数学建模-概率模型
概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。
概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。
一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。
在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。
而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。
二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。
三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。
2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。
3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。
4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。
5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。
6、验证模型:对建立的模型进行验证,确保其准确性和适用性。
7、应用模型:将建立的模型应用于实际问题的解决和预测中。
概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。
通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。
概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。
概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。
一、概率模型的应用概率模型在投资决策中的应用广泛。
数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)
数学建模-概率模型

确定性现象的特征
条件完全决定结果
随机现象
在一定条件下可能出现也可能不出现的现象.
实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
结果有可能出现正面也可能出现反面.
实例2 明天的天气可
特征: 条件不能完全决定结果
能是晴 , 也可能是多云
或雨.
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科. 如何来研究随机现象?
P( A)
m n
A
所包含样本点的个数 样本点总数
.
古典概型的基本模型:摸球模型
(1) 无放回地摸球
(2) 有放回地摸球
例1 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.
解 假设接待站的接待时间没有
规定,且各来访者在一周的任一天
0.0000003 .
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例2 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率.
解 64 个人生日各不相同的概率为
p1
365
364
(365 36564
2. 假设遗传基因是由两个基因A和B控制的,则有 三种可能基因型:AA、AB和BB。
例如:金鱼草是由两个基因决定它开花的颜色,AA 型开红花,AB型开粉花,而BB型开白花。这里AA型 和AB型表示了同一外部特征,此时可以认为基因A 支配了基因B,也可以说基因B对基因A是隐性的。
数学建模中的概率统计模型1

残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模概率模型案例

数学建模概率模型案例概率模型是数学建模的重要工具之一,广泛应用于各个领域。
以下是一个基于概率模型的数学建模案例。
问题描述:医院的急诊科接诊员需要根据患者的症状来判断是否需要进行心电图检查。
根据以往的医疗记录,我们知道有一种患者患有心脏病的概率是0.1,有心脏病的患者在进行心电图检查时有90%的准确率,没有心脏病的患者在进行心电图检查时有95%的准确率。
急诊科接诊员在给患者进行评估时会根据患者的症状判断是否需要进行心电图检查,但出于经济和时间的考虑,每天只能对20%的患者进行心电图检查。
问题分析:在这个问题中,我们需要建立一个概率模型来评估患者是否需要进行心电图检查。
我们需要考虑两个因素:患者是否有心脏病以及是否进行了心电图检查。
建立概率模型:1.定义事件:-A:患者有心脏病-B:患者进行了心电图检查-C:急诊科接诊员推荐患者进行心电图检查2.计算概率:-P(A)=0.1,患者有心脏病的概率-P(A')=0.9,患者没有心脏病的概率-P(B,A)=0.9,有心脏病的患者进行心电图检查的准确率-P(B,A')=0.95,没有心脏病的患者进行心电图检查的准确率3.根据贝叶斯定理计算后验概率:-P(A,B)=P(B,A)*P(A)/P(B)-P(A',B)=P(B,A')*P(A')/P(B)4.根据给定条件计算先验概率:-P(B)=P(B,A)*P(A)+P(B,A')*P(A')5.根据条件概率计算P(C,B):-P(C,B)=P(C,B)/P(B)进一步分析:根据模型,我们可以进行一些进一步的分析。
1.如果患者没有进行心电图检查,根据模型我们可以计算出他是否有心脏病的概率。
2.如果患者进行了心电图检查,根据模型我们可以计算出他有心脏病的概率。
3.根据模型的输出,急诊科接诊员可以根据患者的症状和推荐指标来判断是否进行心电图检查。
总结:这个案例展示了如何建立一个基于概率模型的数学建模问题。
第九章 概率模型

34
*工作台上工件的逐件到达;
*机场跑道中飞机的逐架到达; *港口船舶的逐艘到达; *电话交换台电话的到达; *餐厅顾客的到达; N(t)是随 机变量
2 1 3 3 2 3 1 2 1 3
由测得数据可算出X 取各个数值的频率
X
频数
1
3
2
3
3
4
20
频率
0.3 0.3 0.4 《数学建模》精品课程
根据概率论中的贝努里大数定律,当试验次
数n充分大时,随机事件A发生的频率稳定
于概率P(A),可将
X 0 1 2 0.4
P(x) 0.3 0.3
作为X 的分布律的模拟. 注意 若试验次数太小,可能造成较大误差
《数学建模》精品课程
23
需掌握几种重要的概率理论分布
1.均匀分布
1 f ( x) b a 0
a x b, 其他.
d c 有 P {c X d } ba
均匀分布随 机变量X的 取值具有 “均匀性”.
其中 (c, d ) (a, b)
《数学建模》精品课程 24
n
(b c) p(r )dr (a b) p(r )dr
0 n
n
dG 0 dn
p ( r ) dr a b p ( r ) dr b c
0 n
《数学建模》精品课程
n
15
结果解释
n
p ( r ) dr a b p ( r ) dr b c
0 n
n
p(r )dr P , p(r )dr P
0 1 n
2
P a b 1 取 n使 P2 bc
概率论与数理统计在数学建模中的应用

