探索规律题中考复习
中考数学专题复习:规律探索题

中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为
.
七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).
2024贵州中考数学二轮复习专题 题型五 规律探索题专项训练 (含答案)

2024贵州中考数学二轮复习专题题型五规律探索题专项训练类型一数式规律(黔西南州3考,黔东南州2考)考向1数字累加型基础小练(1)若一列正整数:1,2,3,4,5,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(2)若一列数:1,3,5,7,9,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(3)若一列数:2,4,6,8,10,…,依照此规律,则第n (n ≥1)个数是________,这n (n ≥1)个数的和为________;(4)若一列数:-1,1,-1,1,-1,…,依照此规律,则第n (n ≥1)个数是________;(5)若一列数:1,-1,1,-1,1,…,依照此规律,则第n (n ≥1)个数是________;(6)若一列数:1,4,9,16,25,…,依照此规律,则第n (n ≥1)个数是________;(7)若一列数:2,5,10,17,…,依照此规律,则第n (n ≥1)个数是________;(8)若一列数:0,3,8,15,…,依照此规律,则第n (n ≥1)个数是________;(9)若一列数:4,7,10,13,…,依照此规律,则第n (n ≥1)个数是________;(10)若一列数:12,1,54,75,…,依照此规律,则第n (n ≥1)个数表示为________.典例精讲例1(2023云南)按一定规律排列的单项式:a 2,4a 3,9a 4,16a 5,25a 6,…,第n 个单项式是()A.n 2a n +1B.n 2a n -1C.n n a n +1D.(n +1)2a n 针对演练1.按规律排列的一列数:-12,25,-38,411,-514,…,则第n 个数是________.考向2数字/数式循环规律典例精讲例2(万唯原创)根据如图所示的流程图计算,若x =3,则a 2023=________.例2题图满分技法对于循环型的数字规律探索题求第n 个数的值:(1)先找出循环周期n ;(2)用N (设问中给出的第N 次变化)除以n ,当商b 余m (0≤m <n )时,第N 次变化对应的数即为一个循环变化中第m 次变化后所对应的数.针对演练2.若2022个数a 1、a 2、a 3、…、a 2022满足下列条件:a 1=2,a 2=-|a 1+5|,a 3=-|a 2+5|,…,a 2022=-|a 2021+5|,则a 1+a 2+a 3+…+a 2022=()A.-5047B.-5050C.-5055D.-5067考向3拆项类典例精讲例3观察下列等式:a 1=11×4=13×(1-14);a 2=14×7=13×(14-17);a 3=17×10=13×(17-110);a 4=110×13=13×(110-113);…;则a n =________;按照上述规律,a 1+a 2+a 3+a 4+…+a 2022=________.满分技法在求多个分数的和时,常考虑拆项相消法:(1)1n (n +1)=1n -1n +1;(2)k n (n +k )=1n -1n +k ;(3)1n (n +k )=(1n -1n +k )×1k.针对演练3.(2023眉山)观察下列等式:x1=1+112+122=32=1+11×2;x2=1+122+132=76=1+12×3;x3=1+132+142=1312=1+13×4;…根据以上规律,计算x1+x2+x3+…+x2022-2023=____________.考向4数阵规律典例精讲例4(2023十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2023D.2020例4题图满分技法(1)数阵规律探究求某个数字的位置或者某个位置的数字时需分析数阵中的数字排列方式:①每行、列的个数;②相邻数据的变化特点,并且观察某行或列具有的某些特别的性质(如完全平方数,正整数)等;(2)对于“杨辉三角”型规律探究,常涉及到以下规律:①每个数等于它上方两数之和;②第n行数字之和为2n-1;③(a+b)n的展开式中的各项系数依次对应杨辉三角形的第(n+1)行中的每一项.针对演练4.(2023荆门)如图,将正整数按此规律排列成数表,则2023是表中第________行第________列.第4题图类型二图形规律(黔西南州5考,黔东南州2考)考向1图形累加型典例精讲例5(2023凉山州)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第n个图形需要______根火柴棍.