粉煤灰-偏高岭土基地质聚合物胶凝材料的研究

合集下载

粉煤灰地聚合物材料性能及应用的研究进展

粉煤灰地聚合物材料性能及应用的研究进展

粉煤灰地聚合物材料性能及应用的研究进展俞华栋【摘要】粉煤灰地聚合物在微观结构上与传统偏高岭土基地聚合物相似,但制备成本大幅降低,且某些性能甚至还会超越偏高岭土基地聚合物,因此受到国内外学者的高度关注.针对粉煤灰基地聚合物反应机理,着重介绍了粉煤灰特性、激发剂及水组分含量对所得地聚合物性能的影响,阐述了粉煤灰地聚合物在处置利用固废中的应用.【期刊名称】《山西建筑》【年(卷),期】2018(044)016【总页数】3页(P81-83)【关键词】粉煤灰;地聚合物;性能【作者】俞华栋【作者单位】浙江天地环保科技有限公司,浙江杭州 310018【正文语种】中文【中图分类】TU502地质聚合物(Geopolymer,简称地聚物)是一类新型的无机胶凝材料,主要通过含铝硅酸盐的矿物在碱性环境中反应生成无机聚合物[1]。

地聚合物拥有无规则的三维网状结构,其主体由硅氧四面体、铝氧四面体构成,空隙中填充了碱金属离子。

其链接结构以离子键和共价键为主,范德华力、氢键为辅,同时具有高分子材料、水泥及陶瓷材料的结构特点。

因此地聚物可呈现出良好的力学性能、耐久性、耐化学腐蚀、耐高温和环境友好等优点[2],在耐火隔热材料、建筑材料、重金属固化和核废料固封等方面得到广泛的应用[3,4]。

与传统的胶凝材料相比,可以用于制备地聚合物的原料包容度高。

富含硅铝成分的矿物、固废、尾矿,如粉煤灰、矿渣和煅烧高岭土等均用作制备地聚合物的原材料。

此外,其制备工艺简单,制备过程的能耗低。

在常压条件下,通过使用一些激发剂还可促使其强度快速发展,整个环节的碳排放量仅为传统硅酸盐水泥的10%~20%,因此,地聚物是一类优秀的绿色建筑材料[2]。

1 地聚合物制备出于绿色环保的考虑,现阶段制备地聚合物的原料为多种含铝硅酸盐矿物和工业固体废弃物。

在碱激发条件下,一些典型矿物的活性顺序按以下顺序依次增大:高岭土、火山灰、粉煤灰、炉渣、沸石、偏高岭土[5]。

由于粉煤灰(含有SiO2和Al2O3)与天然铝硅原材料在组成及结构上的相似性,其成为制备地聚合物一种原材料。

粉煤灰地质聚合物材料的实验研究

粉煤灰地质聚合物材料的实验研究

图 2 粉 煤 灰 比 表 面 积 随粉 屠 时 间 的 变化
可 以看 出 , 粉煤 灰粉磨 后 的 比表 面积先 增大 后减
[ 键 词 ] 煤 灰 ; 质 聚合 物 ; 激 发 ; 观分 析 关 粉 地 碱 微 [ 图分 类 号 ]Q17X 0 中 T 7 ;7 5 [ 献标志码 ] 文 A [ 文章 编 号 ]0 3 1 2 (0 0 一 3 0 2 一 3 10 — 3 4 2 1 )0 — 0 3 O
O 前 言
论文 利用 粉 煤灰 为 主要原 料 . 以水 玻 璃 为激 发剂 制 备 地质 聚合 物 , 确定 制备 地 质 聚合物 材 料 的最佳 工 艺条 件 , 分 析影 响材 料性 能 的 主要 因素 。 并
1 原 材 料 与 实 验 方 法
11 原 材 料 .
图 1 粉 煤 灰 XRD 分 析
2 世 纪 建 筑 材 料 1
2 1 00
随着粉磨 时间 的继续延 长 , 小颗粒 又不 断发生团 聚…。 粉 煤灰经 过一 个小 时 的粉 磨 以后 , 积 比表面积 体
也 由 02 1 /n 增 大 到 03 6m2 I 。 图 2给 出 了 . cl 6 m2 . /T 8 cI 粉煤灰 比表 面积 随粉磨 时 间变 化 的规律 。
21 粉煤灰 比表面 积对 地 质聚 合 物性 能 的影 响 .
对粉 煤灰 进 行粉 磨有 利 于提 高其 反 应活性 , 并 但
非粉 磨 时 间 越长 越 好 , 是 存 在一 个 最 佳 值 , 而 随着 粉 磨 的进 行 , 面致 密膜 不 断被 打 破 , 粒 逐渐 变小 , 表 颗 但
1 . 实 验 方 法 2 实 验 过 程 按 照 G / 1 6 1 19 《 泥 胶 砂 强 度 BT 7 7 — 9 9 水

粉煤灰在地聚合物胶凝材料中的作用

粉煤灰在地聚合物胶凝材料中的作用

粉煤灰在地聚合物胶凝材料中的作用你知道粉煤灰吧?对,就是那种从煤电厂排出来的灰灰,是煤烧完后的废料,平时看着挺不起眼,灰扑扑的,仿佛没什么用处。

不过,你要是告诉我它能变成一种神奇的建筑材料,能当作地聚合物胶凝材料的原料,那我估计你一定要给我一颗震惊的表情包了!听上去有点不可思议是吧?但是,这种“废物”竟然可以变得大有作为,简直是“灰飞烟灭”之后的一次华丽逆袭。

你想啊,这粉煤灰可不仅仅是垃圾,它可是有着超级强大的潜力。

地聚合物胶凝材料?是不是听上去高大上,又让人觉得有点陌生?说白了,它就是一种可以替代水泥的环保材料。

为了搞环保、减排,科学家们早就开始“琢磨”怎么用这些“废料”来替代传统水泥。

结果,粉煤灰就在这里面找到了自己的位置。

你看,那些煤电厂烧出来的灰,成分复杂,但也因此充满了挑战。

既然你这么想,粉煤灰本身富含硅和铝,这两个成分对制造地聚合物胶凝材料可是至关重要的。

也就是说,粉煤灰本身就是一个“原材料宝藏”。

它们经过特定的化学反应,可以和碱性物质发生“亲密接触”,产生一种像水泥一样坚硬的材料,简直就是“白色灰姑娘”的逆袭。

现在你可能会想,既然这么好,那它会不会有什么“隐性”问题啊?还真没有,粉煤灰的运用早就经过了充分的研究,不仅耐高温,抗腐蚀,连一些对环境有害的物质都能有效地被固定在其中。

