常用乙烯裂解炉简介

常用乙烯裂解炉简介
常用乙烯裂解炉简介

常用乙烯裂解炉简介

①鲁姆斯公司的SRT型裂解炉

鲁姆斯公司的SRT型裂解炉(短停留时间裂解炉)为单排双辐射立管式裂解炉,已从早期的SRT-I型发展为近期的SRT-Ⅵ型。

SRT型裂解炉的对流段设置在辐射室上部的一侧,对流段顶部设置烟道和引风机。对流段内设置进料、稀释蒸汽和锅炉给水的预热。从SRT-Ⅵ型炉开始,对流段还设置高压蒸汽过热,由此取消了高压蒸汽过热炉。在对流段预热原料和稀释蒸汽过程中,一般采用一次注入蒸汽的方式,当裂解重质原料时,也采用二次注汽。

早期SRT型裂解炉多采用侧壁无焰烧嘴烧燃料气,为适应裂解炉烧油的需要,目前多采用侧壁烧嘴和底部烧嘴联合的布置方案。底部烧嘴最大供热量可占总热负荷的70%。SRT-Ⅲ型炉的热效率达93.5%。图1—21为SRT型裂解炉结构示意图。

图1-21鲁姆斯SRT-Ⅱ型裂解炉结构示意图

②斯通-伟伯斯特(S.W)公司的USC型裂解炉

S.W的USC裂解炉(超选择性裂解炉)为单排双辐射立管式裂解炉,辐射盘管为W型或U型盘管。由于采用的炉管管径较小,因而单台裂解炉盘管组数较多(16-48组)。每2组或4组辐射盘管配一台USX型(套管式)一级废热锅炉,多台USX废热锅炉出口裂解气再汇总送入一台二级废热锅炉。近期开始采用双程套管式废热锅炉(SLE),将两级废热锅炉合并为一级。

USC型裂解炉对流段设置在辐射室上部一侧,对流段顶部设置烟道和引风机。对流段内设

有原料和稀释蒸汽预热、锅炉给水预热及高压蒸汽过热等热量回收段。大多数USC型裂解炉为一个对流段对应一个辐射室,也有两个辐射室共用一个对流段的情况。

当装置燃料全部为气体燃料时,USC型裂解炉多采用侧壁无焰烧嘴;如装置需要使用部分液体燃料时,则采用侧壁烧嘴和底部烧嘴联合布置的方案。底部烧嘴可烧气也可烧油,其供热量可占总热负荷的60%-70%。

由于USC型裂解炉辐射盘管为小管径短管长炉管,单管处理能力低,每台裂解炉盘管数较多。为保证对流段进料能均匀地分配到每根辐射盘管,在辐射盘管入口设置了文丘里喷管。图1-22是USC型裂解炉结构示意图。

图1-22 USC型裂解炉结构示意图

③凯洛格(Kellogg)公司的毫秒炉

凯洛格公司的毫秒炉为立管式裂解炉,其辐射盘管为单程直管。对流段在辐射室上侧,原料和稀释蒸汽在对流段预热至横跨温度后,通过横跨管和猪尾管由裂解炉底部送入辐射管,物料由下向上流动,由辐射室顶部出辐射管而进入第一废热锅炉。裂解轻烃时,常设三级废热锅炉;裂解馏分油时,只设两级废热锅炉。对流段还预热锅炉给水并过热高压蒸汽。热效率为93%。

毫秒炉采用底部大烧嘴,可烧气也可烧油。

由于毫秒炉管径小,单台炉炉管数量大,为保证辐射管流量均匀,在辐射管入口设置猪尾管控制流量分配。图1-23是毫秒炉结构示意图。

图1-23 毫秒裂解炉结构示意图

④KTI公司的GK型裂解炉

早期的GK—I型裂解炉为双排立管式裂解炉,20世纪70年代开发的GK一Ⅱ型裂解炉为混排(入口段为双排,出口段为单排)分支变径管。在此基础上,相继开发了GK一Ⅲ型、GK 一Ⅳ型和GK—V型裂解炉。GK—V型裂解炉为双程分支变径管,由于管程减少,管长缩短,停留时间可控制在O.2秒以内。GK型裂解炉一般采用一级废热锅炉。

对流段设置在辐射室上侧。对流段除预热原料、稀释蒸汽、锅炉给水外,还进行高压蒸汽的过热。

GK型裂解炉采用侧壁烧嘴和底部烧嘴联合布置的方案。底部烧嘴可烧油也可烧气,其最大供热量可占总热负荷的70%。侧壁烧嘴为烧气的无焰烧嘴。图1-24为GK型裂解炉结构示意图。

图1-24 GK型裂解炉结构示意图

⑤CBL型裂解炉

由我国自行设计、开发的CBL型裂解炉,即北方炉已从I型发展到IV型,单炉生产能力从20kt/a发展到100kt/a。

CBL裂解炉的对流段设置在辐射室上部的一侧,对流段顶部设置烟道和引风机。对流段内设置原料、稀释蒸汽、锅炉给水预热、原料过热、稀释蒸汽过热、高压蒸汽过热段。稀释蒸汽的注入:二次注汽的为I、Ⅱ型,一次注汽的为Ⅲ型。

主要特点是将对流段中稀释蒸汽与烃类传统方式的一次混合改为二次混合新工艺。一次蒸汽与二次蒸汽比例应控制在适当范围内。采用二次混合新工艺后,物料进入辐射段的温度可提高50℃以上。这样,当裂解深度不变时,裂解温度可降低5℃-6℃,辐射段烟气温度可相应降低20℃-25℃,最高管壁温度下降 14℃-20℃,全炉供热量可降低约10%。

供热采用侧壁烧嘴与底部烧嘴联合布置方案,侧壁烧嘴为无焰烧嘴,底部烧嘴为油气联合

烧嘴。

1.4 管式加热炉的基本构成与组成

管式加热炉一般由辐射室、对流室、余热回收系统、燃烧器和通风系统等五部分组成,如图1-27所示。其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。

图1-27 管式加热炉的一般结构

1.4.1 基本结构、炉膛与部件

1.4.1.1 炉膛与炉墙(炉衬)

炉膛是由炉墙、炉顶和炉底围成的空间,是对物质进行加热的地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的关键技术条件之一。在加热炉的运行过程中,不仅要求炉衬能够在高温和荷载条件下保持足够的强度和稳定性,要求炉衬能够耐受烟气的冲刷和侵蚀,而且要求有足够的绝热保温和气密性能。

为此,炉衬通常由耐火层、保温层、防护层和钢结构几部分组成。其中耐火层直接承受炉膛内的高温气流冲刷和侵蚀,通常采用各种耐火材料经砌筑、捣打或浇注形成;保温层通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气密性,保护多孔保温材料形成的保温层免于损坏;钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设施、检测仪器、炉门、炉前管道以及检修、操作人员所形成的载荷,提供有关设施的安装框架。

管式炉的炉墙结构主要有耐火砖结构、耐火混凝土结构和耐火纤维结构。其中耐火砖结构又分为砌砖炉墙、挂砖炉墙和拉砖炉墙。拉砖炉墙是目前应用比较广泛的炉墙,尤其是温度较高的管式加热炉,如裂解炉和转化炉。典型的拉砖结构如图1-28所示。

图1-28 拉砖炉墙

1.4.1.2 炉管

管式炉炉管是物料摄取热量的媒介。按受热方式不同可分为辐射炉管和对流炉管,前者设置于辐射室内,后者设置于对流室内。为强化传热,对流管图1-28 拉砖炉墙往往采用翅片管或钉头管,其安装方式多采用水平安装。

1.4.1.3 钢结构

钢结构是管式炉的承载骨架。管式炉的其它构件依附于钢结构,其基本元件是各种型钢,通过焊接或螺栓连接构成管式炉的骨架。老式管式炉,如方箱炉、斜顶炉等,其钢结构占整个管式炉投资的比重较小,近代管式炉其钢结构的投资比例越来越大。

1.4.1.4 其它部件

管式炉配件较多,主要有看火孔、点火孔、测试孔、炉用人孔、防爆门、吹灰器、烟囱挡板等。

1.4.2 辐射室

辐射室是加热炉进行热交换的主要场所,其热负荷约占全炉的70%-80%。烃类蒸汽转化

直接受火焰辐射冲刷,温度高,其材料要具有足够的高温强度和高温化学稳定性。

1.4.3 对流室

对流室是靠辐射室排出的高温烟气进行对流传热来加热物料。烟气以较高的速度冲刷炉管管壁,进行有效的对流传热,其热负荷约占全炉的20%-30%。对流室一般布置在辐射室之上,有的单独放在地面。为了提高传热效果,炉管多采用钉头管或翅片管。

1.4.4 余热回收系统

余热回收系统用以回收加热炉的排烟余热。回收方法有两类:一类是靠预热燃烧空气来回收,使回收的热量再次返回炉中;另一类是采用另外的回收系统回收热量。前者称为空气预热方式,后者通常用水回收称为废热锅炉方式。空气预热方式有直接安装在对流室上面的固定管式空气预热器,还有单独放在地面上的管式空气预热器等型式。

目前,炉子的余热回收系统多采用空气预热方式,只有高温管式炉(烃类蒸汽转化炉、乙烯裂解炉)和纯辐射炉才使用余热锅炉,这类高温管式炉的排烟温度较高,安装余热回收系统后,炉子的总效率可达到88%-90%。