例5题图例6(2023贵州模拟)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆,…,按此规律排列下去,第10个图形中圆的个数是________个.例6题图满分技法对于图形个数累加型规律探索题具体步骤如下:(1)数图形个数:在图形数量变化时,要标记出每组图形的个数;(2)寻找图形数量与序数n的关系;①相邻图形个数的差值相同,则第n个图形的个数是最高次项为一次的整式an+b,然后代入2组数据即可求出a,b的值;②相邻图形个数的差值不同,则第n个图形的个数是最高次项为二次的整式an2+bn+c,然后代入3组数据即可求出a,b,c的值.针对演练5.如图,把同样大小的黑色棋子摆放在正多边形上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为________.第5题图考向2图形递变规律典例精讲例7如图,在边长为2的菱形ABCD中,∠DAB=60°,连接AC,以AC为边作第二个菱形ACC1D1,使得∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使得∠D2AC1=60°,连接AC2,再以AC2为边作第四个菱形AC2C3D3,使得∠D3AC2=60°,…,按照此规律继续作下去,则第n(n≥2)个菱形的面积是________.例7题图满分技法已知一个几何图形的边长(周长或面积),通过一定变换确定第M次变换后的图形的边长(周长或面积),解题步骤是:第一步:根据题意可得出第一次变换前图形的边长(周长或面积);第二步:通过计算得到第一次变换后、第二次变换后、第三次变换后、第四次变换后图形的边长(周长或面积),归纳出每次变换后的图形的边长(周长或面积)与序数n之间的关系式,并验证;第三步:根据第二步中的关系式,得到第M次变换后的图形的边长(周长或面积).针对演练6.(2023烟台)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC =…=∠LOM=30°.若OA=16,则OG的长为()A.27 4B.1 4C.932D.2738第6题图考向3图形循环规律典例精讲例8(2020三州联考17题3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2020个图案与第1个至第4个中的第_______________________________个箭头方向相同(填序号).例8题图针对演练7.(2022赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2020的中点A2022,则点A2022表示的数为________.第7题图类型三图形坐标规律(黔东南州2021.16)典例精讲例9(2021黔东南州16题4分)把多块大小不同的30°直角三角板如图所示,摆在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2垂直且交y轴于点B3;…;按此规律继续下去,则点B2021的坐标为________.例9题图满分技法对于图形规律中求第n个点的坐标,有两种考查形式:一种是点坐标变换在同一象限内递推变化;另一种是点坐标变换在坐标轴上或象限内循环变化.解决方法如下:(1)定类型:根据图形中点坐标的变换特点判断出属于哪一个类型(递推型或循环型);(2)找规律:根据图形的递变规律分别求出第1、2、3、4个点的横坐标和纵坐标,用含n的代数式表示出第n个点的坐标.参考答案【基础小练】(1)n ,n (n +1)2;(2)2n -1,n 2;(3)2n ,n 2+n ;(4)(-1)n ;(5)(-1)n +1;(6)n 2;(7)n 2+1;(8)n 2-1;(9)3n +1;(10)2n -1n +1.【解析】观察这列数,可将1写成33.则这列数为12,33,54,75,…,从中得到规律:分子是连续奇数1,3,5,7,…,则第n 个数的分子是2n -1,分母比其序号大1,则第n个数的分母是n +1,∴第n 个数为2n -1n +1.典例精讲例1A 【解析】单项式的系数规律为1=12,4=22,9=32,16=42,…,第n 个单项式的系数为n 2;a 的指数规律为2=1+1,3=2+1,4=3+1,5=4+1,…,第n 个单项式字母a 的指数为n +1,故第n 个单项式为n 2a n +1.针对演练1.(-1)n n 3n -1【解析】∵-12=(-1)1×13×1-1,25=(-1)2×23×2-1,-38=(-1)3×33×3-1,411=(-1)4×43×4-1,-514=(-1)5×53×5-1,…,∴第n 个数是(-1)n n 3n -1.典例精讲例2-12【解析】将x =3代入,得a 1=1-13=23,a 2=1-32=-12,a 3=1-(-2)=3,a 4=1-13=23.