这样一来,原本在煤电厂排放到空气中的污染物就被“圈养”在地聚合物里,大家都知道,保护环境可是一项重大的社会责任嘛。

所以说,粉煤灰在建筑中的应用,不仅解决了废弃物的处理问题,还能让我们居住的环境更安全,更健康。

好啦,咱们再说说它的强度。

你别看它是煤烧出来的灰,实际它的强度可是很惊人的。

相比传统的水泥,粉煤灰做成的地聚合物材料,抗压、抗拉能力都是不逊色的,甚至在某些情况下,它能发挥更好的作用。

就像某些“低调”的人,默默地做着比别人都强的事儿,等到需要的时候,才会一鸣惊人。

粉煤灰也是这样,可能你初看它“只是一堆灰”,但经过一番加工之后,它的“实力”简直爆棚,建筑行业的朋友们都开始拍手称快。

高钙粉煤灰作为添加剂制备赤泥偏高岭土胶凝材料

高钙粉煤灰作为添加剂制备赤泥偏高岭土胶凝材料
关键 词 : 钙 粉 煤 灰 ; 泥 ; 高 岭 土 ; 凝 材 料 高 赤 偏 胶 中图 分 类 号 : Q12 7 T 7.8 文献 标 识 码 : A 文 章 编 号 :0 67 3 ( D8 O 一7 5O 1 o —9O 2 O ) 6O 4 一6
土 聚水 泥是一 种不 同于普 通硅 酸盐 水泥 的新 型碱 激发 胶 凝材 料 , 本结 构 为 硅 氧 四面 体 和铝 氧 四 基
面体 , 以离子 键和共 价键 为主 , 范德 华键 为辅 , 有有机 高 聚物 的链 接结 构 的无 机聚合 物 , 具 因而显 示 出独 特 而优 异的性 能[ . 1 早在 1 8 ] 9 1年 , . e g r s[ 获得利 用火 山灰 制造 胶凝材 料 的专利 , 国人 Da — DrB n t o s ] F 2 法 v io i [ 获得 获得 利用粘 土制 备胶 凝材 料 的专利. a io i d vt 3 s D vd vt L ga d4获得 利 用加 压技 术 制备 土 聚 s与 e rn [ 水 泥专利 . a io i D vd vt Nioa [ 获得采 用 纤维 增 强 复 合 技术 生 产 土 聚 水 泥 的 专利 . 对 于 硅 酸盐 水 s与 c ls5 ] 相
作者 简 介 : 斯 宁 ( 94 ) 男 , 士 , 师 , 云 1 7一 , 博 讲 主要 从 事 电子 材 料 与 器 件 、 学 激 发胶 凝 材 料 方 面 的研 究 与 开 发 化
物 质进一 步反应 , 浆体 强度 则继续 增 长 , 利于 材料 强度 的贡献 . 有
基于 固体废弃 物 的综合 利用 , 为更 好 的建设 资源 节约 型 、 环境 友 好型社 会. 本文 尝试利 用煤 矸石 、 赤
泥、 高钙粉 煤灰与 钠水 玻璃混 合制 备偏 高岭 土基 胶凝 材料 . 中煤矸 石 是煤 炭 生 产 、 其 加工 过 程 中产 生 的 固体 废弃物 ; 高钙 粉煤 灰是火 力发 电厂 燃用 褐煤 或次 煤后 排 放 的灰 渣 ; 泥是 铝 工业 尾 矿. 赤 这些 固体 废

