二次根式第一课时教案
《二次根式》教案(第一课时)

《二次根式》教案(第一课时)一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.本节课的教学重点是:根据算术平方根的意义了解二次根式的概念教学.二、目标和目标解析1.目标(1)根据算术平方根的意义了解二次根式的概念,明白被开方数必须是非负数原因.(2)会用二次根式表示实际问题中的数量和数量关系.2.目标解析达成目标(1)的标志是:学生能从具体数的算术平方根出发,过渡到含字母的情况,通过算术平方根的概念得到二次根式的概念,并根据算术平方根的意义得到二次根式被开方数和结果均为非负数的结论.达成目标(2)的标志是:学生能够根据实际问题,利用开平方运算的意义,列出二次根式.三、教学问题诊断分析二次根式概念的获得,要让学生经历其抽象的过程,借此培养学生的抽象概括能力,加深学生对二次根式概念的理解.教学时,要充分利用教材的“思考”栏目,从生活中的实际问题引入,以激发学生的学习兴趣,让学生体会由特殊到一般的过程,由此给出二次根式的定义.在二次根式的概念中,为什么要强调被开方数大于等于零?引导学生讨论,知道二次根式被开方数必须是非负数的理由以及二次根式的结果的非负性,所以二次根式的双重非负性是本节课的难点.四、教学过程设计(一)创设情景,提出问题电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=其中地球半径,R≈6400km.如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径之.你能化简这个式子吗?问题1式子表示什么?公式中r=的课题.设计意图:让学生借助已学的数和式子的运算,从数与式子运算的完整性角度引出要研究的问题让学生知道本章将要学习的内容,让学生提前做到心中有数.问题2用带根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h (单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t为=_____.设计意图:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.(二)合作探究,形成知识(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?教师引导学生说出各式的意义.)概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.(3)根据你的理解,请写出二次根式的定义.叫做二次根式.(学生总结)a≥0)的式子叫做二次根式,“”称为二次根号.(师生共同总结)(4)提醒学生注意二次根式定义包含的内容.②被开方数a≥0.③a可以是数,也可以是含有字母的式子.(5)在二次根式的定义中,为什么要有条件“a≥0”?教师引导学生回想4、0的算术平方根分别是什么?-4有没有算术平方根?最后总结只有非负数才有算术平方根.设计意图:采用具体到抽象的方式,通过归纳得出二次根式的概念.(三)初步应用,巩固知识练习:二次根式和算术平方根有什么关系?学生通过小组合作交流得出:二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.【例1】当x在实数范围内有意义,则应满足被开方数x-2≥0.解:由x-2≥0,得x≥2.当x≥2在实数范围内有意义.【例2】当x解:因为2x≥0,所以,当x在实数范围内都有意义.由3x≥0,得x≥0.当x≥0在实数范围内有意义.设计意图:通过练习、例1、例2,加深概念理解.(四)比较辨别,探索性质0的大小.先让学生独立思考,然后教师引导学生根据概念,分a>0和a=0两种情况进行讨论.当a>0a>0;当a=0表示0=0;(a≥0)是一个非负数.设计意图:强化学生对二次根式双重非负性的认识.(五)综合应用,深化提高练习1判断下列各式哪些是二次根式:ax≥-(1(210);(3(4≤0).学生先独立完成,后小组展示确定二次根式有意义的条件(被开方数大于或等于零),所以(2)(3)(4)为二次根式.练习2当x是什么实数时,下列各式有意义.(1(2(3(4解:(1)由3-4x≥0,得x≤34.(2)由xx≥⎧⎨-≠⎩10,得≥0且1.x x≠(3)由x≤2-0,得x=0x≠0(4)由-2≥0且2-≥0x x ,得2x =.设计意图:辨析二次根式的概念,确定二次根式有意义的条件.(六)课堂小结(1)本节课你学到了哪一类新的式子?(a ≥0(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?中的a ≥0≥0. 二次根式的双重非负性.(3)二次根式与算术平方根有什么关系?二次根式都是非负数的算术平方根,带有根号的算术平方根是二次根式.设计意图:回顾本节课所学的二次根式的概念,再次确定二次根式有意义的条件;理解二次根式的双重非负性以及二次根式与算术平方根的关系.(七)布置作业1x 的取值范围是( )A .0x >B .2≥x -C .2≥xD .2≤x2.已知y 3,则2xy 的值为( )A .15-B .15C .152-D .1523.求使下列各式有意义的x 的取值范围? (1)2+x -x 23-;(2)x --11+x ; (3)y =;(4)2||12--x x . 4.已知12-a +a b 2-+c b a ++=0.