…,依次类推,∴循环周期为3,∵2023÷3=673……2,∴a 2023=a 2=-12.针对演练1.C 【解析】根据题意可得,a 1=2,a 2=-|2+5|=-7,a 3=-|-7+5|=-2,a 4=-|-2+5|=-3,a 5=-|-3+5|=-2,a 6=-|-2+5|=-3,…,由上可知,这2022个数a 1、a 2、a 3、…、a 2022从第三个数开始按-2,-3依次循环,故这2022个数中有1个2,1个-7,1010个-2,1010个-3,∴a 1+a 2+a 3+…+a 2022=2-7-2×1010-3×1010=-5055.典例精讲例313×(13n -2-13n +1),20226067【解析】由题意得,a n =13×(13n -2-13n +1),当n =2022时,a 2022=13×(16064-16067),∴a 1+a 2+a 3+a 4+…+a 2022=13×(1-14+13(14-17+…+13×(16064-16067)=13×(1-14+14-17+…+16064-16067)=13×(1-16067)=20226067.针对演练2.-12021【解析】x 1=1+11×2=1+1-12,x 2=1+12×3=1+12-13,x 3=1+13×4=1+13-14,…,x n =1+1n (n +1)=1+1n -1n +1,∴x 1+x 2+x 3+…+x n =1+1-12+1+12-13+1+13-14+…+1+1n -1n +1=n +1-1n +1,∴x 1+x 2+x 3+…+x 2022-2023=2023-12021-2023=-12021.典例精讲例4B 【解析】观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第2n 行从右往左的数据依次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023.针对演练2.64,5【解析】由图可知,第一行1个数字,第二行2个数字,第三行3个数字,…,则第n 行n 个数字,前n 行一共有n (n +1)2个数字,∵63(63+1)2<2023<64(64+1)2,2023-63(63+1)2=2023-2016=5,∴2023是表中第64行第5列.典例精讲例52n +1【解析】由题图可知,拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,…,拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍.例6112【解析】因为第1个图形中一共有1×(1+1)+2=4(个)圆,第2个图形中一共有2×(2+1)+2=8(个)圆,第3个图形中一共有3×(3+1)+2=14(个)圆,第4个图形中一共有4×(4+1)+2=22(个)圆;可得第n 个图形中圆的个数是[n (n +1)+2](个);所以第10个图形中圆的个数10×(10+1)+2=112(个).针对演练1.440【解析】第1个图形,正三角形上的黑色棋子共3×1=3(个);第2个图形,正方形上的黑色棋子共4×2=8(个);第3个图形,正五边形上的黑色棋子共5×3=15(个);第4个图形,正六边形上的黑色棋子共6×4=24(个);…;第n 个图形,正(n +2)边形上的黑色棋子共n (n +2)(个),∴第20个图需要黑色棋子的个数为20×22=440(个).典例精讲例72×(3)2n -1【解析】如解图,连接BD 交AC 于点O ,连接CD 1交AC 1于点E ,∵四边形ABCD 是菱形,∠DAB =60°,∴AC ⊥BD ,∠BAO =12∠DAB =30°,OA =12AC ,∴OA =AB ·cos30°=2×32=3,OB =AB ·sin30°=2×12=1,∴AC =2OA =23,BD =2OB =2.同理AE =AC ·cos30°=23×32=3,CE =AC ·sin30°=3,AC 1=2AE =6=2(3)2,CD 1=2CE =23,…,∴第n (n ≥2)个菱形的对角线AC n -1=2×(3)n ,C n -2D n -1=2×(3)n-1,∴第n (n ≥2)个菱形的面积为12AC n -1·C n -2D n -1=2×(3)2n -1.例7题解图针对演练3.A 【解析】∵∠ABO =90°,∠AOB =30°,OA =16,∴OB =OA ·cos30°=16×32理可得OC =OB ·cos30°=16×32×32=16×(32)2,OD =OC ·cos30°=16×(32)2×32=16×(32)3,…,OG =16×(32)6=274.典例精讲例83【解析】根据题意可知图案是每4个一循环,∵2020÷4=504……3,∴是第3个图形.针对演练2.122019【解析】第一次落点为A 1处,点A 1表示的数为1;第二次落点为OA 1的中点A 2,点A 2表示的数为12;第三次落点为OA 2的中点A 3,点A 3表示的数为(12)2;…,则点A 2022表示的数为(12)2020,即点A 2022表示的数为122019.