偏高岭土-粉煤灰基地聚物砂浆力学性能研究

偏高岭土-粉煤灰基地聚物砂浆力学性能研究

第40卷第4期2021年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.40㊀No.4April,2021偏高岭土-粉煤灰基地聚物砂浆力学性能研究管柏伦1,郭荣鑫1,齐荣庆1,2,付朝书1,张㊀敏1,张文帅1(1.昆明理工大学建筑工程学院,云南省土木工程防灾重点实验室,昆明㊀650500;2.西南林业大学土木工程学院,昆明㊀650500)摘要:本研究以偏高岭土和粉煤灰为原料,以不同模数(0.75㊁1.00㊁1.25㊁1.50)和碱浓度(质量分数)(40%㊁44%㊁48%)的钾水玻璃为碱激发剂,微珠㊁蛭石和珍珠岩为细骨料来制备地聚物砂浆试件㊂主要通过测试地聚物砂浆试件常温及1000ħ高温作用后的抗压强度,探明碱激发剂模数和浓度对砂浆试件力学性能的影响,并利用XRD㊁SEM 手段对地聚物的物相组成及微观形貌进行表征㊂结果表明:当碱浓度不变时,除40%碱浓度外,其余试件的抗压强度随模数的增大先升高后略微降低或者基本不变㊂当模数不变时,除模数为0.75的试件外,其余试件的抗压强度随碱浓度的增大先升高后降低㊂当模数为1.00且碱浓度为44%时,试件的抗压强度最高,历经1000ħ高温后地聚物砂浆试件相对残余强度仍能维持42%及以上,该温度下水化产物为白榴石(KAlSi 2O 6)和钾霞石(KAlSiO 4),地聚物在常温下有大量絮状的水化产物生成且微观结构较为致密㊂关键词:偏高岭土-粉煤灰基地聚物;砂浆;抗压强度;碱浓度;模数;高温;微观结构中图分类号:TU526㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2021)04-1250-08Mechanical Properties of Geopolymer Mortar Based on Metakaolin and Fly AshGUAN Bolun 1,GUO Rongxin 1,QI Rongqing 1,2,FU Chaoshu 1,ZHANG Min 1,ZHANG Wenshuai 1(1.Yunnan Key Laboratory of Disaster Reduction in Civil Engineering,Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China;2.School of Civil Engineering,Southwest Forestry University,Kunming 650500,China)收稿日期:2020-10-16;修订日期:2021-01-18基金项目:国家自然科学基金(52068038);云南省教育厅科学研究基金(2019J0044)作者简介:管柏伦(1996 ),男,硕士研究生㊂主要从事碱激发胶凝材料等相关研究工作㊂E-mail:1650941424@通信作者:齐荣庆,博士,讲师㊂E-mail:qrqing@Abstract :In this study,geopolymer mortar specimens were prepared with metakaolin and fly ash as raw materials,potassium sodium silicate with different modulus (0.75,1.00,1.25,1.50)and alkali concentration (mass fraction)(40%,44%,48%)as alkali activator,and microbeads,vermiculite and perlite as fine aggregate.The compressive strength of geopolymer mortar specimens at room temperature and 1000ħhigh temperature were tested,the influences of the modulus and concentration of alkali activator on the mechanical properties of mortar specimens were explored,and the phase composition and micro-morphology of geopolymer were characterized by XRD and SEM.The test results show that when the alkali concentration is unchanged (except concentration of 40%),the compressive strength of most specimens increase first and then decrease slightly or remain basically unchanged with the increase of modulus.When the modulus remains unchanged (except modulus of 0.75),the compressive strength of most specimens increase first and then decrease with the increase of alkali concentration.When the modulus is 1.00and the alkali concentration is 44%,the compressive strength of the specimen is the highest.After 1000ħhigh temperature,the relative residual strength of the sample still maintains at 42%or above.The hydration products after 1000ħare leucite (KAlSi 2O 6)and potassiumnephritic (KAlSiO 4).And a large number of flocculent hydration products are formed at room temperature and the microstructure is relatively compact.Key words :geopolymer based on metakaolin and fly ash;mortar;compressive strength;alkali concentration;modulus;high temperature;microstructure第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1251㊀0㊀引㊀言建筑火灾频发使得建筑结构安全面临严重威胁,而混凝土作为传统的建筑材料在温度超过1000ħ时强度几乎损失殆尽[1]㊂因此,为混凝土加固一层耐高温隔热材料来提高其耐火性能非常必要,而地聚物和轻质隔热填料在耐高温和隔热方面分别发挥着其优越的性能㊂地聚物是指富含硅铝质原料的物质在碱的作用下生成[SiO 4]和[AlO 4]三维网络结构的新型胶凝材料[2],因其具有早期强度高和耐高温性能优异的特点而被广泛研究[3]㊂有学者研究表明,粉煤灰基和偏高岭土基地聚物的耐高温性能优良:Duan 等[4]用粉煤灰和偏高岭土以1ʒ1(质量比)制备的地聚物在1000ħ高温后恒温2h 的抗压强度损失率仅为30%;郑娟荣等[5]研究表明以标准砂为细骨料时,偏高岭土基地聚物砂浆在1000ħ高温后恒温2h 仍有50%以上相对残余抗压强度㊂还有学者表示碱激发剂的模数和浓度是影响地聚物性能的关键因素:侯云芬等[6]认为K 2SiO 3溶液激发效果最佳,随着其浓度的提高,粉煤灰基地聚物的抗压强度逐渐提高,当浓度为2mol /L 时,强度达到最大;但Palomo 等[7]认为增大激发剂碱浓度会使得溶液pH 值较高,增加地聚物的聚合时间,限制离子的迁移和凝结硬化,从而致使力学性能下降;陈士堃[8]认为碱浓度在25%~35%之间,模数较高的偏高岭土基地聚物具有较好的力学性能㊂Wang 等[9]认为地聚物的强度会随着模数的减小而持续增大;但郑娟荣等[10]认为地聚物的抗压强度都随水玻璃模数的增加先升高后降低在模数为1.4时达到峰值;李启华等[11]发现碱激发剂模数在1.2~1.4之间㊁掺量为25%(水玻璃占地聚物的质量分数)左右的水玻璃对于粉煤灰基系统早期强度发展较好㊂除地聚物外,微珠㊁蛭石和珍珠岩等轻质材料也因其耐高温和隔热性能良好被广泛应用于建筑中:姚韦靖等[12]认为玻化微珠经1000ħ高温后结构仍旧完好,是性能极佳的耐高温材料;吴仕成等[13]发现随着玻化微珠掺量的增加,水泥基材料导热系数逐渐减小,隔热性能得到提升;程小伟[14]以膨胀珍珠岩等为无机隔热材料制备隧道防火涂料,当涂料涂层10mm 时,耐火极限可达2.5h;夏海江等[15]表示膨胀蛭石具有难熔的结构骨架,轻质低导热,能应用于超过1000ħ的环境中㊂综上所述,地聚物和隔热材料都有着良好的耐高温性能,但对于同时使用地聚物和保温隔热材料并探究其高温后抗压强度的研究较少,而碱浓度和模数对地聚物性能的影响存在争议㊂因此,本文选用钾水玻璃(复掺氢氧化钾调整模数)作为碱激发剂,粉煤灰和偏高岭土复掺为硅铝原料,微珠㊁蛭石和珍珠岩作为隔热填料,研究碱激发剂的浓度和模数对地聚物砂浆的力学性能的影响,并采用XRD㊁SEM 等技术手段对地聚物物相组成及微观结构进行表征㊂1㊀实㊀验1.1㊀原材料图1㊀偏高岭土和粉煤灰XRD 谱Fig.1㊀XRD patterns of metakaolin and fly