求a 、b 、c 的值.作业答案:1.D 202≥得≤x x -.故选D .2.B 解析:要使有意义,则25≥052≥0x x -⎧⎨-⎩,解得x =25,故y =3,∴2xy =2×25×3=15.故选B . 3.(1)322≤≤x -;(2)0≤x 且1x ≠-;(3)0≥x 且1x ≠.(4)12≥x 且2x ≠. 4.∵12-a ≥0,a b 2-≥0,c b a ++≥012-a +a b 2-+c b a ++=0∴2a -1=0,b -2a =0,a +b +c =0 ∴13122,,a b c ===-五、目标检测设计1.指出下列哪些是二次根式?(134(5≥2);(6<).a a b设计意图:考查二次根式的概念.2.a 取何值时,下列根式有意义?(1 (23 (45 设计意图:考查二次根式的有意义的条件.3n 的值为___________.设计意图:考查二次根式的有意义的条件.目标检测答案:1.(1)(4)(5)是二次根式.2.解:(1)由a +1≥0,得a ≥-1;(2)由1-2a >0,得a <12;(3)由()2-1a ≥0,得a 为任何实数;(4)a 为任何实数;(5)a =1.3.0,3,4.。
[二次根式]教案(第一课时)
![[二次根式]教案(第一课时)](https://img.taocdn.com/s3/m/162b8bec4afe04a1b071de6d.png)
[二次根式]教案(第一课时)教学目的:1.使学生了解二次根式的概念2.使学生掌握二次根式的简单性质:①a≥0)总是一个非负实数。
②2=a(a≥0)3.培养学生观察能力,抽象概括能力,渗透分类的思想方法。
教学重点:二次根式概念以及二次根式的性质:2=a(a≥0)教学难点:公式2-a(a≥0)教学用具:投影仪和投影胶片教学过程:一、复习提问:观察以下各式分别表示什么?他们在形式上有什么共同特征?在被开方数方面有什么共同特征?二、引入新课:①如果用字母a②引导学生讨论:a可以取哪些实数?③引入课题三、讲解新课1.二次根式概念:⑴板书二次根式定义。
⑵学生讨论:这里为什么规定a≥0?⑶强调二次根式的两个特征(其中a≥0用红粉笔强调)。
⑷结合复习题举例说明。
2.练习(投影出示)选择题(1x≤0)x>2)中属于二次根式的是()A.①②③B.①③④C.②③④D.①②④(2)当x=-2时,在实数范围内没有意义的式子是()a≥03.例1:x(1)学生讨论解题思路;(2)师生共同完成解题过程并强调书写各式的规范。
4.巩固练习(投影出示)x取什么实数时,下列各式在实数范围内有意义?请三位学生上黑板板演,然后学生评讲刚才我们研究了二次根式的概念,下面我们来共同研究二次根式的性质5a≥0)的非负性(1)判断题:1°当a>0(),2°当a=0()3°对于任何实数a0()(2a≥0)≥0(3)学生讨论:前面还学过那些具有非负性的数?=(a≥0)6.公式:2a(1)实例:因为(±2)2=4,所以±2是4的平方根,其中2是4的算术平方根。
由此可知当2时4的算术平方根时,他们应该满足22=43的算术平方根,根据平方根意义可知,他们应满足的关系是( )2=5的算术平方根,同样有( )2=你能举出一个类似的例子吗?(2)学生观察归纳:2a =(3)提问:这个公式在什么条件下成立呢?为什么a ≥0?(4)公式2a =(a ≥0)7.例2,计算①2 ②2 ③2师生共同完成解题过程,并说明表示3135不同,遇到52确写法。
二次根式第一课时教案[6篇]
![二次根式第一课时教案[6篇]](https://img.taocdn.com/s3/m/4a11247f571252d380eb6294dd88d0d232d43c5f.png)
二次根式第一课时教案[6篇]以下是网友分享的关于二次根式第一课时教案的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a≥0时,a= a;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:二次根式的概念以及二次根式的基本性质教学难点:经历知识产生的过程,探索新知识.教学方法:讨论法教学过程:一.情景创设1.回顾:什么叫平方根? 什么叫算术平方根?2.计算:.(2)如图,在Rt∆ABC中,AB=50m,BC=am,则()2(3)圆的面积为S,则圆的半径是 .(4)正方形的面积为b-3,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?二、探索与实践1、二次根式的定义.__________________________________________________ ____ 说说对二次根式a 的认识,好吗?__________________________________________________ ______2、练习:说一说,下列各式是二次根式吗? (1)32 (2)6 (3)-12 (4)-m(m≤0) (5)xy(x、y异号) (6)a2+1 (7)53、例1: x是怎样的实数时,式子x-5在实数范围内有意义?4、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;…… 观察上述等式的两边,你得到什么启示?揭示:当a≥0时,5、例2。
计算:(1)(3)2;(2)((3)(a+b)2 (a+b≥0)6、练习.(1)(22)= (2)(-23)2 3a) = a。