典例精讲例9(0,-(3)2018)【解析】由题意知,线段长依次为:OA =1,OB =OA ·tan60°=3=(3)1,OB 1=OB ·tan60°=3×3=(3)2;OB 2=OB 1·tan60°=3×3×3=(3)3,…,OB n =OB n -1×tan60°=(3)n +1,坐标依次为A (0,1),B (-3,0),B 1(0,-(3)2),B 2((3)3,0),B 3(0,(3)4),B 4(-(3)5,0),B 5(0,-(3)6),…,观察坐标发现B n 坐标中,当n 为奇数时,横坐标x =0,当n 为偶数时,纵坐标y =0,且不为0的坐标值从n =0开始,每4个数进行一次-,-,+,+循环,而2021是奇数且2021÷4=504……1,∴B 2021的坐标为(0,-(3)2018).。
中考规律探索题归纳总结

中考规律探索题归纳总结中考作为我国学生升入高中的重要考试,一直备受关注。
在备考过程中,除了掌握基础知识和解题技巧外,了解中考命题的规律也十分重要。
本文将对中考规律中的探索题进行归纳总结,帮助同学们更好地备考。
一、探索题的定义与特点探索题是中考题目中较为特殊的一类题型,与传统的选择题和填空题不同,它更注重考察学生的观察、分析、推理和实践能力。
在探索题中,通常会给出一定的背景信息、实验现象或问题,要求学生通过思考和实践,解答或解决问题。
探索题的特点主要有以下几个方面:1. 强调学生的动手能力:探索题往往需要学生进行实验、观察等操作,培养学生的实践能力和科学精神。
2. 强调学生的分析能力:通常会提出一些问题,要求学生根据给定的条件进行分析,得出结论或解决方法。
3. 培养学生的探索精神:探索题更多考察学生解决问题的思路和方法,培养学生的探索精神和创新意识。
二、探索题的常见形式和解题思路1. 实验探索题:要求学生根据实验现象分析,并进行实验加以验证,推理出结论。
解题思路:根据实验描述了解实验现象和背景,分析实验的目的、方法,进行实验操作,推理结果并写出结论。
2. 问题探索题:给出一些问题,要求学生思考并找出解决办法。
解题思路:仔细阅读问题,分析问题的关键点,积极思考并提出合理解决方案,给出解答。
3. 材料探索题:根据给定的材料或文段,分析问题并作出相关推理。
解题思路:认真阅读材料,理解材料提供的信息和背景,分析问题并进行相关推理,给出结论。
4. 实践探索题:要求学生通过实践操作解决问题,注重学生的动手能力和实践能力。
解题思路:认真阅读问题和给定条件,根据问题和条件进行实践操作,解决问题。
三、中考探索题的复习策略1. 熟悉题型和解题思路:通过大量练习,熟悉不同形式的探索题,掌握常见的解题思路和方法。
2. 注重实践能力培养:针对实验探索题和实践探索题,要多进行实践操作,培养学生的实践能力和动手能力。
3. 提高分析能力:通过解析常见的材料探索题和问题探索题,培养学生的分析能力和推理能力,提高解题技巧。
探索规律列代数式(初中数学)

探索规律列代数式探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数、式或图形关系分析,探索规律,并能用代数式反映这个规律.现以近年各地的中考题为例说明如下.1. 探索单项式中的规律例1 (2021年云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n解析:观察单项式中a的系数、次数与单项式的序数的关系,有如下规律:第1个单项式a2=12·a1+1;第2个单项式4a3=22·a2+1;第3个单项式9a4=32·a3+1;第4个单项式16a5=42·a4+1;……所以第n(n为正整数)个单项式为n2a n+1.故选A.2. 探索等式中的规律例2 (2021年嘉兴)观察下列等式:1=12-02,3=22-12,5=32-22,…,按此规律,则第n个等式为2n﹣1=___________.解析:观察等式中的数字与等式的序数的关系,有如下规律:第1个等式:2×1-1=12-02;第2个等式:2×2-1=22-12;第3个等式:2×3-1=32-22;……所以第n个等式为2n﹣1=n2-(n-1)2.故填n2-(n-1)2.3. 探索图形中的规律例3 (2021年绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_________.解析:观察图中三角形的个数与图形的序数的关系,有如下规律:第1个图形中三角形的个数为1=12+0;第2个图形中三角形的个数为5=22+1;第3个图形中三角形的个数为11=32+2;第4个图形中三角形的个数为19=42+3;……所以第n个图形中三角形的个数为n2+n﹣1.故填n2+n﹣1.第1 页共1 页。
中考一轮复习--专题五 规律探索题

(3)通过对简单、特殊情况的观察,再推广到一般情况.