ash所用偏高岭土(MK)为河南省巩义市辰义耐材磨料有限公司生产,粒径为10μm;粉煤灰(FA)为云南省宣威火电厂生产的Ⅰ级粉煤灰㊂粉煤灰和偏高岭土化学组成见表1,XRD 谱见图1㊂碱激发剂采用河北省永清县聚利得化工有限公司所生产的钾水玻璃(硅酸钾溶液),其中SiO 2和K 2O 的质量分数分别为25.16%㊁9.57%,钾水玻璃的初始模数为2.71,加入KOH 将模数调节为需求值,KOH 为天津市风船化学试剂科技有限公司所产分析纯,KOH 含量ȡ85%(质量分数)㊂微珠为河南省巩义市辰义耐材磨料有限公司生产,粒径为0.106~0.212mm㊂蛭石为河北灵寿县强东矿产品加工厂生产,粒径为0.25~0.425mm㊂珍珠岩为昆明吉祥保温材料有限公司所生产,粒径为0.106~0.212mm㊂试验所用拌合水为自来水㊂由表1可知,偏高岭土和粉煤灰的化学组成主要为SiO 2和Al 2O 3,分别占质量的99%和77.19%㊂图1是1252㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷偏高岭土和粉煤灰的XRD谱,由图可知,粉煤灰的结晶相较多,主要为石英(SiO2)和莫来石(3Al2O3㊃2SiO2);偏高岭土的主要衍射峰在2θ=20ʎ~30ʎ之间,该衍射峰相对较弱,主要为无定型态,结晶相较少;主要晶相有锐钛矿(TiO2)和石英(SiO2)㊂表1㊀偏高岭土和粉煤灰的主要化学组成(质量分数)Table1㊀Main chemical composition of fly ash and metakaolin(mass fraction)/% Material SiO2Al2O3CaO TiO2MgO K2O Na2O Fe2O3SO3P2O5 MK55.0043.000.100.200.050.500.050.50 FA53.0024.19 3.30 2.86 1.34 1.730.348.090.670.24 1.2㊀配合比试验设计12个配合比砂浆试件㊂碱浓度以K2O的当量计,占硅铝质原料(偏高岭土和粉煤灰质量和)的40%㊁44%㊁48%;偏高岭土和粉煤灰按质量比1ʒ1混合㊂碱激发剂的模数分别为0.75㊁1.00㊁1.25㊁1.50㊂微珠等保温材料具有较高的吸水率,经过多次试配确定水胶比为0.9㊂钾水玻璃中固含量计入胶凝材料计算,含水量计入用水量计算㊂隔热填料中微珠㊁蛭石㊁珍珠岩按质量比5ʒ3ʒ4混合㊂详细配合比见表2㊂表2㊀试验配合比Table2㊀Mix ratio of specimens/g No.MK FA Water glass KOH Water Insulation filler40%-0.75302.3302.3460.2235.7900.21088.140%-1.00302.3302.3613.6218.2932.41088.140%-1.25302.3302.3767.0200.7964.61088.140%-1.50302.3302.3920.4183.3996.91088.144%-0.75302.3302.3506.2259.3935.81088.144%-1.00302.3302.3675.0240.0971.21088.144%-1.25302.3302.3843.7220.81006.71088.144%-1.50302.3302.31012.5201.61042.11088.148%-0.75302.3302.3552.3282.9971.41088.148%-1.00302.3302.3736.4261.91010.11088.148%-1.25302.3302.3920.4240.91048.71088.148%-1.50302.3302.31104.5219.91087.41088.1㊀㊀注:40%-0.75表示碱浓度为40%且模数为0.75的配比,其余配比以此类推㊂1.3㊀试件制备每个配合比成型6个试件,其中3个试件用于常温测试,另外3个试件用于高温测试㊂试件尺寸为70.7mmˑ70.7mmˑ70.7mm,在基础配合比不变的情况下,调整水胶比为0.6,每组配合比成型净浆试件选出2个用于XRD物相分析,净浆试件尺寸为25mmˑ25mmˑ25mm㊂试件装模完毕后,在75ħ的环境中固化12h养护,然后拆模,随后放入标准养护室(温度(20ʃ1)ħ,湿度>95%)养护至7d㊂1.4㊀试验方法试件达到养护龄期后取出,一部分试件进行高温试验,高温试验采用编程式箱式电炉以10ħ/min的升温速率将试件加热到目标温度1000ħ,恒温3h,待试件自然冷却后与常温组试件一起进行抗压强度测试(所报道的强度值为3个平行试件的平均值)㊂抗压测试结束后选取试件中心碎块放入丙酮溶液中浸泡3d 以终止其水化,然后取出碎块置于真空干燥皿中干燥,选取部分样品使用美国FEI公司发射丝扫描电子显微镜观察微观形貌,选取压碎净浆试件样品研磨后过0.08mm方孔筛,粉样封存于试样袋中,然后使用日本理学公司XRD Rigaku Ultima IV型X射线衍射仪进行物相分析㊂2㊀结果与讨论2.1㊀抗压强度地聚物砂浆养护7d后的抗压强度见表3,表4给出了高温后地聚物砂浆的相对残余抗压强度,即相同第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1253㊀模数相同碱浓度下高温作用后的抗压强度与常温时的抗压强度之比㊂表3㊀地聚物砂浆的抗压强度Table 3㊀Compressive strength of geopolymer mortar/MPa Alkali concentration /%0.75-20ħ 1.00-20ħ 1.25-20ħ 1.50-20ħ0.75-1000ħ1.00-1000ħ1.25-1000ħ1.50-1000ħ407.08ʃ0.8016.52ʃ1.9418.44ʃ1.3920.31ʃ2.07 4.64ʃ0.417.81ʃ0.627.74ʃ0.608.86ʃ0.47448.08ʃ1.1022.24ʃ1.1020.84ʃ0.1021.24ʃ1.42 6.06ʃ0.7112.13ʃ0.5610.12ʃ1.169.77ʃ0.914810.28ʃ1.2420.28ʃ0.6219.80ʃ1.4618.88ʃ2.159.14ʃ0.8210.24ʃ0.959.38ʃ1.247.87ʃ0.68㊀㊀注:0.75-20ħ表示模数为0.75在20ħ时试件的强度,40%表示碱浓度为40%时试件强度,其余以此类推㊂表4㊀高温后地聚物砂浆的相对残余抗压强度Table 4㊀Relative residual compressive strength of geopolymer mortar after high temperatureAlkali concentration /%0.75 1.00 1.25 1.50400.660.470.420.44440.750.550.490.46480.890.500.470.42㊀㊀注:0.75表示模数为0.75的试件经历1000ħ高温后的强度与该模数下常温试件强度之比,40%表示碱浓度为40%的试件经历1000ħ高温后的强度与该碱浓度下常温试件强度之比㊂2.1.1㊀模数对强度的影响图2㊀激发剂的模数对地聚物砂浆抗压强度的影响Fig.2㊀Effect of modulus of activator on compressive strength of geopolymer mortar 碱激发剂模数对地聚物砂浆抗压强度的影响见图2㊂由图可知,常温下当水玻璃的模数为0.75时,除48%-20ħ组抗压强度达到10.28MPa 外,其余各组强度均低于10MPa㊂这可能是因为水玻璃模数太低使得其水化过程中产生Si(OH)4太少,而Si(OH)4有利于消除粉煤灰周围硅氧阴离子团的过饱和现象从而促进粉煤灰的解聚[16],因此粉煤灰解聚不完全使得砂浆强度偏低㊂当模数为1.00时,除个别配比外,其余试件的强度均达到最高,其中44%-20ħ组强度最高,为22.24MPa㊂这可能是因为水玻璃中低聚合度硅氧四面体的含量增加进一步促进硅铝原料的溶解解聚,生成更多胶体沉淀,使得强度升高[16-17]㊂当模数继续升高至1.50时,大部分配比试件的强度都略有降低㊂这可能是因为在较高的模数下,高聚合度硅氧四面体含量增加,不利于原料中硅铝相的解聚,抑制缩聚反应过程,导致强度降低[18]㊂在经历1000ħ高温后,地聚物砂浆的强度较常温下普遍降低,其强度随模数的变化规律与常温时大致相同㊂由表4可知,高温后试件的相对残余抗压强度在42%~89%之间;而水泥胶砂试件在1000ħ高温后仅有15.8%的相对残余抗压强度[19],因此该材料具有较好的耐高温性能㊂当模数为1.00且碱浓度为44%时,试件在经历1000ħ高温后残余强度达到最高,为12.13MPa,仍有55%相对残余强度,为最佳耐高温组㊂该材料具有较好的耐高温性能可能是因为部分未反应的颗粒在高温下发生烧结形成更强的结合力使得强度增加,从而抵消了一部分在高温下引起的热损伤[20]㊂2.1.2㊀碱浓度对强度的影响图3描述了激发剂碱浓度对地聚物砂浆抗压强度的影响㊂由图可知,除0.75模数外,其余各模数下试件的强度均随着碱浓度的增大先增大后减小㊂当碱浓度为44%,各组强度达到最高,这可能是因为随着碱浓度的升高,原料颗粒溶解更充分,生成更多的凝胶体来填充多孔体系,使得结构更为致密[17]㊂而当碱浓度继续升高至48%时,各组强度反而下降,这可能是因为在较高的浓度下,水化反应太快,水化产物附着在粉1254㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷图3㊀激发剂的浓度对地聚物砂浆抗压强度的影响Fig.3㊀Effect of the concentration of activator on compressive strength of geopolymer mortar 