2020中考数学规律探索专题复习(含解析)
2020中考数学总复习 第十一章 专题解析 专题一 探索规律

2020中考数学总复习 第十一章 专题解析专题一 探索规律专题扫描规律探究性问题通常需要我们经历观察、猜想、类比、估计、验证等合情推理的过程.命题领域往往涉及到数列(阵、表)的排列规律、计算程序图类规律、几何图形的数量或位置变化规律以及平面直角坐标系中点的坐标变化规律.......规律探究性问题的题型多以选择题或填空题的形式呈现.解决这类问题的思想方法主要有从特殊到一般的归纳猜想、数形结合思想等.例题解析类型1(1):数列的排序规律例1 (2019,恩施) 观察下列一组数的排列规律:,,,,,,,,,,,,,,,335334111332331174173172171319291525131… 那么,这一组数的第2019个数是 . 解析:这列数的排列规律为:;个数:第1211+,个数:第12122+;个数:第12232+,个数:第12143+,个数:第12253+,个数:第12363+,个数:第12174+ ,个数:第12284+ ,个数:第12394+;个数:第124104+ ...121115+个数:第...125155+个数:第观察这列数的排列规律,可将这列数进行分组:第1个数为第1组,只有1个数;第2、3个数为第2组,有2个数;第4、5、6个数为第3组,共有3个数;第7、8、9、10个数为第4组,共4个数...第n 组共有n 个数:.12...122121+++nn n n ,,,设这组数的第2019个数落在第n 组,则有:,n n ++++≤<-++++...3212019)1(...321).1(212019)1(21+≤<-n n n n 即经过估算得: , 例2 (2019,常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,… 根据其中的规律可得70+71+72+…+72019的结果的个位数字是( ) A .0 B .1C .7D .864=n 2016646321=⨯⨯而.123.12336420196464++∴故填个数,为组中第个数位于第整个数列中的第解析:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…, ∴个位数字每4个数一循环,∵(2019+1)÷4=505,又1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是0.故选A .类型1(2):数阵的布阵规律例3 (2019,黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是 .解析:观察数阵可知,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628, ∴第20行第19个数是:628﹣3=625,类型1(3):数表的布设规律例4 (2017,恩施)如图1,在66⨯的网格内填入1至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复, 则=⨯c a .解析:.2.2,12答案:,=⨯==c a c a 类型1(4):等式的布列规律例5 (2016,恩施)观察下列等式:)1(21...4321+=+++++n n n ; )2)(1(61)1(21...10631++=++++++n n n n n ;)3)(2)(1(241)2)(1(61...201041+++=+++++++n n n n n n n ; 则有:=++++++++)3)(2)(1(241...351551n n n n .解析:等式右边系数的排列规律为:...432113211211,,,⨯⨯⨯⨯⨯⨯含有字母n 的因式个数逐次多1,答案为:).4)(3)(2)(1(1201++++n n n n n图1类型2:程序图类运算程序规律例6(2019,重庆)按如下图所示的运算程序,能使输出y 值为1的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1解析:当m =1,n =1或2时,都有1312≠=+=≤m y n m ,此时;当时,0,1==n m故选D.类型3:图形变化类的规律探索例7(2016,龙岩)如图2,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图2中共有10个直角三角形的内切圆,它们的面积分别记为....10321s s s s ,,,,则=++++10321...s s s s .其规律是:直角三角形斜边上的高将原直角三角形分成两个小直角三角形,两个小直角三角形的内切圆面积之和等于原直角三角形内切圆的面积.图2(3),图2(4),...中,所有直角三角形的内切圆面积之和均为π.故答案为π.类型4:平面直角坐标系中点的坐标变化规律探究 例8(2016,潍坊)在平面直角坐标系中,直线1:-=x y l 与x 轴交于点1A ,如图3所示依次作正方形O C B A 111、正方形1222C C B A 、...、正方形1-n n n n C C B A ,使得点...321、、、A A A 在直线l 上,点...321、、、C C C 在y 轴正半轴上,则点n B 的坐标是 . 解析:点)1,1(1B ,点)2111(2++,B ,点,)221,211(23++++B ,点,,)22212211(3224++++++B ..., 点)2...2212...2211(1222--+++++++++n n n B ,.).122(1--n n n B ,即;此时有1112,≠-=-=>n y n m .11212=-=∴>==n y n m n m ,时,,当Θ,,解得)(,则)中圆的半径为(解析:设图π.1432154321121=∴=⨯⨯=++s r r r.ππ)54(53(5453222221=⎥⎦⎤⎢⎣⎡+=+s s ,于是和)中两圆的半径分别为(同理可得图跟踪训练1.(2019,十堰)一列数按某规律排列如下:,,,,,,,,,, 若第n 个数为,则n =( B ) A .50B .60C .62D .712.(2019,武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是( C ) A .a a 222-B .2222--a aC .a a -22D .a a +223.(2018,宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图4中的数字排列规律,则c b a ,,的值分别为( B )1561.A ===c b a ,, 20156.B ===c b a ,, 152015.C ===c b a ,,61520.D ===c b a ,,4.(2018,广东)如图5,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上, 点1B 的坐标为(2,0).过点1B 作121//OA A B 交双曲线于点2A ,过点2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;...,以此类推,则点6B 的坐标为.062),(5. 百子回归图是由 1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”表示澳门回归祖国日期, 最后一行中间两位“23 50”表示澳门面积,…,同时 它也是十阶幻方,其每行10个数之和,每列 10 个 数之和,以及两条对角线 上10 个数之和均为有理 数 n ,则 4n -1的值为 2019 .6.