1.4.5 燃烧器

燃烧器的作用是完成燃料的燃烧,为热交换提供热量。燃烧器由燃料喷嘴、配风器、燃烧道三部分组成。燃烧器按所用燃料的不同可分为燃油燃烧器、燃气燃烧器和油-气联合燃烧器。燃烧器性能的好坏,直接影响燃烧质量及炉子的热效率。操作时,特别应注意火焰要保持刚直有力,调整火嘴尽可能使炉膛受热均匀,避免火焰舔炉管,并实现低氧燃烧。要保证燃烧质量和热效率,还必须有可靠的燃料供应系统和良好的空气预热系统。

1.4.6 通风系统

通风系统的作用是把燃烧用空气导入燃烧器,将废烟气引出炉子。它分为自然通风和强制通风两种方式。前者依靠烟囱本身的抽力,后者使用风机。

过去,绝大多数炉子都采用自然通风方式,烟囱通常安装在炉顶。近年来,随着炉子结构的复杂化,炉内烟气侧阻力增大,加之提高炉子热效率的需要,采用强制通风方式日趋普遍。

1.5 管式加热炉的主要技术指标

1.5.1 热负荷

每台管式加热炉单位时间内管内介质吸收的热量称为有效热负荷,简称热负荷。管内介质所吸收的热量用于升温、汽化或化学反应。热负荷的理论值,可根据介质在管内的工艺过程(加热、化学反应)进行计算。加热炉的设计热负荷(Q)通常取计算热负荷(Q’)的1.15-1.2倍。热负荷的大小表示炉子生产能力的大小。

1.5.2 炉膛体积热强度

炉膛单位体积在单位时间内燃料燃烧的放热量,称为炉膛体积热强度。即

式中 gv-炉膛体积热强度,KW/m3

B- 燃料用量,kg/h

Q1-燃料低热值,kJ/ kg燃料

V- 炉膛(辐射室)体积,m3

gv值越大炉膛温度越高,不利于长周期安全运行,因此炉膛体积热强度不允许过大,一般控制在1.16×102 kW/m3以下。

1.5.3 辐射表面热强度

辐射炉管单位表面积(一般按炉管外径计算表面积)、单位时间内所传递的热量称为炉管的辐射表面热强度gR,也称为辐射热通量或热流率。

gR表示辐射室炉管传热强度的大小。应注意gR一般指辐射室所有炉管的平均值。由于辐射室内各部位受热不一致,不同的炉管以及同一根炉管的不同部位,实际局部热强度相差很大。gR值越大,完成一定加热任务所需的辐射炉管就越少,辐射室体积越紧凑,投资也可降低,所以要尽可能提高炉管表面热强度。各种炉子的辐射表面热强度推荐值见表1-2。

表1-2 辐射炉管表面热强度的经验数据

1.5.4 对流表面热强度

对流炉管单位面积在单位时间内所传递的热量称为对流表面热强度。目前,加热炉对流室多以钉头管或翅片管代替过去的光管,以强化传热。钉头管或翅片管的热强度一般为光管的两倍以上。也就是说,一根钉头管或翅片管相当于两根以上光管的传热能力。

1.5.5 热效率

加热炉有效利用的热量与燃料燃烧时所放出的总热量之比叫热效率,

即热效率是衡量燃料利用情况,评价炉子设计和操作水平,标定炉子性能的主要指标。热效率越高,燃料的有效利用率越高,燃料耗量越少,运行越经济。

1.5.6 火墙温度

火墙温度又称炉膛温度,是指烟气离开辐射室进入对流室时的温度。它代表炉膛内烟气温度的高低,是炉子操作中的重要控制指标。

火墙温度高,说明辐射室传热强度高。火墙温度过高时,炉管易结焦,甚至烧坏炉管和管板等。所以火墙温度一般控制在约850℃以下(烃类蒸汽转化炉、乙烯裂解炉,炉温可达900℃以上)。

2节能途径和措施

管式炉的燃料消耗在化工装置能耗中占60%-80%。因此,提高管式炉的热效率,减少燃料消耗,对降低装置能耗具有十分重要的意义。热效率是衡量管式炉先进性的一个重要指标。

图2-1 效率与燃料的关系

图2-5 翅片管

图2-6钉头管

新建的化工管式炉的散热损失并不大,一般仅占炉子总能量的l%-2%。因此靠减少散热损失来提高热效率的余地并不大。但对于已经使用多年,炉墙已有损坏的炉子,及时修补炉墙对减少散热损失,提高热效率却是很有必要的。

2.7 扭曲片强化传热技术在裂解炉辐射炉管上的应用

在流体力学中,当气相或液相物料在管道内沿着一个方向做平直流动时,在摩擦力的作用下,靠近管壁的流体速度相对于管道中心的流体流速要慢得多,易发生滞留现象;

而流速慢的物料在外界高温作用下则容易结焦,从而影响传热效果。

裂解炉辐射管扭曲片技术改造就是在炉管上间隔焊接两段内部预制有一个S型的扭曲片短管,强制改变了裂解炉管内物料的流向,使其中的物料由原来的柱塞流改变成旋转流,对炉管管壁产生一个强烈的横向冲刷作用,从而减薄边界滞留层,减缓管壁的结焦趋势,进而提高了传热效果,并延长了裂解炉的运行周期。

扭曲片技术是北京化工研究院将航空空心叶片强制冷却原应用于乙烯裂解炉强化传热的技术发明。经过十多年的试验和开发,该技术目前已经日臻成熟,经在企业的整炉工业试验表明,扭曲片管对轻重原料都有很好的适应性,加装扭曲片管可使裂解炉辐射段炉管管壁温度下降20℃以上,对裂解炉的操作和运行没有不良影响,石脑油在正常裂解条件下延长运行周期110%,石脑油在提高处理量7%和提高裂解温度8℃的条件下延长运行周期70%,重柴油在提高处理量7%条件下延长运行周期27%,扭曲片对裂解炉的主要产品收率影响不大。

2.8 裂解炉空气预热技术的应用

充分利用乙烯装置过剩的低压蒸气、急冷水等热源,在裂解炉底部燃烧器采用空气预热器回收低温热技术,节能效果明显。

该项技术由北京航天动力研究所开发。通过增设在裂解炉底部燃烧器的空气预热器加热入口空气,从而提高进入炉膛的空气温度,降低裂解炉的燃料消耗。

这种新技术的核心之处是它的节能性,即选用的加热介质是装置余热,而不是有用热介质;节能系统不增加公用工程水、电、气、汽的消耗;用裂解炉本身设备储备的动力余量来推动整个节能系统的正常运转,即仅消耗很少的原设备动力就可满足运行。

这种新技术已在中石化几套大型乙烯装置上成功投用,空气温度加热达到50℃-130℃,节约燃料气1.5%-5%。此项技术已获得国家发明专利。

2.9 应用高温辐射涂料增强换热效果

加热炉的燃料通常为瓦斯、燃料油,这两种能源燃烧所放出的化学能,在加热炉内是以辐射和对流的方式传给介质的,而靠辐射方式传递的热量占总的传热量的70%,

可见辐射传热的效果如何,直接影响加热炉的效率。要想强化辐射传热那就必须增加反辐射率,燃料燃烧所放出的化学能传到炉墙后要马上反给炉管,最终传给介质,而不是被炉墙所吸收。

因此,在管式炉炉膛内表面喷涂高温辐射涂料,可以增强辐射传热量。炉内壁常用的耐火材料(耐火砖、耐火混凝土和耐火纤维毡三大类)辐射系数小,而高温辐射涂料的幅射系数大,涂抹后会增加热源对炉壁的辐射传热量,使炉壁表面温度上升,达到增大炉管的传热量和加热炉的热负荷之目的。

3、检测技术

通过对加热炉的效率、炉管温度、衬里、烟气露点温度等的监测,可以了解运行中烟气参数是否正常,炉管的表面热负荷是否均匀,炉管是否结焦,衬里是否完好,预热器是否存在露点腐蚀等状况。它对于节能降耗,提高加热炉的热效率,特别是对延长生产周期,降低加热炉的故障,具有重大的意义。

3.1 测试、检查执行的标准(见表3-1)

3.1 消耗量测试方法

液体燃料:容积式流量计或计量罐,允许误差±1%

气体燃料:压差式流量计,允许误差±1%

被加热介质:容积式,压差式或涡轮流量计,允许误差±1%

3.2 温度离线检测

3.3.2 热电偶

热电偶作为温度的检测元件,通常与显示仪表配套,用于直接测量各种生产过程中流体、蒸汽和气体介质以及金属表面等的温度,也可以将其毫伏信号送给巡测装置、温度变送器、自动调节器和计算机等。

热电偶由一对不同材料的导电体(热电偶丝)组成,其一端(热端、测量端)相互连接并感受被测温度;另一端(冷端、参比端)则连接到测量装置中。根据热电效应,测量端和参比端的温度之差与热电偶产生的热电动势随着测量端的温度升高而加大,其数值只与热电偶材料及两端温差有关,而与热电偶的长度、直径无关。

热电偶的结构有热电偶元件、保护套管、安装固定装置、接线盒等部件。

为提高测量精确度,减少测量误差,在热电偶使用过程中,除要经常校对外,安装时还应特别注意以下问题:

(1)安装热电偶要注意检查测点附近的炉墙及热电偶元件的安装孔须严密,以防漏风,不应将测点布置在炉膛或烟道的死角处。

(2)测量流体温度时,应将热电偶插到流速最大的地方。

(3)应避免或尽量减少热量沿着热电极及保护管等元件的传导损失。

安装位置有:

(1) 辐射室处

根据要求,为保证辐射室温度的均匀性,可在辐射室内不同位置安装数支热电偶。最重要的一个点是辐射室出口处所测的炉膛温度(火墙温度),一般是指烟气离开辐射室进入对流室时的温度,它代表炉膛内烟气温度的高低,是加热炉操作中一个很重要的控制指标。炉膛温度与加热炉的负荷有关,一般情况下炉子负荷愈大,加热炉的炉膛温度就愈高。在炉膛内,燃料燃烧放出的热量是通过辐射和对流两种传热方式传给加热炉炉管,炉膛温度高,辐射室传热量就大,但太高的炉膛温度容易造成炉管内油品结焦,甚至烧坏炉管和管板等。

3.3.4 流量计

流量是指流体(气体或液体)通过管道或容器内的数量,常用瞬时流量及累计流量表示。前者指检测的瞬间流体在单位时间内所流过的数量;后者指检测的一段时间内流过的流体数量总和。流量的表示方法常用体积流量和质量流量表示。体积流量的瞬时流量是单位时间内流过管道某处截面流体的体积,单位用m3/s表示。质量流量是指在单位时间流过管道某截面处流体的质量,用kg/s表示。

流量计是用来测定加热炉所使用的燃料(气体或液体)、空气、水、水蒸气等用量的仪器。有时还需要自动调节流量及两种介质的流量比,如燃料与助燃空气的流量比。准确地检测及调节流量对加热炉的经济指标十分重要,对节能工作具有重要意义。

流量计的种类繁多,按其测量原理,通常分为容积式流量计和速度式流量计两大类。加热炉上常用的是节流式差压流量计,即速度式流量计。

表4-1 裂解炉主要数据加权平均计算汇总

5.1 加热炉的操作

5.1.1 正常停炉操作

(1) 接到停炉命令后,应做好停炉的准备工作,准备好必要的工具。

(2) 降温降量。根据停工过程的降温降量要求,逐步停掉油火、瓦斯火;对油气混烧的燃烧器,先停油火,并及时给汽吹扫油枪和燃料油软管,待燃料油软管与油枪中的燃料油吹净后,再熄灭瓦斯火。降温过程要缓慢,降温速度一般控制在50 ℃/h左右,要保证火嘴燃烧正常,炉出口分支及炉膛温度分布均匀。

(3) 炉温降到300℃左右时,打开烟道挡板和快开风门,改为自然通风,停掉预热器和风机。

(4) 相关岗位停用过热蒸汽后,应将过热蒸汽放空。

(5) 加热炉进料泵停车前,炉子熄火。为了便于炉管扫线和退油,全部熄火后,及时停掉各火嘴吹扫蒸汽,进行闷炉操作,关闭烟道挡板和自然通风门,避免炉膛温度下降速度过快。

(6) 炉管不烧焦时,则停止燃料油循环,联系相关单位进行燃料油扫线。

(7) 扫线结束后,炉膛温度降至150℃以下时。可全开烟道挡板和自然通风门,使炉膛通风冷却。

(8) 根据需要适时对燃料气、燃料油系统进行蒸汽吹扫。注意加热炉全部熄火后严禁将燃料气吹入炉膛。

(9) 炉内爆炸气体检测。停止向炉内吹汽,联系化验对炉内做爆炸气体分析,如不合格再继续吹汽,直至爆炸气分析合格为止。

(10) 拆下油枪和瓦斯枪,清扫、除垢妥善保管,以备开工时安装使用。扫线、蒸罐、加盲板完毕后,炉内爆炸气分析合格,加热炉及附属系统的停工过程结束。

5.1.3 加热炉的开工操作

加热炉及其附属系统所有检修项目结束,炉内检修杂物清理干净,脚手架拆除,封闭人孔,加热炉就进入了开工过程。炉子开工在整个装置开工过程中占据重要的地位,它制约着整个装置的开工进度,从加热炉第一个火嘴点燃就标志着生产装置又一个新周期的开始,因此加热炉的开工操作历来都被人们所重视。

而点好、用好燃烧器是炉子开工和运转中最为重要的环节,燃烧状态直接关系着炉子操作的安全和炉子热效率的高低,炉子的日常管理实际上主要就是指对燃烧的管理。

5.1.3.1点火前的准备工作

(1) 检查燃烧器尤其是喷枪的安装位置(高度、角度),保证正确无误。

(2) 检查所有烟、风道挡板的开、关和开启方向,保证与设计相符。

(3) 先用空气或蒸汽将炉管和燃烧器管系清扫干净。

(4) 对新建或修理过炉衬的旧炉子需先进行烘炉作业。

(5) 烘炉过程中,要严格按照加热炉烘炉曲线进行,严禁升降温速度过快。

5.1.4 加热炉的正常操作

5.1.4.1 检查内容

(1)介质总出口温度,介质炉出口温差、炉膛温度、炉膛温差、过热蒸汽温度、炉膛负压、燃料压力、蒸汽压力、各路流量等参数是否控制在工艺指标范围内或满足生产的要求。

(2) 辐射室过剩空气系数是否符合要求。

(3) 紧盯仪表,发现有不正常的波动或异常现象应引起高度警惕,必要时应采取相应措施进行处理。

(4) 检查各燃烧器的燃烧状况,火焰形状、颜色是否符合要求,火焰是否扑炉管、打火墙。

(5)检查引风机、鼓风机、预热器等运行是否正常。

(6)检查炉管是否有弯曲、蜕皮、鼓包、发红、发暗等现象,注意检查回弯头堵头、各道焊缝、出入口阀、法兰、热偶管。

5.1.4.2 确保最佳的氧含量

燃料在燃烧室燃烧时,燃料完全燃烧所需的空气量叫理论空气量。为使燃烧完全和火焰稳定,燃烧过程中实际空气量应大于理论空气量。实际空气量与理论空气量的比值称过剩空

气系数。

对于燃料气燃烧室,氧含量为2%-4%(即过剩空气系数约为1.1-1.22);对于重油燃烧室,氧含量为3%-5%(即过剩空气系数约为1.16-1.29)。如果氧含量太高,就会相应加热多余的空气而使能耗增加;反之,氧含量太低,则燃烧不完全,而且火焰不稳定,出现长焰。

5.1.4.3 加热炉压力和抽力的调节

(1) 注视烟道气压力表指针的变化,调节挡板,使炉膛内的压力不高于大气压。否则,烟道气由耐火砖间隙或衬里间隙向外泄漏,以致损坏炉壁。

(2) 注视烟道气压力表,炉膛负压值一般为-20Pa~ -40Pa,勿使抽力(或炉膛负压值)过大,否则抽风量增大,氧含量增加,从而导致炉膛温度降低、烟气量增大、烟囱热损失加大和炉热效率及处理能力降低。

(3) 采用离线仪器分析烟气,调节挡板以确保最佳的过剩空气系数。

5.1.4.4加热炉燃烧器火焰的调节

(1) 火焰状态的调整。对于油燃烧器可由雾化蒸汽、一次空气及二次空气量进行调整;对于气燃烧器可由一次空气量及二次空气量进行调整,以使其燃烧完全,火焰稳定。

油燃烧器空气量不足时,火焰长而呈暗红色,炉膛发暗;反之,如果一次空气量过大,则火焰短而发白,略带紫色,前端冒火星,炉膛完全透明,而且还会产生微弱的爆炸声甚至将火焰熄火;空气量适中,则火焰呈淡橙色,炉膛比较透明;烟气呈浅灰色,如果空气充分,雾化蒸气适当时,如仍出现长焰且烟多,或经常熄火,则属于燃烧器火嘴设计缺陷问题。

气燃烧器空气量不足时,火焰长而呈暗橙色,炉膛发暗并冒黑烟。随空气量的增大,火焰变短,前瑞发蓝,炉膛透明,烟气颜色变浅。

由于燃烧气较空气轻,浮力的作用使之在炉膛内上升。可采用烟囱档板调节通过烟囱的流量,即如果开启档板,炉内压力下降,空气自然吹人炉内,使过剩空气率增大,燃料消耗增加,热效率下降;反之,如关闭档板,炉内压力增大,可导致火焰从炉缝隙、看火孔等处喷出。为维护炉内正常压力,保证安全生产和提高热效率,适当地调节烟囱档板的开启程度也是十分必要的。

(2) 竭力避免火焰扑向耐火砖或衬里炉壁及舔管。调节炉温时,尽量将火焰调短为宜,否则,火焰扑向炉壁,将会缩短耐火砖或村里的使用寿命。火焰舔管,则出现局部过热现象,不仅会加速结焦,而且还严重损坏炉管外表面,除非迫不得已需要加热炉超负荷运行。

(3) 在燃烧器的外围不得出现燃烧(或称后燃)。加热炉在实际负荷超过设计能力情况下,有时会出现此现象。如果在此工况下继续维持操作,同样会损伤耐火砖、衬里、炉管及燃烧器。

5.1.4.5加热炉温度的调节

(1) 用温度指示仪或记录仪经常检查炉膛温度。操作时,切勿使炉膛温度超过规定温度的上限,否则将导致耐火砖或村里的熔融、炉管及吊架氧化程度的加剧,从而使金属强度随温度上升而下降,增加维修费用。

(2) 必须用测温仪作不定期检查,避免炉管局部过热而发生结焦现象。局部过热不仅使燃气分解、炉管结焦、导热系数降低,同时增大加热炉的压力降,严重时加热炉必须紧急熄火;炉管过热、结焦还会使管内流速降低,从而使处理量大大低于设计生产能力。

5.2.4 加热炉炉管出现损坏、泄漏故障的处理

原因:

