风力发电机的结构与分类PPT课件
合集下载
风力发电机ppt课件

1
目录
1
风力发电机概述
2
风电机组传动系统
3
偏航系统
4
变桨系统
2
风力机主要部件
风轮
叶片 轮毂
机舱
齿轮箱 发电机 偏航系统 制动系统
主要部件
Text in here
塔架
基础
3
风力发电机分类
按风轮 结构划分 水平轴风力叶机片围绕一个水平轴旋转,旋转平面 垂直轴风力风机轮围绕一个垂直轴进行旋转。
4
风力发电机分类
目前的大型兆瓦级风电机组普遍采用变桨距控制技术
7
水平轴风力机构造
8
风力机组传动系统
传动系统用来连接风轮与发电机,将风轮
产生的机械转矩传递给发电机,同时实现 图为一种目前风电机组较多采用的带齿轮 转速的变换。 箱风电机组的传动系统结构示意图。包括
风轮主轴(低速轴)、主轴轴承作、用增在速风齿
轮箱、高速轴(齿轮箱输出轴)轮联上轴的器各、
5
风力发电机分类
按功率调节方式划分:定桨距与变桨距
定桨距 风力机
叶片固定在轮毂上,桨距角 不变,风力机的功率调节完 全依靠叶片的失速性能。当
风速超过额定风速时,在叶
优点:
片后端结将构形简成单边界层分离,
使不升能力保系证数功下率降恒,定阻,力并系且数由
缺点:
增于加阻,力从增而大限,制导了致机叶组片功和率塔架 的等进部一件步承增受加的。载荷相应增大 6
17
高,发电质量好。
联轴器
齿轮箱高速轴与发电机轴的连接构件一 般采用柔性联轴器,以弥补机组运行过 程轴系的安装误差,解决主传动链的轴 系不对中问题。同时,柔性联轴器还可 以增加传动链的系统阻尼,减少振动的 传递。
目录
1
风力发电机概述
2
风电机组传动系统
3
偏航系统
4
变桨系统
2
风力机主要部件
风轮
叶片 轮毂
机舱
齿轮箱 发电机 偏航系统 制动系统
主要部件
Text in here
塔架
基础
3
风力发电机分类
按风轮 结构划分 水平轴风力叶机片围绕一个水平轴旋转,旋转平面 垂直轴风力风机轮围绕一个垂直轴进行旋转。
4
风力发电机分类
目前的大型兆瓦级风电机组普遍采用变桨距控制技术
7
水平轴风力机构造
8
风力机组传动系统
传动系统用来连接风轮与发电机,将风轮
产生的机械转矩传递给发电机,同时实现 图为一种目前风电机组较多采用的带齿轮 转速的变换。 箱风电机组的传动系统结构示意图。包括
风轮主轴(低速轴)、主轴轴承作、用增在速风齿
轮箱、高速轴(齿轮箱输出轴)轮联上轴的器各、
5
风力发电机分类
按功率调节方式划分:定桨距与变桨距
定桨距 风力机
叶片固定在轮毂上,桨距角 不变,风力机的功率调节完 全依靠叶片的失速性能。当
风速超过额定风速时,在叶
优点:
片后端结将构形简成单边界层分离,
使不升能力保系证数功下率降恒,定阻,力并系且数由
缺点:
增于加阻,力从增而大限,制导了致机叶组片功和率塔架 的等进部一件步承增受加的。载荷相应增大 6
17
高,发电质量好。
联轴器
齿轮箱高速轴与发电机轴的连接构件一 般采用柔性联轴器,以弥补机组运行过 程轴系的安装误差,解决主传动链的轴 系不对中问题。同时,柔性联轴器还可 以增加传动链的系统阻尼,减少振动的 传递。
风力发电机整体结构PPT课件

验和水平承载力试验合格
b.桩位偏差合格(1/3D) c.桩头清理(油污,砼碎块)
2021
20
2.2.钢筋检验 a.出厂合格证 b.复检合格证明 c..钢筋机械连接抗 拉试验合格证明 d.表面清理
2021
21
2.3.基础环的检验和固定
a.基础环合格证明,外观检查
b.基本尺寸的现场检验(L法兰)
风力发电机机组对基础的所产生的载荷主要 应考虑机组自重Q和倾覆力矩Mn
2021
14