(2018,浙江)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若aba b ⨯=+21010符合前面式子的规律,则b a += 109 . 7.如图6所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24, 第二次输出的结果为12,…,则第2020次输出的结果为 3 .8.如图7,P 1是一块半径为a 的半圆形纸板,在P 1的左下端剪去一个半径为a 21的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P 3,P 4,…,P n ,…,(1)把P 1 、P 2、 P 3、 P 4的面积表示出来; (2)请你猜想P n 与P n+1的面积相差多少?;)(的面积图形22222211π83411π21)21(π21π21π21a a a a S P =-=-==;同理,222223π3211)161411(π21)41(π21)21(π21π21a a a a a S =--=--=.π12843)641161411(21224a a S =---=π .2π21221++n n n a P P 的面积多的面积比图形)图形(图6图7。
2020年中考数学必考考点专题规律型问题含解析

专题30规律型问题专题知识回顾1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.5.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.专题典型题考法及解析【例题1】(2019•四川省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a=5,a是a的差倒数,a是a的差倒数,a是a的差倒数…,1 2 1 3 2 4 3依此类推,a的值是()2019A.5B.﹣C.D.【答案】D.【解析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a相同的数即可得解.2019∵a=5,1a=2a=3===﹣,=,a===5,4…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a=a=2019 3【例题2】(2019•湖北省咸宁市)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【例题3】(2019•四川省广安市)如图,在平面直角坐标系中,点A的坐标为(1,0),以OA为直角边作1 1△R t OA A,并使∠A OA=60°,再以OA为直角边作△R t OA A,并使∠A OA=60°,再以OA为直角边作 12 1 2 2 23 2 3 3n△R t OA A,并使∠A OA=60°…按此规律进行下去,则点A的坐标为. 34 3 4 2019【答案】(﹣22017,22017).【解析】通过解直角三角形,依次求A,A,A,A,…各点的坐标,再从其中找出规律,便可得结论.1 2 3 4由题意得,A的坐标为(1,0),1A的坐标为(1,),2A的坐标为(﹣2,2),3A的坐标为(﹣8,0),4A的坐标为(﹣8,﹣8),5A的坐标为(16,﹣16),6A的坐标为(64,0),7…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2∵2019÷6=336…3,n﹣2,∴点A2019的方位与点A的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,23纵坐标为22017【例题4】(2019湖南益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2③7﹣2=(=(﹣﹣)2,)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题5】(2019•甘肃庆阳)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是.【答案】13a+21b.【解析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b【例题6】(2019•湖北省鄂州市)如图,在平面直角坐标系中,点A、A、A…A在x轴上,B、B、B…B1 2 3 n 1 2 3 n 在直线y=x上,若A(1,0),且△A△B A、△A△B A…△A B A 都是等边三角形,从左到右的小三角形1 1 12 2 23 n n n+1(阴影部分)的面积分别记为S、S、S…S.则S可表示为()1 2 3 n nA.22n B.22n﹣1C.22n﹣2D.22n﹣3【答案】D.【解析】直线y=x与x轴的成角∠B OA=30°,可得∠OB A=30°,…,∠OB A=30°,∠OB A=90°,…,1 12 2 n n 1 2∠OB A=90°;根据等腰三角形的性质可知A B=1,B A=OA=2,B A=4,…,B A=2 n n+1 1 1 2 2 2 3 3 n n n﹣1;根据勾股定理可得B B=,B B=2,…,B B=2n 12 23 n n+1,再由面积公式即可求解;解:∵△A△B A、△A△B A…△A△B A 都是等边三角形,1 12 2 23 n n n+1∴A B∥A B∥A B∥…∥A B,B A∥B A∥B A∥…∥B A,△A△B A、△A△B A…△A△B A 都是等边三角形,1 12 23 3 n n 1 2 2 3 34 n n+1 1 1 2 2 2 3 n n n+1∵直线y=x与x轴的成角∠B OA=30°,∠OA B=120°,1 1 1 1∴∠OB A=30°,1 1∴OA=A B,1 1 1∵A(1,0),1∴A B=1,1 1同理∠OB A=30°,…,∠OB A=30°,2 2 n n∴B A=OA=2,B A=4,…,B A=22 2 23 3 n n n﹣1,易得∠OB A=90°,…,∠OB A =90°,1 2 n n+1∴B B=,B B=2,…,B B=2n,n n+11 2 2 3∴S=×1×=,S=×2×2=2,…,S=×2n﹣1×21 2 nn=。
2020中考数学重难点专练二 规律探究问题(含答案解析)

2020中考数学重难点专练02 规律探究型问题【命题趋势】规律探究型问题是中考数学中的常考问题,题目数量一般是一个题,各种题型都有可能出现,一般以选择题或者填空题中的压轴题形式出现,主要命题方式有数式规律、图形变化规律、点的坐标规律等。
基本解题思路:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中规律,进而归纳或猜想出一般结论,最后验证结论的正确性。
探索规律题可以说是每年中考的必考题,预计2020年中考数学中仍会作为选择题或填空题的压轴题来考察。
所以掌握其基本的考试题型及解题技巧是非常有必要的。