(1)传热恶化,表面温度过高,造成局部过热。

(2)火焰长期舔炉管。

(3)管内结焦。

(4)管内介质的冲刷腐蚀以及管内、外腐蚀等。

(5)因仪表失灵等造成偏流、干烧。

(6)炉管使用周期长、原料劣质化,造成炉管强度下降。

(7)炉管选材不当、焊接质量不合格等。

处理措施:

(1)调整炉火,保持各点温度均匀,防止火焰直接舔炉管。

(2)保持一定的注水(汽)量和炉管内介质的流速,防止炉管结焦。 (3)在紧急停炉等非正常操作时,吹扫尽炉管内的物料,防止炉管结焦。

(4)控制好吹灰频率,防止对流结灰、烟气偏流造成腐蚀。

(5)选择合适的炉管材质,减少腐蚀的影响。

(6)定期对加热炉的运行状况和炉管情况进行检测。

(7)烧穿呈小孔时,进行降温停炉。

(8)严重烧穿时,进行紧急停炉

5.2.5加热炉炉墙内衬脱落的处理

原因:

(1)耐火砖挂钉腐蚀脱落。

(2)衬里进水,烘炉升温过快,炉墙龟裂脱落。

处理方法:

(1)脱落面积小,不影响生产时,可加强监控继续运行加热炉,并有计划停炉检修。

(2)脱落面积大,对安全生产造成威胁时,应进行紧急停炉。

5.3.2.1基础档案资料

(1)加热炉设备台账。

(2)全套图纸。

(3)加热炉操作规程及事故预案。

(4)故障、事故记录及原因分析报告。

(5)定期加热炉热效率监测、分析报告。

(6)包检修、抢修、技术改造记录及竣工资料。

(7)炉管及炉附件检测报告。

5.3.2.2运行记录

(1)工艺操作运行记录。

(2)维修检查记录。

(3)燃料含硫量分析报告。

(4)在线仪表校验报告(氧化锆、热电偶等)。

乙烯裂解炉工作流程

管式炉裂解 guanshilu liejie 管式炉裂解 pyrolysis in tubular furnace 石油烃通过管式裂解炉进行高温裂解反应以制取乙烯的过程。它是现代大型乙烯生产装置普遍采用的一种烃类裂解方法。 管式炉裂解生产乙烯的工艺已有60多年的历史。管式裂解炉是其核心设备。为了满足烃类裂解反应的高温、短停留时间和低烃分压的要求,以及提高加热炉的热强度和热效率,炉子和裂解炉管的结构经历了不断的改进。新型的管式裂解 炉的热强度可达290~375MJ/(m h),热效率已可达92%~93%,停留时间可低于0.1s,管式炉出口温度可到900℃,从而提高了乙烯的产率。 工艺流程可分为裂解和急冷-分馏两部分(图1[管式炉裂解工艺流程]

①裂解裂解原料经预热后,与过热蒸汽(或称稀释蒸汽)按一定比例(视原料不同而异)混合,经管式炉对流段加热到500~600℃后进入辐射室,在辐射炉管中加热至780~900℃,发生裂解。为防止高温裂解产物发生二次反应,由辐射段出来的裂解产物进入急冷锅炉,以迅速降低其温度并由换热产生高压蒸汽,回收热量。 ②急冷-分馏裂解产物经急冷锅炉冷却后温度降为350~600℃,需进一步冷却,并分离出各个产品馏分。来自急冷锅炉的高温裂解产物在急冷器与喷入的急冷油直接接触,使温度降至200~220℃左右,再进入精馏系统,并分别得到裂解焦油、裂解柴油、裂解汽油及裂解气等产物。裂解气则经压缩机加压后进入气体分离装置。 裂解原料和产品分布最初,美国管式炉裂解原料是用天然气、油田伴生气和炼厂气中回收的轻质烃,其中主要含有乙烷、丙烷、丁烷及碳五馏分。50年代,西欧和日本的石油化工兴起,由于缺乏石油及天然气资源,因而采用石脑油作裂解原料。60年代后,又相继开发以轻柴油、重柴油和减压瓦斯油为原料的裂解技术,扩大了裂解原料来源。对于不同的原料,裂解工艺参数不同、在适宜条件下的裂解产品分布也各异(见表[不同原料管式炉裂解产品

乙烯裂解炉基础

乙烯裂解炉基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

中油吉林石化分公司60万吨/年乙烯装置改扩建项目 裂解炉基础施工技术方案 1.编制说明 裂解炉工程为60万吨/年乙烯装置改扩建项目的第一个分部工程,定于2004年5月18日正式开工,为确保工程质量达到国家施工验收规范要求并保证施工进度,特编制本施工方案。由于施工图纸未完全下发,本方案编制时仅考虑灌注桩与承台的施工,其它分项待图纸出齐后另行编制方案。施工中如遇不可预见的情况,应根据现场实际情况确定解决。 2.编制依据 .施工图纸 1705Ⅱ-800F-062-2、3; .地质勘测报告;. .采用的规范和标准 《建筑桩基技术规程》 JGJ94-94; 《建筑地基基础工程施工质量验收规范》 GB50202-2002; 《混凝土结构工程施工质量验收规范》 GB50204-2002; .甲方对工程施工进度的要求; .施工现场实际情况; 3.工程概况 .工程情况简介 新建裂解炉位于原裂解炉西侧,基础采用钻孔灌注桩,桩径φ400,桩身进入中风化岩至少500mm深,且桩长必须≥,桩数共计:241根(包括3根极限荷载试验桩),承台为大体积砼结构,厚度1200㎜,砼量共计:791m3。 .现场情况 由于地质情况比较复杂,勘测与设计部门建议本工程采用边试验、边施工的方式,施工的过程中不可予见的因素较多,基础下部原有管线保护给施工带来一定的难度,也对各有关单位(建设单位、施工单位、监理单位)的组织管理、协调配合提出了更高要求。

4.施工准备 .施工现场准备 施工人员入场,确定施工暂设区,布设施工所用模板、钢筋、砼原材料及脚手工具等堆放、加工场地; 各项机具、材料进场后,分规格、型号堆放尽量减少在厂内的二次倒运; 组织好施工所需人员、劳动力,选择技术能力强、业务素质好、质量意识高的管理人员及操作班组进行本项目施工。 动土证办理,定位测量基准点确定。 .施工技术准备 熟悉图纸并领会设计意图,设计交底,及时自审、会审; 确定施工方法,计算工程量,提出材料计划; 对施工人员进行技术培训,准备施工所需各种技术标准、规范并熟练掌握;5.施工方法 .施工程序 定桩位→地表草坪清理→土方开挖→试钻→钻孔→验孔→下钢筋笼→砼浇注→砼养护→凿桩头→桩检测→砼垫层→承台钢筋绑扎→承台砼浇筑→拆模→土方回填 .施工方法 灌注桩 根据甲方要求,定出试验桩位后在桩孔处采用人工破除原有草坪及下部土方,首先进行3根试验桩的施工,即需要钻孔机第一次布设钻孔,试验桩施工结束后,撤除钻孔机,进行机械挖土,由于桩位站装置西侧消防检修道 路,故需要采用凿岩机拆除沥青砼路面(附图1); 测量放线确定开挖界限,挖土方式为基础坑端开挖法:挖土采用WY80反铲挖掘机,后退式挖土,挖出的土方由20t自卸汽车外运,应由甲方指定卸土场,并对运距给予确认。 鉴于地下存在管线,,建设单位要求施工单位在土方施工前,人工挖“十”形探坑,用以确认地下埋藏物(管线、地沟等)的位置,采取相应的处理措

乙烯裂解炉辐射段炉管堵塞原因分析及对策

裂解炉辐射段炉管堵塞原因分析及对策

的文丘里全部更换成喉径为 18mm 的新文丘里管(如下图)。此后上述堵管现象大为减少。 (中国石油吉林石化公司乙烯厂,吉林, 132022) 摘要:辐射段炉管堵塞是乙烯装置裂解炉常见故障之一。文中叙述了吉化大乙烯装置裂解炉辐射段炉管堵塞的 主要现象和有效的处理措施,并阐述了辐射段炉管堵塞的主要原因, 为同类装置避免类似现象发生和处理提供了依据。 关键词:裂解炉;辐射段炉管;堵塞 中国石油吉林石化公司乙烯厂(以下简称吉化乙烯)始建于 1993年,1996年9月一次性开车成 功,原装置共有六台 LSCC1-1型“门式”裂解炉(F0101?F0601),裂解原料石脑油、轻柴油、加氢 /、 尾油及循环乙烷/丙烷等,单台乙烯生产能力为 60 kt/a ,采用五开一备的生产方式,规模为 300 kt/a 乙烯。在2001年吉化乙烯进行了一期扩能改造,新建了一台 PyroCrack6型裂解炉(F0701),裂解原 料为装置自产的循环乙烷及丙烷,使吉化乙烯的生产能力达到了 380 kt/a 。在2004年吉化乙烯进行 了二期扩能改造,新建了两台 PyroCrack1-1SR 型“门式”裂解炉(F0801?F0901),裂解原料为石脑 油、循环乙烷/丙烷,单台炉乙烯生产能力为 120 kt/a ,在二期改造过程中,为了实现装置生产能力 达到700 kt/a 的目标,结合原有六台裂解炉运行情况, 2004年6月至2005年10月先后对F0101 F0601裂解炉进行了扩能改造。改造采用 KTI 技术,将原有LSCC1-1型炉管更换为 GK-6型炉管,单 台裂解炉乙烯生产能力由原来的 60 kt/a 提高到80 kt/a 以上。改造内容包括更换辐射段炉管、对流 段部分管束(高压蒸汽过热段)、底部火嘴、增加除焦罐及燃料控制系统等。 2007年11月,由于裂 解炉周期的影响,新建了一台裂解炉(F1001),提高了裂解炉的备用系数, 保证了装置的满负荷运行。 从开车至今,裂解炉辐射段炉管在运行及升温过程中多次出现堵塞现象, 给裂解炉的安全运行甚 至是装置的平稳运行都带来严重威胁。 下文对吉化乙烯装置裂解炉辐射段炉管堵塞的情况进行了总结 分类和深入分析原因,并提出相应对策。 1.处于横跨段集合管末端的炉管堵塞 2004年至2005年F0101?F0601裂解炉改造后,两侧高温的烃 /蒸汽混合物离开对流段,分别汇 集到一根横跨段集合管然后进入辐射段炉管。 每一根辐射段炉管进口, 都装有一个临界流量文氏管(亦 称文丘里管),以确保在正常的操作中有良好的流量分布。每台裂解炉有 112个进口(每侧炉膛有 56 组),对应于112组GK6型辐射段炉管。改造后设计运行周期为 60天,但是实际运行 20天左右时, 多次出现处于横跨段集合管末端的炉管对应的废热锅炉出口温度迅速上涨, 现场检查发现处于集合管 末端的辐射段炉管上升管变得红亮(对应的下降管还是黑色的) ,有堵塞的迹象,虽然采取了对该组 炉出口温度进行大幅度低控等措施,但不久该炉管还是会堵塞。 2006年至2007年每年发生类似事件 都在10次以上。 原因分析: 1.1经过实际参数与设计参数对比发现,实际横跨压力远远低于设计值,确定原因为物料分配不均, 张维祥 物料在个别炉管及 TLE 内流速慢,停留时间过长,过度裂解,结焦严重致堵塞。