7.REpower对风机基础的具体要求 混凝土和钢筋用量(如图)
2021
15
8.预埋管
布置保护电缆,但同时对基础结构 不利,施工时布置均匀相互间留有间 距,尽量减少对基础结构的影响。
2021
16
预埋管
2021
2021
8
3.基础设计满足以下两个条件
3.1.要求作用于地基上的载荷不超 过地基的容许应力,保证地基有足够 的安全储备
3.2.控制基础的沉降,使其不超过 地基容许变形值
2021
9
4.风电机组基础的种类
风力发电机基础均为钢筋混凝土独立基础, 根据风电场工程地质条件和地基承载力和风 机载荷的不同分为:天然重力基础和桩基础 (本风场选用桩基础)。
提供必要的锁紧力矩,以保障风 力发电机组的安全运行
2021
41
风机偏航系统的组成
偏航系统由风向标传感器、偏航轴承、 偏航驱动电机、偏航制动器、扭缆保护 装置等几个部分组成。
2021
42
风向标传感器
MM82风机有两个待加热的风速 计安装在气象塔上。气象塔被接 地并具有围绕风速计的雷电捕获 回路。
2021
50
解缆和扭缆保护装置
b.桩位偏差合格(1/3D) c.桩头清理(油污,砼碎块)
2021
20
2.2.钢筋检验 a.出厂合格证 b.复检合格证明 c..钢筋机械连接抗 拉试验合格证明 d.表面清理
2021
21
2.3.基础环的检验和固定
a.基础环合格证明,外观检查
b.基本尺寸的现场检验(L法兰)
风力发电机机组对基础的所产生的载荷主要 应考虑机组自重Q和倾覆力矩Mn
2021
14
7.REpower对风机基础的具体要求 混凝土和钢筋用量(如图)
2021
15
8.预埋管
布置保护电缆,但同时对基础结构 不利,施工时布置均匀相互间留有间 距,尽量减少对基础结构的影响。
2021
16
预埋管
2021
2021
8
3.基础设计满足以下两个条件
3.1.要求作用于地基上的载荷不超 过地基的容许应力,保证地基有足够 的安全储备
3.2.控制基础的沉降,使其不超过 地基容许变形值
2021
9
4.风电机组基础的种类
风力发电机基础均为钢筋混凝土独立基础, 根据风电场工程地质条件和地基承载力和风 机载荷的不同分为:天然重力基础和桩基础 (本风场选用桩基础)。
提供必要的锁紧力矩,以保障风 力发电机组的安全运行
2021
41
风机偏航系统的组成
偏航系统由风向标传感器、偏航轴承、 偏航驱动电机、偏航制动器、扭缆保护 装置等几个部分组成。
2021
42
风向标传感器
MM82风机有两个待加热的风速 计安装在气象塔上。气象塔被接 地并具有围绕风速计的雷电捕获 回路。
2021
50
解缆和扭缆保护装置
风力发电机基本结构和原理PPT课件

电机用途及分类
电机:进行机、电能量转换的电磁耦合装置。
分类:
电机
变压器
旋转电机
电机可逆原理。
直流电机
交流电机 同步电机
异步电机
同步发电机原理结构—模型图
返回
小型同步发电机的基本结构
定子:定子铁芯,定子绕组,机座 转子:转子铁芯,转子绕组,轴,集电环 电刷 其它
同步发电机工作原理总结
改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有 一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机 的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功 功率,还可以调节有功功率。