222); 3 三、课堂练习P59页练习1、2.四、课堂小结引导学生总结1. 什么叫做二次根式?你们能举出几个例子吗?2. 二次根式有哪两个形式上的特点?3.当a≥0时,五、作业教后感:a) = ?2第二篇二次根式第一课时教学内容二次根式的概念及其运用教学目标1.a≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式;2a≥0)”解决具体问题.教学过程一、复习引入在第11章我们学习了平方根和算术平方根的意义,引进了一个符号a.这里的a表示什么?a应满足什么条件?当aa表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.即:a(a≥0)表示非负数a的算术平方根.二、新知探究a≥0)•的式子叫做二次根式,注意:1. 其中的a可以是具体的数,也可以是含有字母的代数式.2.在二次根式a中,字母a必须满足a≥0,即被开方数必须是非负数.(这里可以让学生自己举几个二次根式的例子,有助于学生的理解)例1.下列式子,哪些是二次根式,11x>0)x≥0,y•≥0).xx+y分析二,被开方数是正数或0,即非负数.;第x>0)x≥0,y≥0)1x1.x+y例2.x是怎样的实数时,二次根式x-1在实数范围有意义?分析要使二次根式有意义,必须且只须被开方数是非负数.解被开方数x-1≥0,即x≥1.所以,当x≥1时,二次根式x-1有意义.例3.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥三、巩固练习1313教材P练习第2题.四、应用拓展例4.当x分析:要使+0和1在实数范围内有意义?x+11在实数范围内有意义,必须同时满足x+11中的x+1≠0.x+1解:依题意,得⎨由①得:x≥-由②得:x≠-1 32⎧2x+3≥0 ⎩x+1≠0当x≥-且x≠-1+321在实数范围内有意义.x+1例5. (1) 已知,求的值.(答案: )(2)=0,求a2004+b2004的值.(答案:2)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业xy251.教材习题中的对应题目.2.导学案中的对应习题. 教学反思:第三篇16.1 二次根式(一)骆诗龙学习目标:1、知道什么叫二次根式,理解被开方数是非负数;2、掌握二次根式在实数范围内有、无意义的条件。
二次根式(第一课时)教学设计.1二次根式(第1课时)教学设计

第二章实数7.二次根式(第1课时)驻马店第十五中邢黎明一、学生起点分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根,认识了实数.这些都为本课时学习二次根式的运算公式提供了知识基础.当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及后两节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.二、教材任务分析本节分为三个课时。
第一课时,认识二次根式和最简二次根式的概念,探索二次根式的性质,并能利用二次根式的性质将二次根式化为最简二次根式的形式;第二课时,基于二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算;第三课时,进一步进行二次根式的运算,发展学生的运算技能,并关注解决问题方式的多样化,提高学生运用法则的灵活性和解决问题的能力.三、教学目标本节课教学目标是:1.认识二次根式和最简二次根式的概念.2。
探索二次根式的性质.3.利用二次根式的性质将二次根式化为最简二次根式.四、教学重难点1.教学重点:了解二次根式的定义及最简二次根式;2。
教学难点:运用二次根式有意义的条件解决相关问题。
五、教学过程设计本节课设计了七个教学环节:第一环节:自主学习,明晰概念;第二环节:合作探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置;第七环节:教学反思。
第一环节:自主学习,明晰概念问题1 :5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征? 答:都含有开方运算,并且被开方数都是非负数。
总结:一般地,式子)0(≥a a 叫做二次根式。
a 叫做被开方数.强调条件:0≥a .问题2:二次根式怎样进行运算呢?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础.第二环节:合作探究(一)内容:通过探究得出b a b a •=⋅,ba b a =. 具体过程如下:(1)94⨯= ,94⨯= ; 2516⨯= ,2516⨯= ; 94= ,94= ; 2516= ,2516= . (2)用计算器计算:76⨯= ,76⨯= ;76= ,76= . 问题1:观察上面的结果你可得出什么结论?问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?问题3:其中的字母a ,b 有限制条件吗?意图:最终归纳出b a b a •=⋅(a ≥0,b ≥0),ba b a=(a ≥0, b >0)第三环节:知识巩固例1 化简(1)6481⨯;(2)625⨯;(3)95。
16.1《二次根式》(第1-3课时)教案 新人教版