2.规律探究的基本原则:
(1)遵循类推原则,项找项的规律,和找和的规律,差找差的规律,积
找积的规律.
(2)遵循有序原则,从特殊开始,从简单开始,先找3个,发现规律,再
验证运用规律.
类型一
类型二
类型三
类型一 数式的变化规律
例1(2019·安徽)观察以下等式:
∴S5= =-1-a,
4
∴S6=-S5-1=a.
1
1
∴S7= = =S1,
6
故此规律为 6 个一循环,
∵2 018÷6=336 余 2,
1+
∴S2 018=- .
1
2
3
4
5
6
7
4.(2018·黑龙江龙东区)如图,已知等边△ABC的边长是2,以BC边上
的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边
(2)∵2 020÷3=673…1,∴需要小正方形674个,大正方形673个.
1
2
3
4
5
6
7
7.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上
面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.
将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有
n(n + 1)
圆圈的个数为1+2+3+…+n= 2 .如果图3和图4中的圆圈各有13
为
.
类型一
类型二
类型三
分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一
次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进
中考数学二轮复习专题2 规律探索问题课件

B.(-1,-2) D.(3,-2)
9.(2021·阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓 形沿 x 轴正方向无滑动滚动,当圆心经过的路径长为 2021π 时,圆心的横 坐标是( D )
A.2020π C.2021π
B.1010π+2020 D.1011π+2020
10.(2021·毕节)如图,在平面直角坐标系中,点 N1(1,1)在直线 l:y=x 上,
[点评] 本题考查了规律型中的数式变化规律,解题的关键是找出等式左右 两边的数的变化规律,熟练掌握二次根式的运算.
1.(2021·济宁)按规律排列的一组数据:12,35,□,177,296,3171,…,其中□
内应填的数是( D )
A.23
B.151
C.59
D.12
2.(2021·十堰)将从 1 开始的连续奇数按如图所示的规律排列,例如,位于 第 4 行第 3 列的数为 27,则位于第 32 行第 13 列的数是( B )
图形规律型 ☞示例 2 (2016·益阳)小李用围棋子排成下列一组有规律的图案,其中第 1 个图案有 1 枚棋子,第 2 个图案有 3 枚棋子,第 3 个图案有 4 枚棋子,第 4 个图案有 6 枚棋子,…,那么第 9 个图案的棋子数是 13 枚.
[解析] 设第 n 个图形有 an 个棋子, 观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6, a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数). 当 n=4 时,a9=3×4+1=13. 故第 9 个图案的棋子数是 13 枚.
[点评] 本题考查了规律型中的图形的变化类,解题的关键是找出变化规律 “a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数)”.本题属于基础题,难度不 大,解决该题型题目时,找出部分图形的棋子数目 ,根据数的变化找出变 化规律是关键.
中考数学专题复习探索规律问题

专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。
中考数学规律探索题(整理全,含答案).doc

A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(最新)中考复习——探索规律题(一)分类:1、反复循环。
2、等差数列。
3、二次等差数列。
4、等比数列。
5、其它规律。
(二)等差数列:
公差为d
(1)项数公式:第n 项n = + 1
(2)第n项公式:= +(n1)d
(3)前n项和公式:
n (4)求第n项时,可以设一次函数y=kn+b 再带入两个点坐标,确定一次函数表达式。
(三)二次等差数列:
求第n项时,可以设一次函数y=+bn+c
再带入三个点坐标,确定二次函数表达
式。
(四)等比数列:
比为q
(1)第n 项公式:=
(2)前n项和公式:
1.(2017•赤峰)在平面直角坐标系中,点P(x,y)经
过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣
y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结
点为P2,点P2的终结点为P3,点P3的终结点为P4,这
样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标
为(2,0),则点P2017的坐标为.