交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电 流。但是,实现可变交流励磁电流的控制是比较困难的,该控制策略可以实现机 组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力 发电机组均是采用此种控制策略。
绕线式
转子绕组接线方式:星型
转子额定电压:
419
V
转子堵转电压:
2018
V
最大转子电流:
450
A
绝缘等级:
H
级
结构型式:
IM B3
极数:
4
极
冷却方式:
机壳水泠
绕组温升限值:
105
K
转向:
从输出轴方向观察
为逆时针
防护等级:
IP54
重量:
不大于 6350 kg
异步电动机的工作原理
(1-s)Pem Pem 变压器 双馈电机
(1+s)Pem 机械功率
(1转+s子)Pe频m 率 机械功率f2 = sf1
风力发电-ppt概述

风轮旋转平面与风向垂直 叶片径向安装,与风轮旋转平面成 一角度 大型风力机叶片数少,转速高,用 于发电 小型风力机叶片数多,转速低,用 于提水
5.2 风力机基本型式
5.2 风力机
5.2 风力机基本型式
达里厄式风力机 利用翼型的升力做功 Φ型风轮弯叶片只承受张力, 不承受离心力载荷 Φ型叶片重量轻,转速高 不便采用变桨矩方法实现自启 动和控制转速 扫掠面积小
功功率;
(3)通过调节转子电流的幅值,可控制发电机定子输出的无
04
电压决定的定子磁场,从而在转速高于和低于同步转速时都能保持发电状态;
(2)通过调节转子电流的相位,控制转子磁场领先于由电网
03
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
(1)转子电流的频率为转差频率,跟随转子转速变化;
风力发电技术
PART 1
风力机系统: 桨叶 轮毂 主轴 调桨机构(液压或电动伺服 机构) 偏航机构(电动伺服机构) 刹车、制动机构 风速传感器
风力发电机系统
发电机系统: 发电机 励磁调节器(电力电子变换器) 并网开关 软并网装置 无功补偿器 主变压器 转速传感器
风力发电机系统
5.1 风力发电机组分类
02
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
双馈异步发电机的运行原理— 转子交流励磁
01
与转差率有关(约为电磁功率的0.3倍,|s|<0.3)
(4)转子绕组参与有功和无功功率变换,为转差功率,容量
05
系统特点:
变速恒频双馈异步风力发电机系统
连续变速运行,风能转换率高; 部分功率变换,变频器成本相对较低; 电能质量好(输出功率平滑,功率因数高); 并网简单,无冲击电流; 降低桨距控制的动态响应要求; 改善作用于风轮桨叶上机械应力状况; 双向变频器结构和控制较复杂; 电刷与滑环间存在机械磨损。
5.2 风力机基本型式
5.2 风力机
5.2 风力机基本型式
达里厄式风力机 利用翼型的升力做功 Φ型风轮弯叶片只承受张力, 不承受离心力载荷 Φ型叶片重量轻,转速高 不便采用变桨矩方法实现自启 动和控制转速 扫掠面积小
功功率;
(3)通过调节转子电流的幅值,可控制发电机定子输出的无
04
电压决定的定子磁场,从而在转速高于和低于同步转速时都能保持发电状态;
(2)通过调节转子电流的相位,控制转子磁场领先于由电网
03
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
(1)转子电流的频率为转差频率,跟随转子转速变化;
风力发电技术
PART 1
风力机系统: 桨叶 轮毂 主轴 调桨机构(液压或电动伺服 机构) 偏航机构(电动伺服机构) 刹车、制动机构 风速传感器
风力发电机系统
