结构;然后,在此天线的基础上将矩形的引向振子改进为菱形的引向振子,改进后的天线中心频率处回波损耗降低为-73.5 dB,相比改进前降低了10 dB;最后,在此天线的反射地板非延长部分的中心两侧开两个矩形槽,改进后的天线具有在5.5 GHz和9.5 GHz两个频段内进行双频工作的特征。
关键词:准八木天线; 微带线; 菱形引向振子; 矩形槽; 回波损耗; 双频工作中图分类号: TN823+.24⁃34 ; ; ; ; ; ; ; ; ; ; ; 文献标识码: A ; ; ; ; ; ; ; ; ; ; ; ;文章编号:1004⁃373X(2019)15⁃0008⁃05Design of dual⁃band quasi⁃Yagi antenna based on slotted earth plateHUANG Wenjing, SUN Jun, HU Yaowen, WANG Xing(College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China)Abstract: A new type of dual⁃band quasi⁃Yagi antenna based on slotted ground floor is designed with the electromagnetic simulation software ANSYS HFSS in this paper. First, aquasi⁃Yagi antenna with a new Balun structure is designed, whose feed is realized by a microstrip line, and impedance matching is realized by a 1/4 impedance converter. It not only realizes the transformation of the microstrip line to the coplanar stripline, but also improves the complex Balun structure of the typical Yagi antenna. And then, the rectangle leading oscillator is improved to the rhombus leading oscillator on the basis of this antenna. The return loss at central frequency of the improved antenna is reduced to -73.5 dB, which means that the return loss is decreased by 10 dB in comparison with that of the antenna before the improvement. Finally, two rectangular grooves are made on both sides of the non⁃extended portion of the reflective plate of the antenna. The improved antenna has the characteristic of dual frequency operation in the two frequency bands of 5.5 GHz and 9.5 GHz.Keywords: quasi?Yagi antenna; microstrip line; rhombus leading oscillator; rectangular groove; return loss; dual⁃band operation0 ;引 ;言自从八木天线被发明以来,因为它设计简单、定向辐射能力强、增益高而倍受重视。
一种使用新型巴伦的双频宽带准八木天线

一种使用新型巴伦的双频宽带准八木天线赵廷辉;熊阳;余贤【摘要】准八木天线具有较好的方向性,但其带宽还不能满足实际应用需要.为解决双频带准八木天线带宽较低的问题,提出了一种新型双频准八木天线,其具有相对带宽较大的两个工作频带,并可以应用于定向WLAN/Wimax通信系统.该天线采用喇叭形巴伦来增加带宽,采用多支节结构的两对辐射偶极子来激发两个不同的频率.低频辐射偶极子采用阶梯阻抗来减小物理尺寸,通过合理配置两对辐射偶极子和反射器可以获得良好的辐射特性.使用Ansoft HFSS对天线进行优化,并制作了实物.实验测量结果显示该天线S11<-10 dB的频段为2.36~2.8 GHz和3.3~3.8 GHz,前后比均在10 dB以上,带内增益分别在6 dB和8 dB以上.【期刊名称】《电声技术》【年(卷),期】2017(041)006【总页数】5页(P47-51)【关键词】双频天线;准八木天线;喇叭形连接结构【作者】赵廷辉;熊阳;余贤【作者单位】南开大学,天津300350;南开大学,天津300350;南开大学,天津300350【正文语种】中文【中图分类】TN82近年来,随着无线通信的快速发展,尤其是无线局域网络(WLAN) 和全球微波互联接入(WiMAX)的持续发展,对拥有大的阻抗带宽和良好辐射特性的双频或多频天线的需求急剧上升[1-3]。
平面印刷准八木天线具有结构紧凑、低剖面、重量轻、增益高和轴向辐射模式等特点而得到广泛的应用[4-12]。
一些研究人员引入开口环双模谐振器来实现双频,该天线的性能与谐振器的特性有关[4]。
一些研究者将低频偶极子作为高频的反射器,用高频偶极子作为低频引向器[5],这类天线增加了电容来调节阻抗匹配,虽然节省了空间,但大大增加了设计难度。
另外一些研究将偶极子上开了两个L形槽来激发不同的频率,并且使用双模谐振器来实现对双频的引向[6]。
然而,这些天线的共同特点就是它们的频带都很窄,这也是八木天线的特点之一。
微波课设八木天线设计

课设报告课程名称:微波技术与天线课设题目:八木天线的仿真设计课设地点:电机馆跨越机房专业班级:信息1002班学号:学生姓名:指导教师:2013/6/27目录1、设计摘要2、设计原理3、八木天线参数选择及设计要求4、八木天线的HFSS10仿真(1)建立模型(2)确认设计(3) S参数(反射参数)(4)2D辐射远区场方向图(5)3D Polar5、仿真结果分析6、实验中的问题7、心得体会一、设计摘要八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。
其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。
六元八木天线示意图八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。
主要作用是提高辐射能量。
无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。
二、设计原理:八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。
改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。
若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。
比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。
通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。
本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。