煤灰表面来不及分散,水化难以继续进行而导致强度降低[17]㊂后续扫描电镜的观测也证实了这点㊂在经历1000ħ高温后,当模数为1.00时,试件的强度随着碱浓度的增大呈现出先增大后减小的趋势,其余各模数下试件强度均保持稳定,这与常温时的规律相似㊂2.2㊀XRD 分析图4和图5分别为不同模数和不同碱浓度下地聚物净浆的XRD 谱㊂由图可知,地聚物常温下存在的晶相主要为石英(quartz)和莫来石(mullite),仅有少量的白云母(muscovite)和钾长石(microcline),结合图1可知,石英和莫来石来自未反应的原料㊂常温下地聚物在2θ=20ʎ~40ʎ之间出现弥散的馒头峰,这是地聚物的典型特征谱,表明偏高岭土-粉煤灰基地聚物水化产物主要为无定型硅铝酸盐凝胶[21-22]㊂地聚物高温后的水化产物主要为白榴石(leucite)和钾霞石(kalsilite)㊂图4(a)为常温下碱浓度为44%时不同模数下的XRD 谱㊂石英的主衍射峰随着模数的增加先下降后升高,模数为1.00时最低,莫来石峰的变化也符合这个规律,这说明此时原料溶解得最为充分,因此宏观表现为该模数下的试件强度最高㊂当模数增加至1.50时,石英峰反而升高,这可能是水玻璃模数偏大时,高聚合度硅氧四面体含量增加,使得原料中硅铝相的解聚不充分,最终生成的无定型凝胶相较少[18]㊂此外,在地聚物中还有少量白云母和钾长石,Selman 等[23]也探测到白云母的存在㊂图4㊀不同模数下地聚物净浆的XRD 谱Fig.4㊀XRD patterns of geopolymer clean pulp with different modulus 图4(b)为1000ħ高温后碱浓度为44%时不同模数下的XRD 谱㊂由图可知,在经历1000ħ高温后,原有的晶体与凝胶相均转化为白榴石和钾霞石㊂李娜等[24]也探测到这两种晶相的存在,认为地聚物生成了更加稳定的陶瓷相结构;黄丽婷等[25]认为白榴石常用作烤瓷材料,是一种良好的耐高温晶体,因此试件在经历1000ħ高温后仍有较高的残余强度㊂白榴石的主衍射峰随着模数的增加先升高后下降,模数为1.00时最高,宏观表现为高温后该模数下的试件强度偏高㊂图5(a)为常温下模数为1.00时不同碱浓度下的XRD 谱㊂由图可知,石英的主衍射峰随着碱浓度的增加先下降后升高,石英峰与莫来石的衍射峰在48%碱浓度时最强,这说明过高的碱浓度不利于原料的溶解,可能是因为部分水化产物的包裹使得反应减慢使反应生成的无定型凝胶减少㊂图5(b)为高温后模数为1.00时不同碱浓度下的XRD 谱㊂由图可知,1000ħ高温作用后,各碱浓度下的衍射峰几乎均为白榴石,白榴石的主衍射峰随着碱浓度的增加先升高后下降,碱浓度为44%时最高,这与强度规律一致㊂㊀第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1255图5㊀不同碱浓度下地聚物净浆的XRD谱Fig.5㊀XRD patterns of geopolymer clean pulp with different alkali concentrations2.3㊀SEM分析图6为地聚物砂浆的微观形貌图㊂图6㊀地聚物砂浆的SEM照片Fig.6㊀SEM images of geopolymer mortar图6(a)㊁(b)和(c)为同一碱浓度(44%)下不同模数(0.75㊁1.00和1.50)的SEM照片㊂由图6(a)可以看到未反应而呈板状结构的偏高岭土,此外还有不少空心腔和未反应的粉煤灰颗粒,Kong等[26]认为粉煤1256㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷灰包含大量具有空心球的颗粒,当这些颗粒部分溶解时,会在小尺寸孔的基质中产生孔隙㊂因此看到的空心腔可能是由于溶解的粉煤灰颗粒留下的空间㊂同样的板状结构在图6(c)中也可以见到,而从图6(b)可以看到大量絮状的水化产物,其微观结构也较密实㊂上述现象与强度规律一致,过低或者过高的碱激发剂模数都不利于水化㊂图6(b)㊁(d)和(e)为同一模数(1.00)下不同碱浓度(44%㊁40%和48%)的SEM照片㊂图6(d)中虽然有不少的水化产物,但也存在未反应偏高岭土㊁裂纹和空隙,这些空隙可能是因为反应过程中凝胶相中水分排出后留下[27],这使得当碱浓度较低时,试件强度较低㊂从图6(e)可以看到未反应完全的粉煤灰颗粒周围包裹着一层水化产物,这与文献[17]的描述一致,可能是这层水化产物薄膜使得后续反应变慢导致强度降低㊂图6(f)㊁(g)和(h)为同一碱浓度(44%)下不同模数(0.75㊁1.00和1.50)高温后的SEM照片㊂由图结合XRD谱及文献[28]可知,图中白色颗粒为白榴石(KAlSi2O6),它作为烤瓷材料为试件高温后的强度提供了保障㊂图6(f)可见少量的白榴石嵌入骨料的孔隙中;随着模数的增加,生成更多的白榴石,同时白榴石与骨料镶嵌较为紧密,这使得该组宏观力学性能较好;随着模数的继续增大,仍然可见大量的白榴石,但它与骨料的界面过渡区密实程度大大降低,过渡区出现了清晰可见的裂缝,这使得该组强度有所下降㊂此外,还可以观测到大量烧结后的空心腔,粉煤灰地聚物的这种多孔系统为加热过程中的水分提供了逃逸途径[27],从而抵消部分热应力带来的强度损伤,这使得试件经历1000ħ高温后仍有较高残余强度㊂3㊀结㊀论(1)当碱浓度不变时,大部分试件的强度随模数的增大先升高后略微下降或者基本不变㊂当模数不变时,大部分试件强度随碱浓度的增大先升高后降低㊂在模数为1.00且碱浓度为44%时抗压强度最高,为22.24MPa㊂㊀(2)地聚物砂浆有着较为良好的耐高温性能,经历1000ħ高温后试件仍能维持42%及以上相对残余强度;试件残余强度最高为12.13MPa,该组仍有55%相对残余强度㊂(3)地聚物净浆常温下的主要水化产物无定型凝胶,此外还有少量钾长石和白云母;1000ħ高温后的水化产物转化为白榴石和钾霞石㊂(4)地聚物砂浆在模数为1.00且碱浓度为44%时的微观结构较为致密,且有大量絮状的水化产物,过低或者过高的模数都存在着较为明显未反应的偏高岭土和粉煤灰,而过高的碱浓度可能使得水化产物薄膜包裹未反应粉煤灰,使得后续水化反应变慢㊂参考文献[1]㊀徐㊀彧,徐志胜.高温作用后混凝土强度试验研究[J].混凝土,2000(2):44-45+53.XU Y,XU Z S.Experiment investigation of strength of concrete after high temperature[J].Concrete,2000(2):44-45+53(in Chinese).[2]㊀VAN DEVENTER J S J,PROVIS J L,DUXSON P.Technical and commercial progress in the adoption of geopolymer cement[J].MineralsEngineering,2012,29:89-104.[3]㊀ZHANG Y S,SUN W,CHEN Q L,et al.Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J].Journal of HazardousMaterials,2007,143(1/2):206-213.[4]㊀DUAN P,YAN C J,ZHOU W,et al.An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer afterheat and acid exposure[J].Materials&Design,2015,74:125-137.[5]㊀郑娟荣,张㊀涛,覃维祖.碱-偏高岭土基胶凝材料的热稳定性研究[J].郑州大学学报(工学版),2004,25(4):16-19.ZHENG J R,ZHANG T,QIN W Z.High-temperature stability of cementitious materials based on metakaolin[J].Journal of Zhengzhou University(Engineering Science),2004,25(4):16-19(in Chinese).[6]㊀侯云芬,王栋民,李㊀俏.激发剂对粉煤灰基地聚合物抗压强度的影响[J].建筑材料学报,2007,10(2):214-218.HOU Y F,WANG D M,LI Q.Effects of activator on compressive strength of fly ash-based geopolymers[J].Journal of Building Materials, 2007,10(2):214-218(in Chinese).[7]㊀ALONSO S,PALOMO A.Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures[J].Cement and ConcreteResearch,2001,31(1):25-30.[8]㊀陈士堃.偏高岭土基地聚合物基础力学性能与影响因素研究[D].杭州:浙江大学,2015.㊀第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1257 CHEN S K.Study of basic mechanical properties and influential factors of metakaolin-based geopolymer[D].Hangzhou:Zhejiang University, 2015(in Chinese).[9]㊀LYU S J,WANG T T,CHENG T W,et al.Main factors affecting mechanical characteristics of geopolymer revealed by experimental design andassociated statistical analysis[J].Construction and Building Materials,2013,43:589-597.