发电机系统: 发电机 励磁调节器(电力电子变换器) 并网开关 软并网装置 无功补偿器 主变压器 转速传感器
风力发电机系统
5.1 风力发电机组分类
02
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
双馈异步发电机的运行原理— 转子交流励磁
01
与转差率有关(约为电磁功率的0.3倍,|s|<0.3)
(4)转子绕组参与有功和无功功率变换,为转差功率,容量
05
系统特点:
变速恒频双馈异步风力发电机系统
连续变速运行,风能转换率高; 部分功率变换,变频器成本相对较低; 电能质量好(输出功率平滑,功率因数高); 并网简单,无冲击电流; 降低桨距控制的动态响应要求; 改善作用于风轮桨叶上机械应力状况; 双向变频器结构和控制较复杂; 电刷与滑环间存在机械磨损。
风力发电机整体结构ppt

小型风力发电机是一种用于家庭和小型商业 场所的小型风力发电机,具有灵活性和便携 性,但能量转换效率较低。
02
风力发电机结构概述
风轮叶片
01
叶片是风力发电机的核心部件之一,它的主要作用是将风能转化为机械能,进 而通过齿轮箱与主轴将机械能传递到发电机,最终将机械能转化为电能。
02
叶片的材料通常为玻璃纤维或碳纤维复合材料,具有轻质、高强度、耐腐蚀等 特点。
成部分。
风力发电机的技术发展趋势
大容量、高可靠性、长寿命、低噪音、低成本、易维护等特性 是风力发电机技术发展的趋势。
直驱式、半直驱式、双馈式等不同类型风力发电机组的技术特 点与优劣日益凸显。
海上风电技术逐渐成熟,为海上风电的大规模开发提供了技术 支持。
风力发电机的市场前景与发展趋势
全球风力发电市场规模持续扩大,海 上风电市场潜力巨大。
03
叶片的形状和尺寸会根据不同的风力发电机型号而有所不同,但通常都采用空 气动力学设计,以最大化捕风效率。
齿轮箱与主轴
齿轮箱是风力发电机中连接风轮叶片和发电机 的关键部件,它能够将风轮叶片的转速提升到 发电机所需的速度。
主轴是连接齿轮箱和发电机的轴,它能够将齿 轮箱传递的机械能传递到发电机。
齿轮箱和主轴通常采用高强度钢材制造,并经 过精密加工和热处理,以确保其高精度和长寿 命。
气动性能
叶片的气动性能与形状、材料和表面处理等有关 ,需要经过复杂的气动分析和优化。
强度与稳定性
叶片需要承受复杂的气动载荷和旋转离心力,因 此需要具备足够的强度和稳定性。
齿轮箱与主轴的工作原理
主轴设计
主轴是连接风轮叶片和发电机的重要部件,需要具备高强度、稳 定性和耐疲劳性能。
《风力发电机概述》课件

风能转换的限制因素
风能的转换受到风速、风向、地形、气候等多种因素的 影响,需要合理选址和设计才能实现高效的风能转换。
风力发电机的工作流程
风车叶片旋转
当风吹过风车叶片时,叶片受到风的压力而 旋转。
发电机发电
传动系统
叶片的旋转通过传动系统传递到发电机转子 ,使转子转动。
发电机转子的转动产生电流,经过整流和变 压后输出电能。
噪音和视觉污染
大型风力发电机组在运行过程中会产生噪音,对周围居民 的生活产生影响,同时其庞大的结构和旋转的叶片也会对 景观造成一定程度的视觉污染。
维护和管理难度
风力发电机组通常安装在偏远地区,维护和管理难度较大 ,需要专业的技术和设备支持。
风力发电的未来发展
技术进步
随着科技的进步,风力发电机组的设计和制造技术将不断改进,提高 发电效率和降低成本。
家庭小型风力发电机
家庭小型风力发电机是一种适 合家庭和小型企业使用的风力
发电机。
家庭小型风力发电机通常采用 垂直轴或水平轴设计,利用小
型涡轮机产生电能。
家庭小型风力发电机具有较低 的安装和维护成本,能够满足 家庭和小型企业的电力需求。