乙烯裂解炉先进控制系统开发与应用_李平

第62卷 第8期 化 工 学 报 V ol.62 No.8 2011年8月 CIESC Journal Aug ust 2011檭檭檭檭檭檭檭檭檭檭檭檭檭檭殐 殐 殐 殐 研究论文 乙烯裂解炉先进控制系统开发与应用 李 平1,李奇安1,雷荣孝2,陈爱军2,任丽丽2,曹 巍2 (1辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001;2 中国石油兰州石化分公司自动化研究院,甘肃兰州730060 )摘要:以中国石油兰州石化公司46万吨/年乙烯装置裂解炉为对象,设计并实施了5台SC-1型乙烯裂解炉先进控制系统,包括平均COT温度控制、管间温度平衡控制、总进料流量控制。详细描述了该系统的工程实施,介绍了先进控制系统硬软件结构、先进控制与常规控制的切换逻辑、先进控制DCS操作界面。本系统的投用极大地提高了裂解炉控制的平稳性和控制精度,带来了显著的经济效益。关键词:乙烯裂解炉;先进控制;温度控制;乙烯装置DOI:10.3969/j .issn.0438-1157.2011.08.022中图分类号:TP  273 文献标志码:A文章编号:0438-1157(2011)08-2216-05 Development and application of advanced process control sy stemfor ethylene cracking  heatersLI Ping1,LI Qi’an1,LEI Rongxiao2,CHEN Aij un2,REN Lili 2,CAO Wei 2(1 School of  Information and Control Engineering,Liaoning Shihua University,Fushun113001,Liaoning,China;2  Institute of Automation,PetroChina Lanzhou Petrochemical Company,L anzhou730060,Gansu,China)Abstract:The advanced process control systems for the SC-1type ethylene cracking  heaters at LanzhouPetrochemical Company 460KTA Ethylene Plant were designed,including the average coil outlettemperature controllers,the pass outlet temperature balance controllers,the total throug houtcontrollers.The software and hardware structure of the control systems,the switching logic betweenadvanced control and DCS regular control,the DCS operation interface for advanced control wereintroduced.The control steadiness and control accuracy for cracking heaters are greatly improved by  usingthe advanced process control systems,and remarkable economic benefit is obtained.Key  words:ethylene cracking heaters;advanced process control;temperature control;ethylene plant 2 011-05-01收到初稿,2010-05-11收到修改稿。联系人及第一作者:李平(1964—),男,博士,教授。基金项目:辽宁省高等学校优秀人才支持计划(2008RC32);辽宁省高校创新团队支持计划(2007T103 )。  引 言 乙烯装置是石化工业中能耗最大的装置之一。裂解炉是乙烯装置的关键设备,也是乙烯装置的能 耗大户,其能耗占装置总能耗的50%~60%[1] 。 降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着节能降耗任务的日趋紧迫,相关企业近 年来积极开展裂解炉节能降耗的攻关,采取一系列 措施,收到可喜的效果[ 2- 4]。其中,采用先进控制技术,优化裂解炉操作,能够提高乙烯、丙烯收 Received  date:2011-05-01.Corresponding author:Prof.LI Ping,liping@lnpu.edu.cnFoundation item:supported by the Program for LiaoningExcellent Talents in University(2008RC32)and the Program forCreative Team in University of Liaoning  Province(2007T103).  率,使乙烯装置生产能耗明显下降[ 5- 7]。因此,充分利用DCS与计算机技术的优势,运用现代控制技术,有针对性地开发APC先进控制和优化系统,对于充分发挥现有生产装置的运行潜力,有效实现

常用乙烯裂解炉简介.

常用乙烯裂解炉简介 ①鲁姆斯公司的SRT型裂解炉 鲁姆斯公司的SRT型裂解炉(短停留时间裂解炉)为单排双辐射立管式裂解炉,已从早期的SRT-I型发展为近期的SRT-Ⅵ型。 SRT型裂解炉的对流段设置在辐射室上部的一侧,对流段顶部设置烟道和引风机。对流段内设置进料、稀释蒸汽和锅炉给水的预热。从SRT-Ⅵ型炉开始,对流段还设置高压蒸汽过热,由此取消了高压蒸汽过热炉。在对流段预热原料和稀释蒸汽过程中,一般采用一次注入蒸汽的方式,当裂解重质原料时,也采用二次注汽。 早期SRT型裂解炉多采用侧壁无焰烧嘴烧燃料气,为适应裂解炉烧油的需要,目前多采用侧壁烧嘴和底部烧嘴联合的布置方案。底部烧嘴最大供热量可占总热负荷的70%。SRT-Ⅲ型炉的热效率达93.5%。图1—21为SRT型裂解炉结构示意图。 图1-21鲁姆斯SRT-Ⅱ型裂解炉结构示意图 ②斯通-伟伯斯特(S.W)公司的USC型裂解炉 S.W的USC裂解炉(超选择性裂解炉)为单排双辐射立管式裂解炉,辐射盘管为W型或U型盘管。由于采用的炉管管径较小,因而单台裂解炉盘管组数较多(16-48组)。每2组或4组辐射盘管配一台USX型(套管式)一级废热锅炉,多台USX废热锅炉出口裂解气再汇总送入一台二级废热锅炉。近期开始采用双程套管式废热锅炉(SLE),将两级废热锅炉合并为一级。 USC型裂解炉对流段设置在辐射室上部一侧,对流段顶部设置烟道和引风机。对流段内设

有原料和稀释蒸汽预热、锅炉给水预热及高压蒸汽过热等热量回收段。大多数USC型裂解炉为一个对流段对应一个辐射室,也有两个辐射室共用一个对流段的情况。 当装置燃料全部为气体燃料时,USC型裂解炉多采用侧壁无焰烧嘴;如装置需要使用部分液体燃料时,则采用侧壁烧嘴和底部烧嘴联合布置的方案。底部烧嘴可烧气也可烧油,其供热量可占总热负荷的60%-70%。 由于USC型裂解炉辐射盘管为小管径短管长炉管,单管处理能力低,每台裂解炉盘管数较多。为保证对流段进料能均匀地分配到每根辐射盘管,在辐射盘管入口设置了文丘里喷管。图1-22是USC型裂解炉结构示意图。 图1-22 USC型裂解炉结构示意图 ③凯洛格(Kellogg)公司的毫秒炉 凯洛格公司的毫秒炉为立管式裂解炉,其辐射盘管为单程直管。对流段在辐射室上侧,原料和稀释蒸汽在对流段预热至横跨温度后,通过横跨管和猪尾管由裂解炉底部送入辐射管,物料由下向上流动,由辐射室顶部出辐射管而进入第一废热锅炉。裂解轻烃时,常设三级废热锅炉;裂解馏分油时,只设两级废热锅炉。对流段还预热锅炉给水并过热高压蒸汽。热效率为93%。 毫秒炉采用底部大烧嘴,可烧气也可烧油。

乙烯裂解(题库)

乙烯裂解 初级一 填空题 (A) 328. 1米=( )毫米=( )微米=( )丝=( )埃 (K HD:工艺基本知识) 答文:1000 10 10 10 330. 1公顷=( )米=( )市亩,1英亩=( )市亩。 (KHD: 工艺基本知识) 答文:10 15 6.072 336. 汽化有两种方式,即( )和( )。 (KHD:工艺基本知识) 答文:蒸发沸腾 339. 分子组成和分子量完全相同,但分子结构不同,因而性 质也不同的物质叫做( )。 (KHD:工艺基本知识) 答文:同分异构体 341. 烷烃的分子通式是( ),烯烃分子的通式是( )。 (KHD:工艺基本知识) 答文:CnH n+2 Cn H2n 351. 热量传递的基本方式有( ),( ),( )。 (KHD:工艺基本知识) 答文:导热对流传热辐射传热 352. 一种或几种物质分散到另一种物质中,形成的均匀、稳 定的混合物叫( ),被溶解的物质叫( ),而溶解 其它物质的物质叫( )。 (KHD:工艺基本知识) 答文:溶液溶质溶剂 353. 在分子中只有( )和( )两种元素所组成的有机化合物 ,叫做烃、 (KHD:工艺基本知识) 答文:碳氢 354. 石油化学工业是指以( )和( )为原料的化学工 业。 (KHD:工艺基本知识) 答文:石油天然气 420. 分散控制系统的含义是( ) (KHD:工艺基本知识) 答文:风险分散 425. 生产乙烯的原料,按其状态可分为( )与( )两大类,按其密度,则可分为( )与( )。 (KHD:工艺基本知识)