[10]㊀郑娟荣,刘丽娜.偏高岭土基地质聚合物合成条件的试验研究[J].郑州大学学报(工学版),2008,29(2):44-47.ZHENG J R,LIU L N.Experimental study on formation conditions of metakaolinite-based geopolymer[J].Journal of Zhengzhou University (Engineering Science),2008,29(2):44-47(in Chinese).[11]㊀李启华,丁天庭,陈树东.粉煤灰-矿渣碱激发体系的早期性能和耐高温研究[J].硅酸盐通报,2017,36(1):365-368+373.LI Q H,DING T T,CHEN S D.Early property and high temperature resistance of alkali activated system of fly ash-slag[J].Bulletin of the Chinese Ceramic Society,2017,36(1):365-368+373(in Chinese).[12]㊀姚韦靖,庞建勇.玻化微珠保温混凝土高温后性能劣化及微观结构[J].复合材料学报,2019,36(12):2932-2941.YAO W J,PANG J Y.Performance degradation and microscopic structure of glazed hollow bead insulation normal concrete after exposure to high temperature[J].Acta Materiae Compositae Sinica,2019,36(12):2932-2941(in Chinese).[13]㊀吴仕成,严捍东.膨胀玻化微珠及其在水泥基材料中应用现状的综述和分析[J].材料导报,2012,26(23):18-23.WU S C,YAN H D.Review and analysis of surface-vitrified micron sphere and its application status in cement-based materials[J].Materials Review,2012,26(23):18-23(in Chinese).[14]㊀程小伟.隧道防火涂料的制备及表征[D].成都:四川大学,2005.CHENG X W.Preparation and characterization of fireproof coating for tunnels[D].Chengdu:Sichuan University,2005(in Chinese). [15]㊀夏海江,鲁雪艳,迪里夏提㊃买买提.膨胀蛭石:综合性能超凡的高温隔热材料[J].西部探矿工程,2008,20(2):111-112.XIA H J,LU X Y,DILIXIATI M M T.Expanded vermiculite:a high temperature insulation material with extraordinary comprehensive performance[J].West-China Exploration Engineering,2008,20(2):111-112(in Chinese).[16]㊀杨立荣,王春梅,封孝信,等.粉煤灰/矿渣基地聚合物的制备及固化机理研究[J].武汉理工大学学报,2009,31(7):115-119.YANG L R,WANG C M,FENG X X,et al.Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J].Journal of Wuhan University of Technology,2009,31(7):115-119(in Chinese).[17]㊀李亚林.粉煤灰-偏高岭土复合基地质聚合物的结构与性能研究[D].绵阳:西南科技大学,2017.LI Y L.Study on the structure and properties of fly ash-metakaolin composite based geopolymer[D].Mianyang:Southwest University of Science and Technology,2017(in Chinese).[18]㊀章定文,王安辉.地聚合物胶凝材料性能及工程应用研究综述[J].建筑科学与工程学报,2020,37(5):13-38.ZHANG D W,WANG A H.Review on property of geopolymer binder and its engineering application[J].Journal of Architecture and Civil Engineering,2020,37(5):13-38(in Chinese).[19]㊀张㊀敏,马倩敏,史天尧,等.磷渣胶凝材料高温力学性能试验研究[J].非金属矿,2018,41(6):10-14.ZHANG M,MA Q M,SHI T Y,et al.Mechanical properties of mortars containing phosphorus slag after exposure to high temperatures[J].Non-Metallic Mines,2018,41(6):10-14(in Chinese).[20]㊀KONG D L Y,SANJAYAN J G,SAGOE-CRENTSIL K.Factors affecting the performance of metakaolin geopolymers exposed to elevatedtemperatures[J].Journal of Materials Science,2008,43(3):824-831.[21]㊀LIZCANO M,KIM H S,BASU S,et al.Mechanical properties of sodium and potassium activated metakaolin-based geopolymers[J].Journal ofMaterials Science,2012,47(6):2607-2616.[22]㊀李㊀娜,徐中慧,李㊀萍,等.机械力活化粉煤灰制备地聚合物的性能及机理研究[J].功能材料,2018,49(4):4102-4106.LI N,XU Z H,LI P,et al.Mechanical activation of fly ash:effect on performance and mechanism of resulting geopolymer[J].Journal of Functional Materials,2018,49(4):4102-4106(in Chinese).[23]㊀SELMANI S,SDIRI A,BOUAZIZ S,et al.Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay[J].Applied ClayScience,2017,146:457-467.[24]㊀李㊀娜,徐中慧,陈筱悦,等.偏高岭土基地聚合物高温陶瓷化特性研究[J].硅酸盐通报,2019,38(4):957-961.LI N,XU Z H,CHEN X Y,et al.Characteristics of metakaolinite-based geopolmers after exposure to high temperatures[J].Bulletin of the Chinese Ceramic Society,2019,38(4):957-961(in Chinese).[25]㊀黄丽婷,刘㊀洋,彭㊀诚,等.立方相白榴石的合成与稳定[J].硅酸盐学报,2017,45(7):948-954.HUANG L T,LIU Y,PENG C,et al.Synthesis and stabilization of cubic leucite[J].Journal of the Chinese Ceramic Society,2017,45(7): 948-954(in Chinese).[26]㊀KONG D L Y,SANJAYAN J G,SAGOE-CRENTSIL parative performance of geopolymers made with metakaolin and fly ash after exposureto elevated temperatures[J].Cement and Concrete Research,2007,37(12):1583-1589.[27]㊀VILLAQUIRÁN-CAICEDO M A.Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymerbinders from metakaolin/boiler slag[J].Construction and Building Materials,2019,227:116621.[28]㊀黄丽婷.低热膨胀系数立方相白榴石的合成与稳定[D].广州:华南理工大学,2017.HUANG L T.Synthesis and stabilization of cubic leucite with low coefficient of thermal expansion[D].Guangzhou:South China University of Technology,2017(in Chinese).。