家庭小型风力发电机的发电量 较小,通常用于补充电网供电 或为独立电力系统提供电力。
交通设施
在高速公路、铁路等交通设施中,可以利用 风能资源建设风力发电设施,为交通设施提 供辅助电力。
D
风力发电机的工作原理
02
风能转换原理
01
风能转换原理
风力发电机利用风的动力,通过风车叶片的旋转驱动发 电机转子的转动,从而将风能转换为电能。
02
风能的特点
风能是一种清洁、可再生的能源,具有分布广泛、能量 密度低、不稳定等特点。
风能的转换受到风速、风向、地形、气候等多种因素的 影响,需要合理选址和设计才能实现高效的风能转换。
风力发电机的工作流程
风车叶片旋转
当风吹过风车叶片时,叶片受到风的压力而 旋转。
发电机发电
传动系统
叶片的旋转通过传动系统传递到发电机转子 ,使转子转动。
发电机转子的转动产生电流,经过整流和变 压后输出电能。
噪音和视觉污染
大型风力发电机组在运行过程中会产生噪音,对周围居民 的生活产生影响,同时其庞大的结构和旋转的叶片也会对 景观造成一定程度的视觉污染。
维护和管理难度
风力发电机组通常安装在偏远地区,维护和管理难度较大 ,需要专业的技术和设备支持。
风力发电的未来发展
技术进步
随着科技的进步,风力发电机组的设计和制造技术将不断改进,提高 发电效率和降低成本。
家庭小型风力发电机
家庭小型风力发电机是一种适 合家庭和小型企业使用的风力
发电机。
家庭小型风力发电机通常采用 垂直轴或水平轴设计,利用小
型涡轮机产生电能。
家庭小型风力发电机具有较低 的安装和维护成本,能够满足 家庭和小型企业的电力需求。
家庭小型风力发电机的发电量 较小,通常用于补充电网供电 或为独立电力系统提供电力。
交通设施
在高速公路、铁路等交通设施中,可以利用 风能资源建设风力发电设施,为交通设施提 供辅助电力。
D
风力发电机的工作原理
02
风能转换原理
01
风能转换原理
风力发电机利用风的动力,通过风车叶片的旋转驱动发 电机转子的转动,从而将风能转换为电能。
02
风能的特点
风能是一种清洁、可再生的能源,具有分布广泛、能量 密度低、不稳定等特点。
风力发电机组各系统介绍ppt课件

37
五、冷却润滑系统
• 作用 1、对齿轮箱各轴承、各齿面提供足够的润滑。 2、对齿轮箱进行冷却散热。
38
39
• 冷却润滑系统组成 润滑油泵:将齿箱润滑油吸入,输出压力油。
40
滤油器:将油液过滤,给齿箱提供清洁的润滑 油,通常精度为10μm。 冷却器:通过与空气的热交换,将热油冷却。 连接管路:连接各个部件。 附件:提供滤油器堵塞报警,显示回油压力。
32
33
刹车系统的控制机构-液压系统
34
四、支承系统
• 塔架的作用 支承风力发电机组的机械部件,承受各部件作用在塔 架上的力和风载
• 基础的作用 安装、支承风力发电机组,平衡运行过程中产生的各 种载荷。
35
• 塔架 材料:Q345 轮毂高度:依据项目和当地风切变指数综合考虑 而定
36
• 基础 钢筋混凝土
叶
失速、定桨 玻璃钢 23.5m 、24m 49m、50m
3 2.5° 5°
8
轮
毂
• 轮毂材料: QT400-18或 QT350-22L
• 涂层:
HEMPEL
• 与桨叶连接: 高强度螺栓
9
主轴、轴承、轴承座 • 轴承:SFK 或FAG • 主轴:材料42CrMoA • 轴承座:材料QT400-18AL
43
• 3、通过过滤器的油液进入阀组,当油液温度较低时, 油液直接流回齿轮箱各个轴承和齿面的润滑点,这时 系统只起润滑作用。当油液温度达到设定值时,通过 阀的调配,油液全部强行通过冷却器,给油液进行冷 却后再流回齿轮箱各个润滑点。