【满分技巧】一.从简单的情况入手﹕从简单的情况入手﹕求出前三到四个结果,探究其规律,通过归纳猜想总结正确答案二.新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识﹕二.关注问题中的不变量和变量﹕在探究规律的问题中,一般都会存在变量和不变量(也就是常量),我们要多关注变量,看看这些变量是如何变化的,仔细观察变量的变化与序号(一般为n)之间的关系,我们找到这个关系就找到了规律所在.三.掌握一些数学思想方法规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.【限时检测】(建议用时:30分钟)一、选择题1. (2019 贵州省毕节地区)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方B.右方C.下方D.左方2. (2019 河北省)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对3. (2019 湖北省鄂州市)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣34. (2019 湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120︒的¶AB多次复制并首尾连接而成.现有一点P从(A A为坐标原点)出发,以每秒23π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.2-B.1-C.0 D.15. (2019 湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)6. (2019 山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)7. (2019 云南省)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+18. (2019 四川省广元市)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l 的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×23959. (2019 河南省)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD 组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)10. (2019 内蒙古赤峰市)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019B.C.D.二、填空题11. (2019 山东省泰安市)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l 上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.12. (2019 山东省潍坊市)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)13. (2019 浙江省衢州市)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2020年中考数学 中考试题精选 探索规律(含解答)-

探索规律型问题【解题指导】探索数、式、符号的变化规律;探究几何问题的结论——探索图形规律. 1、(2004浙江省嘉善县)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是 ___________cm (用含n 的代数式表示).2、(2004年泰州市)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中小黑点的个数为y .图⑴ 填表:⑵ 当n =8时,y =__________.⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y ),其中1≤n ≤5.⑷ 请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,现在你能够写出该函数的解析式吗?【探索与交流】1、(金华市)观察一列数:3,8,13,18,23,28……依此规律,在此数列中比2000大的最小整数是_______________. 2、(舟山市)古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 _____ . 3、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按····· · · · · ·· · ······· · ·· · · · · · · · · · ·· ·· · · · · · ·· · · ·第1次 第2次 第3次 第4次 ······照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的_____________A .31,32,64;B .31,62,63;C .31,32,33;D .31,45,46 4、(2004江苏省徐州市)下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写 下表:图形 ① ② ③ 正方形的个数 8 图形的周长18(2)推测第n 个图形中,正方形的个数为________,周长为_______(都用含n 的代数式表示).(3)这些图形中,任意一个图形的周长与它所含正方形个数之间的函数关系式为______________________________.5、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4……请你将猜想到的规律用自然数n (n ≥1)表示出来 .6、一个由数字1和0组成的2005位的数码,其排列规律是101101110101101110101101110……,其中“0”的个数为____________. 7、(扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制数2)1111(转换成十进制形式是数_______ .A 、8B 、15C 、20D 、308、观察下列算式:,221=, 422=,823=,1624=,3225=,6426=12827= ,25628=通过观察,用你所发现的规律写出98的末位数字是 .9、研究下列算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52;…用代数式表示此规律(n 为正整数)1+3+5+7+……+(2n-1)=______________________.用文字语言表述是:____________________________________.10、观察下面几个算式,你发现了什么规律: 1+2+1=4; 1+2+3+2+1=9;1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;……利用上面的规律,你能不能迅速算出1+2+3+……+99+100+99+……+3+2+1=_____11、(山西省)联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第56个气球的颜色是 .12、(大连市)借助计算器可以求得2222222243,4433,444333,44443333++++……,仔细观察上面几道题的计算结果,试猜想2220032003444+333=L L个个_______________;13、将一边长为16厘米的正方形纸片,剪成四个大小一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去,剪6次一共剪出多少个小正方形?所剪得正方形个数S和所剪次数n有什么关系?