利用偏高岭土和粉煤灰制备土聚水泥的实验研究

利用偏高岭土和粉煤灰制备土聚水泥的实验研究

利用偏高岭土和粉煤灰制备土聚水泥的实验研究
利用偏高岭土和粉煤灰制备土聚水泥的实验研究
黎路超
【期刊名称】《大众科技》
【年(卷),期】2010(000)011
【摘要】以偏高岭土和粉煤灰为主要固体原料,以硅酸钠水玻璃为碱性激发剂,制备了土聚水泥.通过正交试验,确定了制备土聚水泥的最优配方.结果表明:在粉煤灰含量为35%,硅酸钠水玻璃模数为1.6,固液比为2.2时样品具有较高的抗压强度;同时研究了样品的耐高温性能和抗硫酸盐侵蚀性能,实验表明土聚水泥比普通硅酸盐水泥具有更好的耐高温性和耐硫酸盐腐蚀性能.
【总页数】2页(81-81,92)
【关键词】偏高岭土;粉煤灰;土聚水泥;理化性能
【作者】黎路超
【作者单位】广西恒硕工程项目管理咨询有限公司,广西,南宁,530001
【正文语种】中文
【中图分类】TQ172.4
【相关文献】
1.粉煤灰-偏高岭土水泥基复合材料性能研究[J], 汪宏伟; 徐辉东; 马芹永
2.粉煤灰-偏高岭土水泥基复合材料性能研究 [J], 汪宏伟[1]; 徐辉东
[2]; 马芹永[1]
3.粉煤灰-偏高岭土砖的制备 [J], 孙莹
4.水热合成法制备偏高岭土-粉煤灰基地聚合物材料的研究[J], 唐婕; 陈益兰; 周君生。

粉煤灰基地质聚合物材料的应用研究进展

粉煤灰基地质聚合物材料的应用研究进展
达 33.5 MPa, 且高温煅烧实验表明其具有耐高温
性能。
刘泽等 [9-10] 研究证明循环流化床超细粉煤灰基
地质聚合物与 Zn 2+ 、 Pb 2+ 均具有较好的相容性, 使
得大掺量 Zn 2+ 的固化率达 99%以上, Pb 2+ 的固化率
也达到了 90% 以上。 其对含铬电镀污泥也可以进
行良好的固化, 固化体强度较高, 毛林清等 [11] 对
Abstract The discharge of fly ash from coal - fired power plant has caused certain harm to the earths ecological
environment and human health. The preparation of geopolymer with fly ash as raw material has the advantages of
水等发泡剂对块体、 球形等吸附材料进行起泡处
技术的投入及研究, 以应对水资源短缺的问题。
理, 以增加其吸附活性位点, 从而加大吸附量。 因
粉煤灰本身具有特殊的多孔蜂窝状结构、 比表
面积较大, 又具有 Al 2 O 3 、 SiO 2 、 CaO 等活性组分,
此, 块体及球形吸附剂特别是球形吸附剂很有可能
固体废弃物中包含了大量的重金属及其化合物, 如
且在内部形成密闭性良好的牢笼形状, 从而可以将
断富集并潜移默化地渗透到了广袤的土壤及水资源
实现了以废治废、 变废为宝的环保目标, 在材料、
Pb、 Zn、 Cs、 Sr、 As、 Cd 等, 有害重金属离子不
重金属离子、 有毒废物质等包裹在牢笼空腔内部,
中, 这对人们赖以生存的生态环境造成了严重的威

粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展

粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展

system. In this paper, based on the formation and advantage of geopolymer, the advantage of fly ash was analyzed as silicaaluminum precursor. Also, the influences of activator ions, curing conditions and calcium-components were emphasized on
灰基地聚物材料的凝胶产物变化及其反应机理研究进展。 目前含钙固废作为添加物逐渐应用于改性粉煤灰基地
聚物中,因此明确凝胶产物组成和反应机理将为粉煤灰基地聚物材料性能优化提供理论指导。
关键词:粉煤灰; 地聚物; 钙组分; 养护条件; 凝胶产物; 反应机理
中图分类号:TU526
文献标志码:A
文章编号:1001-1625(2021)03-0867-10
原材料,经碱激发制备地聚物材料( CaO 质量掺量设置了 0% 、5% 、20% 和 40% ,后文所出现的掺量,均为质
量掺量;Si / Al 摩尔为 2. 0;液固比为 0. 38) ,并对凝胶产物和原材料的组成与结构进行测试,研究发现不掺
CaO,产物为地聚物( N-A-S-H) 凝胶;CaO 掺量为 5% ,产物为( N,C) -A-S-H 凝胶;CaO 掺量为 20% ,产物为
( 图 1) 。 地聚物相关文章发表数量逐年增长,其中地聚物硅铝基材主要以粉煤灰、偏高岭土、高岭土、高炉矿
渣和赤泥为主,粉煤灰和偏高岭土的研究最广泛。 2018—2020 年粉煤灰地聚物的研究论文发表量已超出偏
高岭土地聚物的一倍之多。 低钙粉煤灰地聚物的相关参考文献众多,基础理论研究成果和试验数据比较丰
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒 , 有较 高 的 火 山 灰 活 性 。据 统 计 , 国 每 年 具 我
引 言
地 质 聚合物胶 凝 材料是 近 年来 国际上研究 非 常 活跃 的非金 属材 料 之一 , 是 以偏 高 岭 土 或 其 他 硅 它 铝 质材 料 为主要 原料 , 经碱 激发 , 较低 温度 条件 下 在 反 应 得到 的一类 新型无 机 聚合 物材 料 。和硅 酸盐 水
得的地质聚合物 , 受压破坏面物相成分较杂乱 , 较多的球状粉煤 灰颗粒和裂缝 ; 单 用偏高岭 其 有 与
土作原 料制备的地质聚合物相 比, 试样 各龄期抗压强度值均不高 。 关键词 : 地质聚合物胶凝 材料 ; 粉煤灰 ; 抗压强度 ; 观形貌 微
中 图 分 类 号 :Q 7 T 5 6 T 17。U 2 文 献 标 识 码 : A 文 章 编 号 :04 7 5 (0 1 0 —0 7 0 10 —00 2 1 )20 0 —4
第3 l卷 第 2期
2 1 年 4月 01