44
19
偏航齿箱
参数: • 型式: 法兰联接的同轴行星(摆线)齿轮箱 • 额定输入功率: 1.5kW • 额定输入转速: 940rpm • 额定输出转速: 1.245rpm • 额定传动比: 755 • 额定输入扭矩: 15Nm • 使用环境温度 : -30℃~+40℃ • 噪声(声功率级):≤90 dB(A) • 润滑油: Mobil或Shell、BP的合成齿轮油
五、冷却润滑系统
• 作用 1、对齿轮箱各轴承、各齿面提供足够的润滑。 2、对齿轮箱进行冷却散热。
38
39
• 冷却润滑系统组成 润滑油泵:将齿箱润滑油吸入,输出压力油。
40
滤油器:将油液过滤,给齿箱提供清洁的润滑 油,通常精度为10μm。 冷却器:通过与空气的热交换,将热油冷却。 连接管路:连接各个部件。 附件:提供滤油器堵塞报警,显示回油压力。
32
33
刹车系统的控制机构-液压系统
34
四、支承系统
• 塔架的作用 支承风力发电机组的机械部件,承受各部件作用在塔 架上的力和风载
• 基础的作用 安装、支承风力发电机组,平衡运行过程中产生的各 种载荷。
35
• 塔架 材料:Q345 轮毂高度:依据项目和当地风切变指数综合考虑 而定
36
• 基础 钢筋混凝土
叶
失速、定桨 玻璃钢 23.5m 、24m 49m、50m
3 2.5° 5°
8
轮
毂
• 轮毂材料: QT400-18或 QT350-22L
• 涂层:
HEMPEL
• 与桨叶连接: 高强度螺栓
9
主轴、轴承、轴承座 • 轴承:SFK 或FAG • 主轴:材料42CrMoA • 轴承座:材料QT400-18AL
43
• 3、通过过滤器的油液进入阀组,当油液温度较低时, 油液直接流回齿轮箱各个轴承和齿面的润滑点,这时 系统只起润滑作用。当油液温度达到设定值时,通过 阀的调配,油液全部强行通过冷却器,给油液进行冷 却后再流回齿轮箱各个润滑点。
44
19
偏航齿箱
参数: • 型式: 法兰联接的同轴行星(摆线)齿轮箱 • 额定输入功率: 1.5kW • 额定输入转速: 940rpm • 额定输出转速: 1.245rpm • 额定传动比: 755 • 额定输入扭矩: 15Nm • 使用环境温度 : -30℃~+40℃ • 噪声(声功率级):≤90 dB(A) • 润滑油: Mobil或Shell、BP的合成齿轮油
电机学chap13风力发电机课件

c)切向式转子磁路结构 d)混合转子磁路结构
b)磁极凹入式
图13-5 径向磁通永磁风力发电机
普通高等教育“十一五”国家级规划教材
13.风力发电机
二、直驱式永磁风力发电机——结构类型
图13-6 轴向磁通永磁风力发电机
图13-7 横向磁通永磁风力发电机
普通高等教育“十一五”国家级规划教材
13.风力发电机
3)同步运行状态:此时n =ns, f2为零,转子中的电流为直流,电网与转子绕组之 间无功率交换,励磁变换器向转子提供直流励磁,此时可等效为同步发电机。
普通高等教育“十一五”国家级规划教材
13.风力发电机
三、双馈式异步风力发电机——基本方程
1.假定条件 2.基本方程
U 1 E1 I1(r1 jx1 )
3. 比较永磁风力发电机和双馈式异步发电机的结构差异。 4. 试分析直驱式永磁发电机中采用永磁材料所带来的问题。
普通高等教育“十一五”国家级规划教材
2
定速度,45段对应恒功率阶段。 0
1
ωs
并网阶段
恒功率阶段
4
5
3
ωn
ω
图13-20 双馈式异步发电机的运行区间
普通高等教育“十一五”国家级规划教材
13.风力发电机
➢思考题
1. 低速运行对直驱式永磁风力发电机的设计提出了什么样 的要求?