答文:气态原料液态原料轻质原料重质原料 431. 某班的工艺参数有200个,当班共记录三次,经检查发现有6个错误,则其差错率为( )。 (KHD:工艺基本知识) 答文:1% 441. 蒸汽--空气烧焦的反应方程式为( )。 (KHD:工艺基本知识) 答文:C+O →CO +Q 451. 废热锅炉的作用,一是( )( ),二是( )。 (KHD:工艺基本知识) 答文:将裂解气降温,减少二次反应 回收裂解气的热量 456. 水蒸汽稀释比,俗称水油比,是指( )( )。 (KHD:工艺基本知识) 答文:稀释蒸汽与裂解原料重量流量之比值。 531. 工艺水质量上的控制要求是( );( )。 (KHD:工艺基本知识) 答文:PH值在8-9 油含量比较低 534. 新区急冷水循环泵的超速跳闸值是( )(根据本装置实际情况回答)。 ( KHD:工艺基本知识) 答文:4180转/分 536. 裂解汽油干点的设计值为( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:<205℃ 537. 当新区急冷系统压力过低时,可由PIC-1121补入( )或( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:N 燃料气 539. 老区急冷油循环泵出口压力低联锁值是( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:6.86Kg/cm (表) 540. 丙烷精制的原料来自( )。 (KHD:工艺基本知识) 答文:丙烯精馏塔塔釜 541. 对GK-V型炉而言,辐射段炉管管壁温度不应超过( )℃,上、下温差不应超过( )℃,混合原料预热段(下段)最大壁温不应超过( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:1125 30 750 543. 新区高压锅炉给水中注入的药剂是( ),其分子式为( )。 (KH D:工艺基本知识) 答文:磷酸钠 Na PO ·12H O 566. 所谓三级安全教育指( )、( )、( )。 (KHD:工艺基

乙烯装置裂解炉节能降耗

ENERGY CONSERV ATION AND CONSUMPTION REDUCTION TECHNOLOGY IN ETHYLENE CRACKING FURNACE XIE Xu-Dong CHENG Guang-Hui SONG Jian-Jun 中国石化齐鲁烯烃厂 Abstract:This article introduces the operation of energy conservation and consumption reduction in recent years of Ethylene cracking furnace at QILU petrochemical Co.Ltd. key words: cracking furnace energy conservation and consumption reduction 乙烯装置裂解炉节能降耗 谢旭东程广慧宋建军 中国石化齐鲁烯烃厂,淄博,255411 摘要:本文综述了齐鲁乙烯装置近年来在裂解炉节能方面所作的工作及取得的进展。 关键词:裂解炉;节能 乙烯装置的能耗占石油化学工业总能耗的三分之一以上,是化学工业之中能耗最大的装置。裂解炉为乙烯装置的核心,裂解炉的能耗占整个装置的大部分(大于50%)〔1〕。乙烯装置中的裂解炉一般由对流段、辐射段和急冷系统3部分构成。反应所需的高位热能是在辐射段通过燃烧器燃烧燃料的方式提供。对流段的目的是回收高温烟气余热,以用来气化原料,并将其过热至横跨温度,送入辐射段进行热裂解;多余的热量用来预热锅炉给水和过热由急冷锅炉系统产生的高压蒸汽。急冷锅炉系统的作用是回收离开辐射段的高温裂解气的能量以产生饱和超高压蒸汽。燃烧热中约42%在辐射段提供反应热和升温,约51.5%在对流段被回收,约1.5%为热损失,其余为排烟损失〔2〕。裂解炉的节能正是围绕上述各部分来进行的。本文主要针对齐鲁乙烯装置近年来通过技术改造、新技术应用和精细化管理等措施,降低裂解炉能耗的工作进行简要介绍。 1.裂解炉技术改造,节能降耗 对裂解炉进行技术改造,往往是出于扩能、节能及提高原料灵活性等目的。2010年对GK-6(BA-107)进行了整炉裂解气体原料的技术改造,在增提高原料灵活性的同时又降低了能耗。 BA-107于2004年采用KTI的专有技术改造为GK-VI型裂解炉,开车一段时间后裂解炉存在排烟温度过高,热效率偏低的问题。为提高裂解炉的热效率,降低装置的能耗,需要对裂解炉进行改造。另外,GK-VI辐射段炉管采用双排排布,管径又小,换热面积较小,热强度比较大;同时,由于炉管采用双排,炉管受热不均,在高热强度下也会导致炉管弯曲;另外,原有炉管的底部导向结构,对施

乙烯裂解炉基础

中油吉林石化分公司60万吨/年乙烯装置改扩建项目 裂解炉基础施工技术方案 1.编制说明 裂解炉工程为60万吨/年乙烯装置改扩建项目的第一个分部工程,定于2004年5月18日正式开工,为确保工程质量达到国家施工验收规范要求并保证施工进度,特编制本施工方案。由于施工图纸未完全下发,本方案编制时仅考虑灌注桩与承台的施工,其它分项待图纸出齐后另行编制方案。施工中如遇不可预见的情况,应根据现场实际情况确定解决。 2.编制依据 .施工图纸 1705Ⅱ-800F-062-2、3;.地质勘测报告;. .采用的规范和标准 《建筑桩基技术规程》 JGJ94-94;《建筑地基基础工程施工质量验收规范》 GB50202-2002;《混凝土结构工程施工质量验收规范》 GB50204-2002; .甲方对工程施工进度的要求; .施工现场实际情况; 3.工程概况 .工程情况简介 新建裂解炉位于原裂解炉西侧,基础采用钻孔灌注桩,桩径φ400,桩身进入中风化岩至少500mm深,且桩长必须≥,桩数共计:241根(包括3根极限荷载试验桩),承台为大体积砼结构,厚度1200㎜,砼量共计:791m3。 .现场情况 由于地质情况比较复杂,勘测与设计部门建议本工程采用边试验、边施工的方

式,施工的过程中不可予见的因素较多,基础下部原有管线保护给施工带来一定的难度,也对各有关单位(建设单位、施工单位、监理单位)的组织管理、协调配合提出了更高要求。 4.施工准备 .施工现场准备 施工人员入场,确定施工暂设区,布设施工所用模板、钢筋、砼原材料及脚手工具等堆放、加工场地; 各项机具、材料进场后,分规格、型号堆放尽量减少在厂内的二次倒运; 组织好施工所需人员、劳动力,选择技术能力强、业务素质好、质量意识高的管理人员及操作班组进行本项目施工。 动土证办理,定位测量基准点确定。 .施工技术准备 熟悉图纸并领会设计意图,设计交底,及时自审、会审; 确定施工方法,计算工程量,提出材料计划; 对施工人员进行技术培训,准备施工所需各种技术标准、规范并熟练掌握;5.施工方法 .施工程序 定桩位→地表草坪清理→土方开挖→试钻→钻孔→验孔→下钢筋笼→砼浇注→砼养护→凿桩头→桩检测→砼垫层→承台钢筋绑扎→承台砼浇筑→拆模→土方回填 .施工方法 灌注桩 根据甲方要求,定出试验桩位后在桩孔处采用人工破除原有草坪及下部土方,首先进行3根试验桩的施工,即需要钻孔机第一次布设钻孔,试验桩施工结束后,撤除钻孔机,进行机械挖土,由于桩位站装置西侧消防检修道路,故需