西


Vo. No 2 1 3l . Ap . 2 1 r 01
S HANXICH EM I CAL NDUSr I RY
: ,
_ ,


0j 讲与拜菠
:,- : : : :
: = :
粉 煤 灰 一 高 岭 土 基 地 质 聚 合 物 胶 凝 材 料 的 研 究 偏
表 1 粉煤 灰 的化 学 组 成 %
料 的 主要 原料 , 者性 质类 似 。近几 年 , 两 由于偏 高岭 土价格 不断攀 升 , 一 定 程 度 上 限 制 了其 发展 。粉 在
煤灰 是火 力发 电厂 的副 产 品 , 一 种 极 细 的球 状 颗 是
收 稿 日期 :0 1 22 2 1- - 0 4
( 1 3 ( i2 ( a ( O ) ( e0 ) 其他 ) A2 ) SO ) O CO) S 3 F2 3 (
8. 31 5 4 3. 8 6. 2 3 0. 62 6. 2 5 4. 5 7
碱激 发剂 : 售 水 玻 璃 ( 市 固态 ) 和氢 氧 化钠 ( 化 学纯 ) 配制 而成 。
2e 2e 2e 的试 件 中 , 动 1m n 在 2 m× m× m 振 i , 0℃ 、
作者简介 : 谭俊华 , ,9 2年出生 , 女 18 太原理工大学 在读硕 士研究生
助 教 。研 究 方 向 : 机 非 金 属 建 筑 材 料 。 无
水: 自来 水 。

8・

西


2 1 年 4月 01
12 .
实验 方 法
发 剂激发并溶解 , 响后 续聚合反 应 的进行 , 影 最终使 掺 有粉煤灰试 样 的抗 压 强度 较低 。2 )当粉煤 灰 掺 人量 较大时 , 参 加反应 的偏高 岭土 和粉煤 灰 颗 粒 未
谭 俊 华 , 义 宁。 任
(. 1 太原理工大 学, 山西 太原 0 0 2 ;. 30 4 2 太原工业学院 , 山西 太原 0 00 ; 30 8
3 太原 晋 砼 外加 剂 有 限 公 司 , 西 太 原 . 山 00 2 ) 3 04
摘要 : 研究 了以粉煤 灰替代 偏 高 岭土为 主要 原料 制 备 的地质 聚合 物 胶凝 材料 的抗 压 强度 , 并用 S M观察其 微观形貌 。结果表 明, 含有质量分数 2 % 、o 、0 E 用 0 4 % 6 %粉煤灰替代偏高岭 土为原料制
粉 煤 灰 的排 放 量 达 2亿 t 以上 。 目前 , 除部 分 用 于 水 泥 混合材 料 和加气 混 凝 土 砖 的 生产 外 , 有 大 量 仍 作 为废 弃物排 放 , 造成 了严重 的环 境污染 。所 以 , 用
产 量 丰富而价 格低 廉 的粉煤 灰替 代偏 高岭 土制备 地
质 聚合 物胶凝 材 料具有 重大 的意 义 。 本 文 以粉 煤 灰 部分 替 代 偏高 岭 土 为原 料 , 以硅 酸 钠 和氢氧化 钠 为激 发 剂 , 备 了地 质 聚合 物胶 凝 制 材 料 , 测试 了其抗 压 强度 , 并 观察 了其微 观形 貌 。
残 留于地 质 聚 合 物 胶 凝 材 料 结构 内 部形 成 缺 陷 ,
I 2 1 力学性 能 测试 ..
B 、 d 巡
分别 取偏 高 岭 土粉 末适 量 , 粉煤 灰 按质 量分 用
数分 别 为 O 、 0 、0 、 0 的 比例 掺 人 替 代 。 % 2% 4% 6% 将二者 混合 均匀 后倒 人 胶 砂搅 拌 锅 内 , 边搅 拌边 加 入配好 的模 数 为 1 3的 碱 激 发 剂 ( 质 量 分 数 为 . 碱 1 % ) 液 。搅 拌 3mi , 0 溶 n后 将搅 拌均匀 的浆体倒 人
泥相比, 该类 材料 因其 具 有 材 料 强度 高 、 化快 、 硬 耐
久 性好 、 原料 来源 广泛 、 工艺 简单 、 能耗少 、 境友好 环 等特点 而被 广泛 应用 于汽 车及航 空 工业 、 土木 工程 、
非 铁铸 造工 业 、 交通工 程 、 有毒 废料 及放 射性 废料 处 理 等领 域 ¨2。国 内外 学 者 对 地 质 聚合 物 胶 凝 材 料 . J 进 行 了大量 的研究 。P na 等制 备 了粉 煤 灰基 地 ai D s 质 聚合物材料 , 并研究 了氢 氧化钠及 硅酸钠 等碱激 发 剂对 抗压强度 的影 响 ; 朱晓敏 、 云芬等 ’对粉煤 灰 侯 4 基地 质聚合物材料 的制备及其性 能进行 了研究 。 粉 煤灰 和偏 高岭土 都是 生产 地 质聚合 物胶 凝材
1 实验 部 分
1 1 实验原 料 .
偏 高岭 土 : 用 大 同高 岭土 , 8 0 o 选 经 0 C煅烧 , 再 保 温焙 烧 6h后 , 自然 冷却 至室 温 , 8 m的方孔 经 0 筛筛 分 而 , 成分 如表 1 某 其 。
相关文档
最新文档