用数学表达式表示为.14、(山东省)下面是按照一定规律画出的一列“树型”图:……经观察发现:图(2)比图(1)多2个“树枝”,图(3)比(2)多5个“树枝”,图(4)比(3)多10个“树枝”,照此规律,图(7)比(6)多出 _ 个“树枝”.15、(资阳市)如图,已知四边形ABCD是梯形(标注的数字为边长),按图中所示的规律,用2003个这样的梯形镶嵌而成的四边形的周长是___________.1211DCBA图5……16、(2004年十堰市)有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.21B.41C.81D.16117、(南昌市)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第四个图案中有白色地砖_________块;(2)第n个图案中有白色地砖___________块.18、(宁夏)一组线段AB和CD把正方……第10题图第三个第二个第一个A C AD CADBADC形分成形状相同、面积相等的四部分.现给出四种分法,如图所示.请你从中找出线段AB、CD的位置及关系存在的规律.符合这种规律的线段共有多少组?(不再添加辅助线和其它字母)19、(吉林)如图所示,用用样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围);……20、(黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.n=1答案1、4n;2(1)21;(2)57;(3)略;(4)y=n2-n+1;1、2003;2、47;3、B;4、(1)13、28;18、38;(2)5n+3,10n+8;(3)C=2n+2;5、n2+n=n(n+1);6、668;7、B;8、8;9、n2;10、1002;11、红;12、55…5(2003个);13、19个;14、80个;15、6011;16、B;17、(1)18;(2)4n+2;18、AB ⊥CD,AB、CD交于正方形的中心;无数组;19、(1)n+3,n+2;(2)y=n2+5n+6;20、图(2)成立;图(3)不成立;过点P作BC的平行线,转化为图(1);图(3)中结论:h1+h2-h3=h。
2020年中考数学压轴题题型专练:规律探索题(含答案)

2020中考数学压轴题题型专练:规律探索题类型一数式规律1. 将一组数2,2,6,22,10,…,210,按下列方式进行排列:2,2,6,22,10;23,14,4,32,25;…若2的位置记为(1,2),23的位置记为(2,1),则38这个数的位置记为________.(4,4)【解析】∴当10n -2=38时,n =4,∴38这个数的位置记为(4,4). 2. 按一定规律排列的一列数:-12,1,-1, ,-911,1113,-1317,…,请你仔细观察,按照此规律方框内的数字应为________.1 【解析】将原来的一列数变形为-12,33,-55, ,-911,1113,-1317,…,观察这列数可得奇数项为负数,偶数项为正数,分子是依次从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.3. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.-12211 【解析】∵-2=-12+11,52= 22+12,-103=-32+13,174= 42+14,-265= -52+15,∴第11个数据是:-112+111=-12211.4. 已知a 1= t t -1,a 2= 11-a 1,a 3= 11-a 2,…,a n +1= 11-a n(n 为正整数,且t ≠0,1),则a 2018= ________(用含t 的代数式表示). 1-t 【解析】根据题意得:a 1= t t -1,a 2= 11-t t -1= 1-t ,a 3= 11-1+t = 1t ,a 4= 11-1t= t t -1, (2018)3= 672……2,∴a 2018的值为1-t . 5. 一列数:0,1,2,3,6,7,14,15,30,…,这列数是由小明按照一定规律写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么30后三个连续数应该是________.31,62,63 【解析】通过观察可知,下一组数的第一个数是前一组数的第二个数的2倍,在同一组数中的前后两个数相差1,由此可得30后三个连续数为31,62,63.类型二 图形累加规律1. 如图,用菱形纸片按规律依次拼成如图图案,第1个图案中有5个菱形纸片,第2个图案中有9个菱形纸片,第3个图案中有13个菱形纸片,按此规律,第10个图案中有________个菱形纸片.第1题图41【解析】观察图形发现:第1个图案中有5=4×1+1个菱形纸片,第2个图案有9=4×2+1个菱形纸片,第3个图案中有13=4×3+1个菱形纸片,…,第n个图形中有4n+1个菱形纸片,故第10个图案中有4×10+1=41个菱形纸片.2. 如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.第2题图n2+n【解析】由题图知,第1、2、3个图案对应的正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的正方形的个数为n(n+1)=n2+n.3. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为________.第3题图85【解析】可以分两部分观察,上半部分小圆圈个数为:1+2+3+…+n +n+1,下半部分小圆圈个数为n2,所以第⑦个图形小圆圈个数为1+2+3+4+5+6+7+8+72=85.4. 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要________枚棋子.第4题图3n+2【解析】观察图案可知,图案分成两部分,横向的横子数量依次为3,5,7,…,纵向的棋子数量依次为2,3,4,…,∴第n个图案棋子数量为2n+1+(n+1)=3n+2.5. 如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是________.第5题图n2-n【解析】n=3时,S=6=3×2,n=4时,S=12=4×3,n=5时,S =20=5×4,…,依此类推,当边数为n时,S=n(n-1)=n2-n.类型三图形成倍递变规律1. 如图,过点A0(2,0)作直线l:y=33x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A. (32)2015 B. (32)2016C. (32)2017 D. (32)2018第1题图B【解析】由y=33x,得直线l的倾斜角为30°,∵点A0坐标为(2,0),∴OA0=2,∴OA1=32OA0=3,OA2=32OA1=32,OA3=32OA2=334,OA4=32OA3=98,…,∴OA n=(32)n OA0=2×(32)n.∴OA2016=2×(32)2016,A2016A2017=12×2×(32)2016=(32)2016.2. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n个正方形的边长为________.第2题图8,2n-1【解析】∵函数y=x与x轴正半轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n-1.3. 