概率论与数理统计在数学建模中的应用概率论与数理统计在数学建模中的应用——国 冰。
第一节 概率模型一、初等概率模型初等概率模型主要介绍了可靠性模型、传染病流行估计、常染色体遗传模型等三类问题:1、复合系统工作的可靠性问题的数学模型设某种机器的工作系统由N 个部件组成,各部件之间是串联的,即只要有一个部件失灵,整个系统就不能正常工作.为了提高系统的可靠性,在每个部件上都装有主要元件的备用件及自动投入装置(即当所使用元件损坏时,备用元件可自动替代之而开始工作)明显地,备用件越多,整个系统正常工作的可靠性就越大. 但是,备用件过多势必导至整个系统的成本、重量和体积相应增大,工作精度也会降低. 因此,配置的最优化问题便被提出来了:在某些限制性条件之下,如何确定各部件的备用件数量,使整个系统的工作可靠性最大? 这是一个整体系统的可靠性问题.我们假设第i 个部件上装有i x 个备用件(1,2,,)i N =,此时该部件正常工作的概率为()i p x ,那么整个系统正常工作的可靠度便可用1()ni i p p x ==∏ (9.1)来表示.又设第i 个部件上的每个备用件的费用为i C ,重量为i W ,并要求总费用不超过C ,总重量不超过W ,则问题的数学模型便写成为1max ()ni i p p x ==∏合理的决策必须具备三个条件:(1)目标合理;(2)决策结果满足预定目标的要求;(3)决策本身符合效率、满意、有限合理、经济性的原则。
所谓风险型决策是指在作出决策时,往往有某些随机性的因素影响,而决策者对于这些因素的了解不足,但是对各种因素发生的概率已知或者可估算出来,因此这种决策存在一定的风险.①风险决策模型的基本要素决策者——进行决策的个人、委员会或某个组织.在问题比较重大和严肃时,通常应以后者形式出现.方案或策略——参谋人员为决策者提供的各种可行计划和谋略. 如渔民要决定出海打鱼与否便是两个方案或称两个策略.准则——衡量所选方案正确性的标准.作为风险型决策,采用的比较多的准则是期望效益值准则,也即根据每个方案的数学期望值作出判断.对收益讲,期望效益值越大的方案越好;反之对于损失来讲,期望效益值越小的方案越好.事件或状态——不为决策者可控制的客观存在的且将发生的自然状态称为状态(事件),如下小雨,下大雨和下暴雨即为三个事件或称三种状态,均为人所不可控因素.结果——某事件(状态)发生带来的收益或损失值.②风险决策方法•利用树形图法表示决策过程具有直观简便的特点,将其称为决策树的方法.•充分利用灵敏度分析(即优化后分析)方法对决策结果作进一步的推广和分析.决策树一般都是自上而下的来生成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲人: 侯致武 Email: houzhiwu99@
2020年4月21日星期二
概率模型
现实世界的变化受着众多因素的影响,包括 确定的和随机的。如果从建模的背景、目的和手 段看,主要因素是确定的,随机因素可以忽略, 或者随机因素的影响可以简单地以平均值的作用 出现,那么就能够建立确定性模型。如果随机因 素对研究对象的影响必须考虑,就应建立随机模 型。本章讨论如何用随机变量和概率分布描述随 机因素的影响,建立随机模型——概率模型。
随机模型 确定性因素和随机性因素
随机因素可以忽略
随机因素影响可以简单 地以平均值的作用出现
确定性模型
随机因素影响必须考虑
随机性模型
概率模型 统计回归模型 马氏链模型
概率模型
一、概率论基本知识 二、概率模型的典型案例
一、概率论基础知识
1、古典概型
条件概率:在事件B发生的条件下,事件A发生的概率
P( A | B) P( AB) P(B)
例5 求正态分布N(3,52)的均值与方差. 命令为:[m,v]=normstat(3,5) 结果为:m=3,v=25
(2)若已知取到的是次品,问此次品是哪个厂生产的可能性更大?
解 设A=“取到的是一只次品”,Bi=“所取产品由第i厂提供”,
易知B1,B2,B3是样本空间的一个划分。
3
(1)由全概率公式: p( A) P(Bi )P( A|Bi ) i 1 =0.15×0.02+0.80×0.01+0.05×0.03=0.01
2 分布:chi2
t 分布:t F 分布:F
MATLAB工具箱对每一种分布都提供5类函数,其命令字符为:
概率密度:pdf 概率分布:cdf 逆概率分布:inv 均值与方差:stat 随机数生成:rnd
当需要一种分布的某一类函数时,将以上所列的分布 命令字符与函数命令字符接起来,并输入自变量(可以是 标量、数组或矩阵)和参数即可.
设B1,B2,…,Bn为样本空间S的一个划分,且有P(Bi)>0, i=1,2,…,n,则对E的任一事件A,有:
n
P( A) P(Bi )P( A|Bi ) i 1
全概率公式
P(Bi
A)
P(ABi ) P( A)
P(A Bi )P(Bi ) ,
n
P(A Bj )P(Bj )
i 1,2, , n
2.概率分布:P=normcdf(x,mu,sigma)
例 2. 计算标准正态分布的概率 P{-1<X<1}. 命令为:P=normcdf(1)-normcdf(-1) 结果为:P =0.6827
3.逆概率分布:x=norminv(P,mu,sigma). 即求出x ,使得P{X<x}=P,此命令可用来求分位数.
(2)由贝叶斯公式:
25
P(B1|A)
P( A B1 )P(B1 ) P( A)
0.02 0.15 0.0125
0.24
同理 P(B2|A)=0.64, P(B3|A)=0.12 .
以上结果表明,这只次品来自乙厂的可能性最大。
2、随机变量及其分布
二项分布
P{
X
k}C
k n
pk
(1
p利试验: 设随机试验E只有两种可能的结果:A及 A ,且
P(A)=p,(0<p<1), 将试验E独立地重复进行n次, 简称n重贝努 利试验(Bernoulli)。 n重贝努利试验中事件A出现的次数服从 二项分布
泊松分布 P{ X k} k e ,(k 0,1,2,..., 0为 常 数)
贝叶斯公式
j 1
例:某电子设备制造厂所用的某种晶体管是由三家元件制造厂
提供的,根据以往的记录有以下的数据:元件制造厂 次品率 提供份额
设这三家的产品在仓库中是均匀混合的, 且无区别的标志。现在仓库中随机地抽
甲厂 0.02 0.15 乙厂 0.01 0.80
取一只晶体管, (1)求它是次品的概率; 丙厂 0.03 0.05
例3 有10台机床,每台发生故障的概率为0.08,而10台机床工作 独立,每台故障只需一个维修工人排除.问至少要配备几个维修 工人,才能保证有故障而不能及时排除的概率不大于5%。
解:随机变量X示发生故障的机床的台数,则 X ~ B(10,0.08)
即P{X n} 0.95
4.均值与方差:[m,v]=normstat(mu,sigma)
k!
n重贝努利试验中小概率事件出现的次数近似地服从泊松分布.
指数分布
e x ,
f (x)
x 0 ( 0为常数)
0,
x0
❖ 背景:指数分布常用于可靠性统计研究中,如元件的寿命,
动物的寿命,电话问题中的通话时间,服务时间等.
正态分布
f (x)
1
( x)2
e
2 2
,
2
记为X ~ N(, 2 )
如对均值为mu、标准差为sigma的正态分布,举例如下:
1.密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)
例 1 画出正态分布 N (0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
例:现有100个零件,其中95个长度合格,94个直径和格, 92个两个尺寸都合格。任取一个,发现长度合格,问直径 合格的概率。
设A=‘长度合格’,B=‘直径合
格’
P( A) 95 , P( AB) 92
100
100
P(B | A) P( AB) 92 P( A) 95
全概率公式和贝叶斯公式
E( X ) xf ( x)dx E(Y ) EgX g( xk ) pk k 1
E(Y ) Eg( X )
g( x) f ( x)dx
4、MATLAB中相关的的概率命令
常见的几种分布的命令字符为: 正态分布:norm 指数分布:exp 泊松分布:poiss 二项分布:bino
背景:如果决定试验结果X的是大量随机因素的总和,假设
各个因素之间近似独立,并且每个因素的单独作用相对均匀 地小,那么X的分布近似正态分布。
如:同龄人的身高、体重、考试分数、某地区年降水量等。
3、数学期望的概念和计算 描述了随机变量的概率取值中心—均值
数学期望
Y gX
E( X ) xk pk k 1