2. 为什么双馈式异步发电系统变流器的体积、容量一般要 小于同功率等级直驱式风力发电系统变流器?
➢ 直驱式永磁风力发电机由定子 和转子两部分组成,定、转子 之间为气隙。
➢ 电机定子包括铁心和绕组,绕 组为三相对称绕组,各相绕组 轴线空间相差120角度。
➢ 电机转子包括转轴、转子轭和 永磁材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)联轴器
增速器与发电机之间用联轴器连接,为
了减少占地空间,往往联轴器与制动器设计
在一起。风轮轴与增速器之间也有用联轴器 的,称低速联轴器。如图(2-4)(a)中4和9。 (4)制动器
制动器是使风力发电机停止运转的装置,
也称刹车。制动器有手制动器、电磁制动器 和液压制动器。当采用电磁制动器时,需有 外电源;当采用液压制动器时,除需外电源
17
②定桨距叶尖失速控制调速装置。定桨距叶尖
失速控制调速装置是当代风力发电机常采用的主要 调速方式之一。定桨距就是叶片的安装角是固定的, 也就是叶片固定在轮毂上不能转动。在叶尖上有一 段叶片是可以转动的,在额定风速下叶尖上可动的 一段叶片与叶片保持一致,当风速超过额定风速时, 可动叶尖在液压或机械动力的驱动下,转一定角度, 使可动叶尖失速对风形成阻力,风愈大则转的角度 愈大对风的阻力也愈大,从而保持叶片运转在额定 风速下。当风速减小时上面的过程正好相反。当风 速达到停机风速时,可动叶尖对风轮运转完全形成 阻力,致使风轮停止转动,也称空气动力制动或刹
外,还需泵站、电磁阀、液压油缸及管路
等。
10
11
(5)发电机 叶片接受风能而转动最终传给发电机,发电机
是将风能最终转变成电能的设备。 风力发电机土常用的发电机有四种:
①直流发电机,常用在微、小型风力发电机上。直 流电压12,24,36V等。中型风力发电机也有用直 流发电机的
②永磁发电机,常用在小型风力发电机上,电压一 般为115,127V等,有直流也有交流。永磁交流发 电机在中、大型风力发电机上尚未得到使用,主要 有些技术问题还未解决。现在我国已经发明了交流 电压440/240V的高效永磁交流发电机,可以做成 多极低转速,特别适合风力发电机。
叶片安装在轮毂上,有些调速装置
就安装在轮毂内。如图(2-4)(b)
8
(2)增速器
由于风轮的转速低而发电机转 速高,为匹配发电机,要在低速的 风轮轴与高速的发电机轴之间接一 个增速器。增速器就是一个使转速 提高的变速器。增速器的增速比i是 发电机额定转数nD与风轮额定转数n 的比,即i=nD/n。
9
4
(1)风轮 叶片安装在轮毂上称作风轮,
它包括叶片、轮毂等。风轮是风力 发电机接受风能的部件。现代的风 力发电机的叶片数,常为1-4枚叶片, 常用的是2枚或3枚叶片。由于叶片 是风力发电机接受风能的部件,所 以叶片的扭曲、翼型的各种参数及 叶片结构都直接影响叶片接受风能 的效率和叶片的寿命。
5
6
叶片尖端在风轮转动中所形成圆的 直径称风轮直径,亦称叶片直径。
叶片又可分为变桨距叶片和固定桨 距叶尖可变桨距或叶尖有阻尼器两种叶 片,其作用都是为了调速。
从叶片结构上又可分为木制叶片、 铝合金挤压成型的等弦长叶片、钢制叶 片、钢纵梁玻璃钢叶片、玻璃钢叶片等。
7