如图,在矩形ABCD中,AD=a,AB=b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2,…,如此操作下去,得到菱形I2016,则I2016的面积是________.第3题图(12)4033ab 【解析】由题意得,菱形I 1的面积为:12AG ·AE =12×12a ×12b =(12)3ab ,菱形I 2的面积为:12FQ ·FN =12×(12×12a )×(12×12b )=(12)5ab ;…;菱形I n 的面积为:(12)2n +1ab .∴当n =2016时,菱形I 2016的面积为(12)4033ab .4. 如图,已知∠AOB =30°,在射线OA 上取点O 1,以O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以O 3为圆心,O 3O 2为半径的圆与OB 相切;…;在射线O 9A 上取点O 10,以O 10为圆心,O 10O 9为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 10的半径长是________.第4题图29 【解析】如解图,作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2= 2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3= EO 3,O 1C =1,∴O 2D =2,O 3E =4,∴圆的半径呈2倍递增,∴⊙On 的半径为2n -1CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长= 29.第4题解图类型四图形周期变化规律1. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)第1题图B【解析】∵菱形OABC的顶点O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1) ,∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2018个梅花图案中,共有________个“”图案.第2题图505【解析】∵2018÷4=504……2,∴有505个.3. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2017B2018C2018的顶点B2018的坐标是________.第3题图(0,21009)【解析】点B的位置依次落在第一象限、y正半轴、第二象限、x负半轴、第三象限、y负半轴、第四象限、x正半轴…,每8次一循环.2018÷8=252……2,所以B2018落在y轴正半轴,故B2018的横坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,所以OB2018=(2)2018=21009,所以B2018的坐标为(0,21009).4. 如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.第4题图(5,3),(134633+896)π 【解析】如解图,翻滚3次后点B 的对应点是B 3,作B 3E ⊥x 轴于E ,易知OE = 5,B 3E = 3,B 3(5,3),观察图象可知翻滚3次为一个循环,一个循环点M 的运动路径为MM 1︵、M 1M 2︵、M 2M 3︵,120 ·π ·3180+120 ·π ·1180+120 ·π ·1180=23+43π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672×23+43π+23π3= (134633+896)π.第4题解图。
规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。
2020年中考复习《规律探究题专练》及答案 (3)

中考复习《规律探究题专练》1.(2014年福建南平4分)如图,将三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A. B. C. D.2.(2014年湖南永州3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.3.(2014年山东日照4分)下面是按照一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…依此规律,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数 B.第11个数 C.第12个数 D.第13个数4.(2013年山东泰安3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.75.(2012江苏扬州3分)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是()A.43 B.44 C.45 D.466.(2014年福建漳州4分)已知一列数2,8,26,80.…,按此规律,则第n个数是.(用含n的代数式表示)7.(2014年甘肃白银、定西、平凉、酒泉、临夏4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= .8.(2014年广西百色3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为.9.(2014年广西桂林3分)观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.10.(2014年贵州铜仁4分)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n 的数为.11.(2014年黑龙江大庆3分)有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,…,则第9个1在这列数中是第个数.12.(2014年湖北黄石3分)观察下列等式:第一个等式:a1=;第二个等式:;第三个等式:;第四个等式:.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n= = ;(2)式子a1+a2+a3+…+a20= .13.(2014年湖南常德3分)已知:;计算: = ;猜想: = .14.(2014年湖南湘潭3分)如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.15.(2014年江苏扬州3分)设是从这三个数中取值的一列数,若,,则中为0的个数.n=1n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是.17.(2014年内蒙古呼伦贝尔3分)一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第9个等式.18.(2014年山东滨州4分)计算下列各式的值:观察所得结果,总结存在的规律,运用得到的规律可得= _.19.(2014年山东东营4分)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.20.(2014年山东菏泽3分)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n>3)行从左向右数第个数是.(用含n的代数式表示)21.