乙烯裂解炉辐射段炉管堵塞原因分析及对策

裂解炉辐射段炉管堵塞原因分析及对策 张维祥 (中国石油吉林石化公司乙烯厂,吉林,132022) 摘要:辐射段炉管堵塞是乙烯装置裂解炉常见故障之一。文中叙述了吉化大乙烯装置裂解炉辐射段炉管堵塞的主要现象和有效的处理措施,并阐述了辐射段炉管堵塞的主要原因,为同类装置避免类似现象发生和处理提供了依据。 关键词:裂解炉;辐射段炉管;堵塞 中国石油吉林石化公司乙烯厂(以下简称吉化乙烯)始建于1993年,1996年9月一次性开车成功,原装置共有六台LSCC1-1型“门式”裂解炉(F0101~F0601),裂解原料石脑油、轻柴油、加氢尾油及循环乙烷/丙烷等,单台乙烯生产能力为60 kt/a,采用五开一备的生产方式,规模为300 kt/a 乙烯。在2001年吉化乙烯进行了一期扩能改造,新建了一台PyroCrack6型裂解炉(F0701),裂解原料为装置自产的循环乙烷及丙烷,使吉化乙烯的生产能力达到了380 kt/a。在2004年吉化乙烯进行了二期扩能改造,新建了两台PyroCrack1-1SR型“门式”裂解炉(F0801~F0901),裂解原料为石脑油、循环乙烷/丙烷,单台炉乙烯生产能力为120 kt/a,在二期改造过程中,为了实现装置生产能力达到700 kt/a的目标,结合原有六台裂解炉运行情况,2004年6月至2005年10月先后对F0101~F0601裂解炉进行了扩能改造。改造采用KTI技术,将原有LSCC1-1型炉管更换为GK-6型炉管,单台裂解炉乙烯生产能力由原来的60 kt/a提高到80 kt/a以上。改造内容包括更换辐射段炉管、对流段部分管束(高压蒸汽过热段)、底部火嘴、增加除焦罐及燃料控制系统等。2007年11月,由于裂解炉周期的影响,新建了一台裂解炉(F1001),提高了裂解炉的备用系数,保证了装置的满负荷运行。 从开车至今,裂解炉辐射段炉管在运行及升温过程中多次出现堵塞现象,给裂解炉的安全运行甚至是装置的平稳运行都带来严重威胁。下文对吉化乙烯装置裂解炉辐射段炉管堵塞的情况进行了总结分类和深入分析原因,并提出相应对策。 1.处于横跨段集合管末端的炉管堵塞 2004年至2005年F0101~F0601裂解炉改造后,两侧高温的烃/蒸汽混合物离开对流段,分别汇集到一根横跨段集合管然后进入辐射段炉管。每一根辐射段炉管进口,都装有一个临界流量文氏管(亦称文丘里管),以确保在正常的操作中有良好的流量分布。每台裂解炉有112个进口(每侧炉膛有56组),对应于112组 GK6型辐射段炉管。改造后设计运行周期为60天,但是实际运行20天左右时,多次出现处于横跨段集合管末端的炉管对应的废热锅炉出口温度迅速上涨,现场检查发现处于集合管末端的辐射段炉管上升管变得红亮(对应的下降管还是黑色的),有堵塞的迹象,虽然采取了对该组炉出口温度进行大幅度低控等措施,但不久该炉管还是会堵塞。2006年至2007年每年发生类似事件都在10次以上。 原因分析: 经过实际参数与设计参数对比发现,实际横跨压力远远低于设计值,确定原因为物料分配不均,物料

3乙烯裂解装置

概论 世界上有六大乙烯生产技术,它们分别是鲁姆斯公司乙烯技术、斯通-韦伯斯特公司乙烯技术、凯洛格公司乙烯生产技术、布朗公司乙烯生产技术、荷兰动力技术国际公司乙烯技术、林德公司乙烯技术。 Lummus公司的乙烯技术是国内熟知的技术,我国70年代中后期引进的燕山、齐鲁、扬子、上海四套30万吨乙烯装置,均采用Lummus公司的乙烯技术,80年代中后期引进的盘锦、抚顺种中原乙烯装置好采用Lummus公司的乙烯技术。在全世界范围内采用。鲁姆斯公司乙烯技术的装置其总生产能力约占世界乙烯生产能力的45%左右。 斯通-韦伯斯特(S&W)公司是美国十大工程公司之一,在乙烯技术方面,与美国的Lummus公司、Kellogg公司三足鼎立。S&W公司已在世界上建成乙烯装置100多套,总生产能力约占世界乙烯总生产能力的22%左右。S&W公司的裂解炉分有V型、W型、M型。我国大庆乙烯装置采用的是S&W公司的16W型裂解炉。1996年建成的茂名30万吨乙烯采用的也是S&W 公司技术。扬巴一体化乙烯装置也采用S&W公司乙烯技术。 美国.凯洛格公司成立于1901年,目前是世界级的工程设计公司。就乙烯技术来说,其最大成就是开发了毫秒炉裂解技术,把物料在裂解炉中的停留时间缩短至秒,突破了秒的大关。我国兰化公司1988年投产建成了5台毫秒炉。 CF布朗公司是1909年成立的一家国际性工程设计和建设公司。其乙烯技术的主要特点是采用高选择性长周期运行的辐射炉管、前加[wiki]氢[/wiki]除炔、前脱丙烷、广泛采用热泵技术、专有的脱甲烷系统等。

荷兰动力技术国际公司(KTI)系目前世界上主要的乙烯厂设计和设备制造公司。近年来该公司与法国德希尼公司和意大利的TPL公司合作在欧州大量建厂,其数量已超过鲁姆斯公司和斯通-韦伯斯特公司。1994年北京东方建成的乙烯装置采用了KTI的乙烯技术。我乙烯装置BA103炉改造也选用了KTI的GK-Ⅵ裂解炉。 林德公司是世界上久负盛名的低温工程公司,成立于1879年。在乙烯技术方面,Linde公司应用专有的低温分离技术,于1931年建成了世界上第一个用低温蒸馏方法从焦炉气中生成乙烯的工厂。60年代前,其基本上没有专有的裂解技术,裂解炉基本上采用其它公司的技术回收系统则采用自己的专利。1960年开始,林德公司开始研究开发管式炉蒸汽裂解技术,1965年采用自己技术建成了较大型的乙烯装置。吉化公司1996年建成投产的30万吨乙烯装置就采用了德国林德公司的专利技术。 乙烯裂解炉 乙烯裂解炉的构造: 乙烯裂解炉分为对流段和辐射段。一般地说,对流段作用是回收烟气余热,用来预热并汽化原料油,并将原料油和稀释蒸汽过热至物料的横跨温度,剩余的热量用来过热超高压蒸汽和预热锅炉给水。在原料预热汽化过程中,注入稀释蒸汽,以降低原料油的汽化温度,防止原料油在汽化过程中焦化。裂解炉对流段每一组盘管主要由换热炉管(光管或翅片管)通过回弯头组焊 而成,端管板和中间管板支持起炉管,有些盘管的进出口通过集箱汇集到一起。每一组盘管的四周再组对上炉墙,则构成一个模块。 乙烯裂解炉要根据工艺特点定制的.目前我们国内的乙烯装置工艺包多是买国外的先进工艺技术专利,裂解炉根据工艺设计由设计方指定的几个厂家进行投标产生. 裂解炉是乙烯装置的能耗大户,其能耗占装置总能耗的50%-60%。降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着能源价格的不断上涨,国内外相关部门均加强了裂解炉节能措施的研究。裂解炉的能耗

中原乙烯BA106裂解炉改造焊接方案

1、适用范围: 本方案仅适用于中原石油化工有限责任公司大修乙烯装置BA106裂解炉改造对流室炉管与工艺管道焊接。 2、编制依据: 2.1《现场设备、工业管道焊接工程施工及验收规范》————GB50236-98; 2.2《石油化工有毒、可燃介质管道工程施工及验收规范》——SH3501-2002; 2.3《石油化工管式炉碳钢和铬钼钢炉管焊接技术条件》———SH3085-1997; 2.4《石油化工铬镍不锈钢、铁镍合金和镍合金焊接规程》——SH/T3523-2009; 2.5《石油化工异种钢焊接规程》—————————————SH/T3526-2004; 2.6《石油化工建设工程施工安全技术规范》————————GB50484-2008; 2.7中国石化工程建设公司与乙烯车间提供的设计图纸及资料; 3、工程概况: 3.1工程简述: 1)本工程为中原石油化工有限责任公司大修乙烯车间BA106裂解炉改造,对流段炉管、集合管、联箱全部更换,与炉管连接的外部工艺管道保护性拆装,辐射室原料线拆装;涉及到工艺管道焊接接头的材质为A106B、20#、20G、A312 TP304H、A312 TP347、A312 TP347H、A312 TP321H、A335 P11、A335 P22、A335-P11 +TP304H、A335-P22 +TP347H、 A335 P11+A335 P22;根据不同材质的特点采取相应的措施,确保焊接质量达到规范要求。 3.2工程特点: 1)主要施工难点是焊接接头种类繁多,既有同种、同类材料之间的连接,又有不同类型、不同材质之间的异种钢接头,管壁厚度较厚,空间预留小,安装作业面狭小,高空作业,加深施工人员作业难度。 3.3主要工程量: 1)对流室炉管焊接口为24道,寸D量为104寸。 2)对流室工艺管线焊接口为92道,寸D量约为508寸。 3)辐射室原料线焊接口为108道,寸D量为104寸。 4、焊接施工准备: 4.1技术准备: 1)施工前焊接技术人员应熟悉图纸及规范标准,编制施工技术方案。 2)焊接技术人员按图纸及规范要求,编写焊接工艺指导书,组织进行焊接工艺评定。

乙烯裂解工艺的进展

乙烯裂解工艺的进展 班级:化工11-2班 姓名:郝龙帅 学号:2011010519

乙烯裂解工艺的进展 1、技术进展 1.1 低碳烯烃转化技术 炼厂催化裂化装置和乙烯装置副产的C4和C5馏分、轻质裂解汽油或轻质催化汽油中含有大量C4-8低碳烯烃,可通过催化裂解或烯烃歧化两种工艺,将其转化为丙烯、乙烯。 1.1.1 催化裂解 选择性催化裂解工艺以利安德/KBR公司的Superflex工艺(流化床)和鲁奇公司开发的Propylur工艺(固定床)为代表。Superflex 工艺可将2/3的进料转化为乙烯和丙烯,南非萨索尔技术公司2005年已启动一套装置采用该技术生产丙烯和乙烯。Proloylur工艺可以丁烯、戊烯和己烯为原料,其示范装置已在德国Worringen地区的BP公司装置上运行。此外,UOP与Atofina公司开发的催化裂解工艺OCP已经过示范装置的验证。 1.1.2 烯烃歧化 烯烃歧化工艺是一种通过烯烃双键断裂并重新转换为新烯烃产物的催化反应,主要有鲁姆斯公司的OCT工艺和IFP的Meta-4工艺