由于叶片在转动中,距转动中心不 同半径的线速度也不同,接受风能也不 同。为了叶片各部接受风能大体一致, 叶片往往做成从叶根至叶尖是渐缩的, 并且扭转一定角度,这种叶片称扭曲叶 片。现代大、中型风力发电机都采用扭 曲叶片。
第四讲 风力发电机的结构与 分类
栗文义
1
4、1 风力发电机的分类 风力发电机分类按照不同的标准有不同
的分类方法: 按风力机的功率分类,可分为: 微型风力发电机,其额定功率为50~100W。 小型风力发电机,其额定功率为1~10KW。 中型风力发电机,其额定功率为10~100KW。
大型风力发电机,其额定功率为100KW以上。
12
③同步交流发电机,它的电枢磁场与主 磁场同步旋转,同步转速nD=60f/p。 ④异步交流发电机,它的电枢磁场与主 磁场不同步旋转,其转速比同步转速略 低。当并网时转速应提高。
13
2019/10/13
14
(6)塔架 塔架是支撑风力发电机的支架。塔
架有型钢桁架结构的,有圆锥型钢管和 钢筋混凝土的等三种形式。同时塔架又 分为硬塔,柔塔,甚柔塔。硬塔的固有 频率大于Kn,其中K为叶片数,n为风轮 转数;柔塔的固有频率在Kn和n之间; 甚柔塔的固有频率小于n。
2
按风轮轴安装形式分类,可分为: 水平轴风力发电机。 垂直轴风力发电机。
3
4、2水平轴风力发电机的结构
水平轴风力发电机是目前世界各国
最为成功的一种形式,而生产垂直轴风 力发电机的国家很少,虽然垂直轴风力 发电机一些优点但垂直轴风力发电机效 率低、需重启设备。 水平轴风力发电机主要由风轮、风轮轴、 低速联轴器、增速器、高速轴联轴器、 发电机、塔架、调速装置、调向装置、 制动器等组成。
为防止钢制塔架生锈,往往对钢制 塔架热镀锌。
15的变化而变化。为使风轮运转在所 需要的额定转速下的装置称为调速装置。
当风速超过停机风速时,调速装置 会使风力发电机停机。调速装置只在额 定风速以上时调速。
目前世界各国所采用的调速装置主 要有以下几种。
16
①可变桨距调速装置。变桨距调速装置是现代 风力掣电机主要调速方式之一。在图2-4中,微机发 出指令让叶片增大安装角以减少由于风速增大使叶 片转速加快的趋势,电磁阀打开,变桨距液压油缸 动作,拉动叶片向叶片安装角增大的方向转动一定 角度使叶片接受风能减少,维持风轮运转在额定转 速范围内。当风速减小时,微机指令的动作与上述 相反,减小叶片的安装角以使叶片接受风能增加, 维持风轮转速在额定转速的范围内。变桨距调速装 置也有多种形式,上述为液压变桨距调速装置,变 桨距调速装置还有一种由调速电机来驱动的。这种 由调速电机驱动的变桨距调速也是当代风力发电机 主要的调速方式之一。
车。
18
③离心飞球调速装置。离心飞球调速装置是风
力发电机最早的变桨距调速装置。现代风力发电已 很少采用。离心飞球调速装置最典型结构是绞接在 轮毂上的飞球随风轮转动而转动,在额定风速下, 飞球的离心力与弹簧压力相平衡;当风速超过额定 风速时,风轮转速加快,飞球离心力增大,克服弹 簧压力向外伸开,飞球另一端拐轴就驱动大齿轮转 功。并驱动与其啮合的小齿轮转动,而小齿轮轴正 是叶片可变桨距的轴,因此叶片向其安装角增大的 方向转动,使叶片向减少迎风面,保持风轮运转在 额定转速范围内。当风速减小 时,飞球调速过程恰