(2014年河北省3分)如图,点O,A在数轴上表示的数分别是0,0.1,将线段OA分成100等份,其分点由左向右依次为M1,M2 (99)将线段OM1分成100等份,其分点由左向右依次为N1,N2 (99)将线段ON1分成100等份,其分点由左向右依次为P1,P2 (99)则点P37所表示的数用科学计数法表示为.22.(2014年云南省3分)观察规律并填空;;;;…= .(用含n的代数式表示,n是正整数,且n≥2)23.(2014年浙江台州5分)有一个计算程序,每次运算都是把一个数先乘以2,再乘以它与1的和,多次重复进行这种运算的过程如下∶则第n次的运算结果=(含字母x和n的代数式表示).参考答案1.B.【解析】观察数列,可得,每三个数一循环,,(8,2)在数列中是第(1+7)×7÷2+2=30个,∵30÷3=10,∴(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是.(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,∵2029105÷3=676368…1,∴(2014,2014)表示的数正好是第676369轮的第一个数,即(2014,2014)表示的数是1.∴.故选B.考点:探索规律题(数字的变化类----循环问题).2.B.【解析】仿照例题,设S=1+a+a2+a3+a4+…+a2014,①在①式的两边都乘以a,得:aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=.故选B.考点:1.阅读理解型问题;2.探索规律题(数字的变化类);3.同底数幂的乘法.3.A.【解析】通过计算找出规律,求得第10个数、第11个数、第12个数、第13个数的得数,通过比较得出答案:第1个数:;第2个数:;第3个数:;…第n个数:∴第10个数、第11个数、第12个数、第13个数分别为,其中最大的数为,即第10个数最大.故选A.考点:1.探索规律题(数字的变化类);2.有理数的大小比较.4.C【解析】观察所给等式,寻找规律:3n (n=1,2,3,……)的末位数字分别是:3,9,7,1,3,……,四个数一循环,末位数字和为0,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3。
2020届中考数学试题分类汇编:规律探索(含精析)

(2020•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=﹣.考点:规律型:数字的变化类.分析:根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.解答:解:通过分析数据可知第n个等式为:a n=﹣.故答案为:﹣.点评:本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.(2020,娄底)如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.(2020•益阳)下表中的数字是按一定规律填写的,表中a的值应是21 .1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.(2020,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)3()图甲A B C D GE F2341322422221111111133()图乙00(2020•荆州)观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 ﹣128a 8.考点: 规律型:数字的变化类. 专题:规律型. 分析: 根据单项式可知n 为双数时a 的前面要加上负号,而a 的系数为2(n ﹣1),a 的指数为n .解答:解:第八项为﹣27a 8=﹣128a 8. 点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.(2020•达州)如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2020BC 和∠A 2020CD 的平分线交于点A 2020,则∠A 2020= 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索一.选择题1.(2019•湖北省鄂州市•3分)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3【分析】直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;【解答】解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n=;故选:D.【点评】本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长是解题的关键.2.(2019•四川省达州市•3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a 2019的值是( ) A .5B .﹣C .D .【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a 2019相同的数即可得解. 【解答】解:∵a 1=5,a 2===﹣,a 3===,a 4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673, ∴a 2019=a 3=,故选:D .【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.3.(2019湖南常德3分)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( ) A .0B .1C .7D .8【分析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字. 【解答】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…, ∴个位数4个数一循环, ∴(2019+1)÷4=505, ∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0. 故选:A .【点评】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键. 4.(2019云南4分)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是 A.(-1)n -1x 2n -1B.(-1)n x 2n -1 C.(-1)n -1x 2n +1D.(-1)n x 2n +1【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n ,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C 5 (2019·广西贺州·3分)计算++++…+的结果是( )A .B .C .D .【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算. 【解答】解:原式===.故选:B .【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.6.(2019•湖南常德•3分)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( ) A .0B .1C .7D .8【考点】规律探究.