16.1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1a≥0)的式子叫做二次根式的概念;2.a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,.问题2:由勾股定理得问题3:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:有意义的条件例1.下列式子,哪些是二次根式,、1xx>0)、、、1x y+x≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0)、x≥0,y≥0);不是二、1x、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+在实数范围内有意义,必须同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)+=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.七板书设计一、选择题1.下列式子中,是二次根式的是()A. B C.x 2.下列式子中,不是二次根式的是()A B.1 x3.已知一个正方形的面积是5,那么它的边长是() A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.16..1 二次根式教案教学内容 1.a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标知识与技能a ≥02=a (a ≥0),并利用它们进行计算和化简.过程与方法 经历探索二次根式的性质的过程,培养学生从简单到复杂从一般到特殊的思 维过程情感 态度与价值观 通过学生自主探索合作交流体会学习数学的乐趣 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;2=_______;)2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,)2=13,)2=72,)2=0,所以例1计算1.(5.1)2 2.(2 3.24.(2)2分析:我们可以直接利用(2=a (a ≥0)的结论解题.解:(5.1)2 =1.5,(2 =22·2=22×5=20,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:2)2 (4)2)2()2 22-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P97.七板书设计第二课时作业设计一、选择题1个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-516.1 二次根式教案第三课时教学内容a(a≥0)教学目标知识与技能(a≥0),(a≥0)并利用它进行计算和化简.过程与方法经历探索二次根式的性质的过程,培养学生分类的数学思想情感态度与价值观通过学生自主探索合作交流体会学习数学的乐趣及发散思维能力教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:110=23=37.例1化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?(学生讨论)分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0时,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略) 五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业板书设计第三课时作业设计一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0,比较它们的结果,下面四个选项中正确的是().AC.-二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+。
苏教版二次根式教案第一课时

苏教版二次根式教案第一课时教案标题:苏教版二次根式教案第一课时教学目标:1. 理解二次根式的概念和性质。
2. 掌握二次根式的化简和运算方法。
3. 能够应用二次根式解决实际问题。
教学准备:1. 教材:苏教版二次根式教材。
2. 教具:黑板、粉笔、教学PPT等。
3. 学具:练习册、作业本等。
教学步骤:Step 1:导入新知1. 引导学生回顾一元二次方程的知识,通过问题引入二次根式的概念。
2. 提问:“什么是二次根式?二次根式有哪些特点?”引导学生思考并回答。
Step 2:概念解释与讲解1. 通过教学PPT或板书,对二次根式的定义进行解释,并给出示例。
2. 讲解二次根式的基本性质,如二次根式的分子中不含有平方根、二次根式的和差化简等。
Step 3:化简与运算1. 引导学生通过例题掌握化简二次根式的方法,如合并同类项、有理化分母等。
2. 通过练习题让学生巩固化简二次根式的基本技巧。
3. 引导学生通过例题和练习题掌握二次根式的加减乘除运算方法。
Step 4:应用解决实际问题1. 设计一些与实际生活相关的问题,引导学生运用二次根式解决问题。
2. 分组讨论和展示解题过程,加深学生对二次根式应用的理解。