等。OCT技术以乙烯和2-丁烯为原料进行歧化生产丙烯,我国上海赛科90万t/a乙烯装置应用了此项技术。据报道,至2008年亚洲将有7家公司采用OCT技术。Meta-4烯烃转化工艺已在我国台湾省中油公司高雄炼厂完成中试验证。 1.2 乙烯技术国产化进展 (1)在裂解技术方面,先后开发成功了CBL-I、Ⅱ、Ⅲ、Ⅳ、V型裂解炉技术,适用于乙烷、石脑油、轻柴油和加氢尾油等原料的裂解,已在辽阳化纤、齐鲁石化、吉化公司、抚顺石化、燕山石化、中原乙烯及天津乙烯获得工业应用。近期又采用CBL技术为齐鲁石化建设了1台9万t/a的乙烷炉和2台6万-8万t/a的液体原料裂解炉。迄今为止,已建设的小于10万t/a的CBL炉共18台,累计生产能力达94万t/a。近年来与鲁姆斯公司合作开发10万t/a大型裂解炉技术,采用合作开发的SL-I、SL-Ⅱ型裂解炉技术已建和在建的裂解炉总能力达300万t/a,其中采用基于CBL技术的SL-I型炉已运行和在建的有4台,天津100t/a乙烯装置的11台10万t/a大型裂解炉正在设计中,镇海100万t/a乙烯的裂解炉也将采用SL-I型技术; (2)开发工艺软件包和相关工程技术,用CBL技术和乙烯工艺软件包成功地完成了中原乙烯和天津乙烯装置的扩能改造; (3)开发分凝分馏塔技术(CFT),并成功地完成了试验验证,已用于装置改造;

乙烯裂解炉的几种节能措施

乙烯裂解炉的几种节能措施 裂解炉是乙烯装置的能耗大户,其能耗占装置总能耗的50%-60%。降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着能源价格的不断上涨,国内外相关部门均加强了裂解炉节能措施的研究。裂解炉的能耗在很大程度上取决于裂解炉系统本身的设计和操作水平,近年来,裂解炉技术向高温、短停留时间、大型化和长运转周期方向发展。通过改善裂解选择性、提高裂解炉热效率、改善高温裂解气热量回收、延长运转周期和实施新型节能技术等措施,可使裂解炉能耗显著下降。 1 改善裂解选择性 对相同的裂解原料而言,在相同工艺设计的装置中,乙烯收率提高1%,则乙烯生产能耗大约相应降低1%。因此,改善裂解选择性,提高乙烯收率是决定乙烯装置能耗的最基本因素。通过裂解选择性的改善,不仅达到节能的效果,而且相应减少裂解原料消耗,在降低生产成本方面起到十分明显的作用。 (1)采用新型裂解炉。新型裂解炉均采用高温-短停留时间与低烃分压的设计。20世纪70年代,大多数裂解炉的停留时间在0.4s左右,相应石脑油裂解温度控制在800-810℃,轻柴油裂解温度控制在780-790℃。近年来,新型裂解炉的停留时间缩短到0。2s左右,并且出现低于0.1s 的毫秒裂解技术,相应石脑油裂解温度提高到840℃以上,毫秒炉达890℃;轻柴油裂解温度提高到820℃以上,毫秒炉达870℃。由于停留时间大幅度缩短,毫秒炉裂解产品的乙烯收率大幅度提高。对丁烷和馏分油而言,与0.3-0.4s停留时间的裂解过程相比,毫秒炉裂解过程可使乙烯收率提高10%-15%。 (2)选择优质的裂解原料。在相同工艺技术水平的前提下,乙烯收率主要取决于裂解原料的性质,不同裂解原料,其综合能耗相差较大。裂解原料的选择在很大程度上决定乙烯生产的能耗水平。通过适当调整裂解原料配置结构,优化炼油加工方案,增加优质乙烯原料如正构烷烃含量高的石脑油等供应,改善原料结构和整体品质,在提高乙烯收率的同时,达到节能降耗的目标。 (3)优化工艺操作条件。通过优化裂解炉工艺操作条件,不仅能使原料消耗大幅度降低,也能够使乙烯生产能耗明显下降。不同的裂解原料对应于不同的炉型具有不同的最佳土艺操作条件。对于一定性质的裂解原料与特定的炉型来说,在满足目标运转周期和产品收率的前提下,都有其最适宜的裂解温度、进料量与汽烃比。如果裂解原料性质与原设计差别不大,裂解炉最优化的工艺操作条件可以参照设计值。反之,则需要利用SPYR软件或裂解试验装置对原料重新评价,以确定最佳的工艺操作条件。 2 延长裂解炉运行周期 (1)优化原料结构与工艺条件。裂解原料组成与性质是影响裂解炉运行周期的重要因素。一般含氢量高、低芳烃含量的原料具有良好的裂解性能,是裂解炉长周期运行的必要条件。对不饱和烃含量较高的原料进行加氢处理,是提高油品质量的有效途径。当裂解原料一定时,工艺条件是影响裂解炉运行周期的主要因素。低烃分压、短停留时间和低裂解温度有利于延长裂解炉运行周期。但考虑到

年产30万吨乙烯裂解气脱甲烷系统工艺设计(毕业设计)

摘要 摘要:在乙烯生产中,脱甲烷系统的能量消耗相当的大,大约是整个分离系统能量的50%,确立一个能量消耗低、投资小、流程简单的脱甲烷系统流程相当的重要。这次设计过程中将首先对几种分离方法做简单的比较,然后选择技术成熟、操作稳定、产品纯度高、能耗低的深冷分离法。从能耗来看,在深冷分离的三种流程中,以顺序流程的能耗最低。流程确立后,将要根据已知产品的产量和要求,对整个脱甲烷系统工艺流程进行相应的计算,确定各部分的操作条件,然后对主要的分离设备的工艺尺寸计算,并做出流程图和主设备图。 关键词:乙烯;脱甲烷塔;深冷分离;乙烯生产

Abstract Abstract:In the production of ethylene , energy consumption of demethanizing system is rather remarkable, about accupying the separate system of 50% entirely , establish one energy consumption lower , little invest , the simple flow of demethanizing system is equal to importance. At first, compared to several kinds of separation methods in this design, then choose mature technology , operate stability , and produce product quality, which is separation by deep refrigeration. According to energy consumption, in separation by deep refrigeration include three kinds, but it is the lowest energy consumption of sequential process. After process established, according to the product of output and the request of process requirements, demethanizing system of process flow going on corresponding calculation, and confirm the operation condition of every part, then calculate anyone which are separate equipment, process and dimension. And do the process flow diagram and the main drawing. Keywords:Ethylene; Demethanizer; Separation by deep refrigeration ; Ethylene producing.

乙烯生产工艺设计论文

摘要: 关键词: 前言 乙烯的生产主要采用蒸汽裂解法,其产量超过总产量的90%,因而,对其新工艺、新设备的研究、新材料的应用、过程的优化配置等方面倍受关注,不断推出原料适应性强、乙烯收率和热效率高的新型蒸汽裂解炉。目前,石脑油裂解温度已提高到840~860℃,单程小直径炉管裂解温度巳提高到900℃,石脑油裂解单程乙烯收率提高到28%~35%。由于蒸汽裂解法技术已日臻完善,可改进的余地并不大,加上该法反应温度高、所用耐高温合金材料昂贵、耗能高、易结焦、以及原料要求苛刻(轻质原料油),所以近年来,催化工作者将更多的注意力转向用其他新技术生产乙烯的研究,包括催化裂解制乙烯技术、甲烷氧化偶联技术、乙烷氧化脱氢技术、炼厂干气选择氧化技术、天然气经甲醇或二甲醚制低碳烯烃技术等。这些技术的目的在于优化乙烯原料资源配置,从天然气到重油(渣油)各种烃类都得到充分利用,并节能降耗,降低乙烯成本,提高乙烯收率。 催化裂解制乙烯是在高温蒸汽和酸性催化剂存在下,烃类裂解生成乙烯等低碳烯烃的技术。该过程是以自由基反应为主,伴随着碳正离子反应,因而比蒸汽裂解反应温度低。通过对固体酸催化剂的改性,可选择性地裂解生成以乙烯为主的低碳烯烃,收率在50%以上,从而突破传统的催化裂化生产液相产品为主的技术路线。催化裂解制取低碳烯烃的研究始于上世纪60年代,到80年代仅有前苏联半工业化生产试验的报道,以及2000年日本工业化报道。石油化工科学研究院从80年代中期开始了重油催化裂解制丙烯技术,近年来又开始研究重油催化裂解制乙烯技术,也有相当的进展。洛阳石油化工工程公司炼制研究所于80年代末开展了对重油直接催化裂化制乙烯工艺和催化剂的研究工作,现已进入工业化试验阶段。 烃类催化裂解制轻烯烃是一种有吸引力的技术,到目前为止,国内外已发表了许多研究结果和专利,其研究的目标如下: (1)提高烯烃的选择性以减少原料消耗; (2)降低反应温度,降低烯烃生产的能耗; (3)增加裂解反应产品分布的灵活性,不但可提高乙烯收率,亦可增加丙烯收率; (4)提高乙烯装置对原料的适应性,提供能加工重质烃类馏分生产轻烯烃的技术,因为重烃直接用于管式炉热裂解是很困难的。 催化裂解主要致力于催化剂的开发,此类催化剂应具有高活性和选择性以及低的氢转移活性,既要保证比热裂解过程中的乙烯等低级不饱和化合物收率更高,甲烷和

相关文档
最新文档