【分析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字. 【解答】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…, ∴个位数4个数一循环, ∴(2019+1)÷4=505, ∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是0.故选A .【点评】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.7.(2019•云南•4分)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .121)1(---n n x B .12)1(--n n x C .121)1(+--n n x D .12)1(+-n n x【考点】规律探究.【分析】观察各单项式,发现奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n . 【解答】解:观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C .【点评】此题主要考查了数式规律探究.奇数项系数为正,偶数项系数为负,一般可用1)1(--n 或1)1(+-n (n 为大于等于1的整数)来调节正负.8.(2019湖北省鄂州市)(3分)如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y =x 上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A.22n B.22n﹣1C.22n﹣2D.22n﹣3【分析】直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;【解答】解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n=;故选:D.【点评】本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长是解题的关键.二.填空题1.(2019黑龙江省绥化3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.答案:2019322⎛⎫ ⎪ ⎪⎝⎭,考点:找规律解析:2 (2019•海南省•4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0 ,这2019个数的和是 2 .【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.【解答】解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2019÷6=336…3,∴这2019个数的和是:0×336+(0+1+1)=2,故答案为:0,2.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.3 (2019•黑龙江省绥化市•3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.答案:2019322⎛⎫ ⎪ ⎪⎝⎭,考点:找规律解析:4. (2019•贵州省铜仁市•4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)(﹣1)n•.【解答】解:第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.5.(2019•湖北省仙桃市•3分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是(95,32).【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【解答】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(,2,),C3的纵坐标为:sin60°•A2C3=4,代入y=x+求得横坐标为11,∴C3(11,4),∴C4(23,8),C5(47,16),∴C6(95,32);故答案为(95,32).【点评】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.6.(2019•湖北省咸宁市•3分)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384 .【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解答】解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.7.(2019•四川省广安市•3分)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017).【分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017,故答案为:(﹣22017,22017).【点评】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.8.(2019湖南益阳4分)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式13﹣2=(﹣)2.【分析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为(﹣)2(n≥1的整数).【解答】解:写出第6个等式为13﹣2=(﹣)2.故答案为13﹣2=(﹣)2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9. (2019•甘肃庆阳•4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.【分析】由题意得出从第3个数开始,每个数均为前两个数的和,从而得出答案.【解答】解:由题意知第7个数是5a+8b,第8个数是8a+13b,第9个数是13a+21b,故答案为:13a+21b.【点评】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.10. (2019·贵州安顺·4分)如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第7列的数是2025﹣6=2019,故答案为201911. (2019•黑龙江省齐齐哈尔市•3分)如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则S n=.【分析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.【解答】解:直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣∴A(﹣,0)A1(0,1)∴∠OAA1=30°又∵A1B1⊥l,∴∠OA1B1=30°,在Rt△OA1B1中,OB1=•OA1=,∴S1=;同理可求出:A2B1=,B1B2=,∴S2===;依次可求出:S3=;S4=;S5=……因此:S n=故答案为:.12.(2019•山东泰安•4分)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是(2n﹣1).