2.(2017•潍坊)如图,自左至右,第1个图由1个正六
边形、6个正方形和6个等边三角形组成;第2个图由2
个正六边形、11个正方形和10个等边三角形组成;第3
个图由3个正六边形、16个正方形和14个等边三角形组
成;…按照此规律,第n个图中正方形和等边三角形的
个数之和为个.
3.(2017•宁波)如图,用同样大小的黑色棋子按如图所
示的规律摆放:则第⑦个图案有个黑色棋子.
4.(2017•贺州)将一组数,2,,2,,…,
2,按下列方式进行排列:
,2,,2,;
2,,4,3,2;…
若2的位置记为(1,2),2的位置记为(2,1),则
这个数的位置记为()
A.(5,4)B.(4,4)C.(4,5)D.(3,5)
5.(2017•铜仁市)观察下列关于自然数的式子:
4×12﹣12①
4×22﹣32②
4×32﹣52③
…
根据上述规律,则第2017个式子的值是()
A.8064 B.8065 C.8066 D.8067
6.(2017•丹东)如图,观察各图中小圆点的摆放规律,
并按这样的规律继续摆放下去,则第10个图形中小圆点
的个数为.
7.(2017•鄂尔多斯)如图,由一些点组成形如正多边形
的图案,按照这样的规律摆下去,则第n(n>0)个图案
需要点的个数是.
8.(2017•凉山州)古希腊数学家把1、3、6、10、15、21、…
叫做三角形数,其中1是第一个三角形数,3是第二个三
角形数,6是第三个三角形数,…,依此类推,第100个
三角形数是.
9.(2017•衡阳)正方形A1B1C1O,A2B2C2C1,A3B 3C3C2,…
按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别
在直线y=x+1和x轴上,则点B2018的纵坐标是.
10.(2017•黑龙江)如图,四条直线l1:y1=x,l2:y2=x,
l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2
⊥x轴,交l1于点A2,再过点A2作A2A3⊥l1交l2于点A3,
再过点A3作A3A4⊥l2交y轴于点A4…,则点A2017坐标
为.
第10题图第11题图
11.(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰
直角三角形OA1A2的直角边OA1在y轴的正半轴上,且
OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形
OA2A3,以OA3为直角边作第三个等腰直角三角形
OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,
则点A2017的坐标为.
第12题图第19题图
12.(2017•温州)我们把1,1,2,3,5,8,13,21,…
这组数称为斐波那契数列,为了进一步研究,依次以这
列数为半径作90°圆弧,,,…得到
斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得
到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),
P3(0,﹣1),则该折线上的点P9的坐标为()
A.(﹣6,24)B.(﹣6,25)
C.(﹣5,24)D.(﹣5,25)
13.(2017•黔南州)杨辉三角,又称贾宪三角,是二项式
系数在三角形中的一种几何排列,如图,观察下面的杨
辉三角:
按照前面的规律,则(a+b)5= .
14.(2017•桂林)如图,第一个图形中有1个点,第二个
图形中有4个点,第三个图形中有13个点,…,按此规
律,第n个图形中有个点.
15.(2017•黑龙江)观察下列图形,第一个图形中有一个
三角形;第二个图形中有5个三角形;第三个图形中有9
个三角形;….则第2017个图形中有个三角形.
16.(2017•辽阳)如图,△OAB中,∠OAB=90°,
OA=AB=1.以OB为直角边向外作等腰直角三角形
OBB1,以OB1为直角边向外作等腰直角三角形OB1B2,
以OB2为直角边向外作等腰直角三角形OB2B3,…,连
接AB1,BB2,B1B3,…,分别与OB,OB1,OB2,…交
于点C1,C2,C3,…,按此规律继续下去,△ABC1的面
积记为S1,△BB1C2的面积记为S2,△B1B2C3的面积记为
S3,…,则S2017= .
第16题图第17题图
17.(2017•营口)如图,点A1(1,)在直线l1:y=x
上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以
A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点
C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2
为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律
进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)1318.(2017•常德)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.
19.(2017•盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y=x于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y=x于点B3,…,按照此规律进行下去,则点A n的横坐标为.。