【分析】根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),【点评】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2019•山东潍坊•3分)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)【分析】连OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,在Rt△OA1P1中,OA1=1,OP1=2,由勾股定理得出A1P1==,同理:A2P2=,A3P3=,……,得出P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,得出规律,即可得出结果.【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,同理:A2P2==,A3P3==,……,∴P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,…按照此规律可得点P n的坐标是(n,),即(n,)故答案为:(n,).【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了勾股定理;由题意得出规律是解题的关键.14.(2019•湖南益阳•4分)观察下列等式:2=(2-1)2,①3-22=(3-2)2,②5-62=(4-3)2,③7-12…请你根据以上规律,写出第6个等式.【考点】规律探究---二次根式化简.【分析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(-)2(n≥1的整数).【解答】解:写出第6个等式为13-2=(-)2.故答案为13-2=(-)2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15 (2019湖北仙桃)(3分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是(95,32).【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【解答】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(,2,),C3的纵坐标为:sin60°•A2C3=4,代入y=x+求得横坐标为11,∴C3(11,4),∴C4(23,8),C5(47,16),∴C6(95,32);故答案为(95,32).【点评】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.16. (2019湖北咸宁市3分)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384 .【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解答】解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1.(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.三.解答题1.(2019•四川省达州市•11分)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=2α.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=85°.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3,…,2017,2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC=n°,则∠BO1000C=(m+n)度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BA D.O是四边形ABCD内一点,且OA=OB=O D.求证:四边形OBCD是菱形.【分析】(1)①由∠A+∠B+∠C=∠BOC=α,∠D+∠E+∠F=∠DOE=α可得答案;②由∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A且∠EBF=∠ABF,∠ECF=∠ACF知∠BEC=∠F ﹣∠A+∠F,从而得∠F=,代入计算可得;③由∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC知∠ABO+∠ACO=(∠BO1000C ﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C得∠BOC=×(∠BO1000C ﹣∠BAC)+∠BO1000C,据此得出∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,代入可得答案;(2)由∠OAB=∠OBA,∠OAD=∠ODA知∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,结合∠BCD=2∠BAD得∠BCD=∠BOD,连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】解:(1)①如图2,在凹四边形ABOC中,∠A+∠B+∠C=∠BOC=α,在凹四边形DOEF中,∠D+∠E+∠F=∠DOE=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α;②如图3,∵∠BEC=∠EBF+∠ECF+∠F,∠F=∠ABF+∠ACF+∠A,且∠EBF=∠ABF,∠ECF=∠ACF,∴∠BEC=∠F﹣∠A+∠F,∴∠F=,∵∠BEC=120°,∠BAC=50°,∴∠F=85°;③如图3,由题意知∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C,∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC,则∠ABO+∠ACO=(∠BO1000C﹣∠BAC),代入∠BOC=(∠ABO+∠ACO)+∠BO1000C得∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C,解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC,∵∠BOC=m°,∠BAC=n°,∴∠BO1000C=m°+n°;故答案为:①2α;②85°;③(m+n);(2)如图5,连接OC,∵OA=OB=OD,∴∠OAB=∠OBA,∠OAD=∠ODA,∴∠BOD=∠BAD+∠ABO+∠ADO=2∠BAD,∵∠BCD=2∠BAD,∴∠BCD=∠BOD,∵BC=CD,OA=OB=OD,OC是公共边,∴△OBC≌△ODC(SSS),∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】本题主要考查四边形的综合问题,解题的关键是掌握“箭头四角形”的性质∠BOC=∠A+∠B+∠C及其运用,全等三角形的判定与性质、菱形的判定等知识点.2.(2019•山东青岛•10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.。