Step 5:小结与作业布置1. 对本节课所学内容进行小结,强调二次根式的概念、性质和运算方法。
2. 布置相应的课后作业,巩固所学知识。
教学延伸:1. 对于学习较快的学生,可以提供更多的挑战性练习,如复杂的二次根式运算或解决实际问题。
2. 对于学习较慢的学生,可以提供更多的练习机会,加强基本技能的训练。
教学反思:本节课通过引入问题、概念解释、化简与运算、应用解决实际问题等环节,全面培养学生对二次根式的理解和应用能力。
在教学过程中,教师要注重激发学生的学习兴趣,提高课堂互动,使学生能够主动思考和解决问题。
同时,教师还要根据学生的实际情况进行差异化教学,确保每个学生都能够达到预期的学习目标。
二次根式教案华东师大版

二次根式教案华东师大版一、教学内容本节课选自华东师大版《数学》八年级下册,内容为第十章“二次根式”的第一课时。
具体内容包括:理解二次根式的概念,掌握二次根式的性质,能够进行二次根式的简单运算。
二、教学目标1. 理解二次根式的定义,知道二次根式的性质,并能够运用性质简化二次根式。
2. 能够进行二次根式的加减运算,掌握运算规律。
3. 培养学生的观察、分析、解决问题的能力,提高学生的数学思维。
三、教学难点与重点重点:二次根式的定义,性质,加减运算。
难点:理解并运用二次根式的性质简化二次根式,熟练进行二次根式的加减运算。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件。
2. 学具:学生每人一张白纸,剪刀,胶棒。
五、教学过程1. 实践情景引入利用PPT展示一组实际生活中的问题,如计算面积、体积等,引导学生发现二次根式的存在。
2. 新课导入(1)引导学生回顾平方根的概念,为新课的学习打下基础。
(2)引入二次根式的定义,讲解二次根式的性质。
3. 例题讲解(1)讲解如何简化二次根式。
(2)讲解二次根式的加减运算。
4. 随堂练习出示几道简化二次根式和二次根式加减运算的题目,让学生当堂完成,并及时讲解。
5. 小结六、板书设计1. 二次根式的定义2. 二次根式的性质3. 二次根式的加减运算4. 例题解析5. 随堂练习七、作业设计1. 作业题目√12,√27,√48√3 + √5,2√6 + 3√22. 答案(1)√12 = 2√3,√27 = 3√3,√48 = 4√3(2)√3 + √5 = √15,2√6 + 3√2 = √24 + √18 =2√6 + 3√2八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的定义、性质和运算掌握情况,对教学难点和重点的讲解是否到位。
2. 拓展延伸:研究二次根式的乘除运算,以及在实际问题中的应用。
重点和难点解析需要重点关注的细节包括:1. 实践情景引入的设计;2. 二次根式性质的理解与应用;3. 例题讲解的深度和广度;4. 随堂练习的选题和讲解;5. 作业设计的针对性和答案的准确性;6. 课后反思的内容及拓展延伸的方向。
二次根式教案(第一课时)

长是宽的2倍,面积为130 ,则它的宽为_____ .
3.一个物体从高处自由下落,落到地面所用的时间为t,(单位:s)与开始下落的高度h(单位:m) 满足关系 .如果用含有h的式子表示t, 则t=_________.
给学生充分的时间思考和讨论,让他们发现这个式子也是一种运算.
教学重点
二次根式中被开方数的取值范围.
教学难点
二次根式中被开方数的取值范围的产生过程.
教学方法
通过解决实际问题,引出二次根式的概念,再通过解题实践,总结归纳二次根式的被开方数的取值范围要大于等于零.
教学手段
多媒体课件等
课型
新课
教学环节
教学内容
教师活动
学生活动
一、创设情境,提出问题
羊村和狼堡都新建了电视塔.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到的电视节目的区域就越广.电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r= ,其中,R是地球半径,R≈6400km.如果羊村和狼堡两个电视塔的高分别是 km, km,那么它们的传播半径之比是 .你能帮羊羊将这个式子化简吗?
五、课堂小结,知识梳理
(1)本节课你学习了哪些知识?
(2)利用本节课知识,你能解决什么问题?
(3)你还有什么困惑?还想继续探究什么?
在学生总结后,进行补充,帮助学生形成知识网络.
归纳、总结发言,体会、反思.
六、布置作业
必做题:教材第3页练习—1,2题. 教材第5页习题--1题.
选做题:当x是怎样的实数时,下列各式在实数范围内有意义?
巩固所学知识,分层作业的布置面向全体,有助于每一位学生的进步.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学教案
课题:16.1二次根式(第一课时) 课型:新授课 执笔:亓桂琴
备课时间: 月 日 授课时间: 授课班级:
教学过程
序号:1
(3)••• n > 0, ••• -n w 0,
•••当n=0时」n2才是二次根式;
(4)当a-2 > 0时是二次
根式,当a-2<0时不是二次根式;即当
a > 2是二次根式,当a<0时不是二次根式;
(5)当x-y> 0时是二次根式,当x-y<0 时不是二次根式;即当x> y是二次根式,当x<y时不是二次根式.
例2.当x为何值时,下列各式在实数范围内有意义?
(1)JX 3
⑵\ 2 4x
(3)、5x
(4)J|x I 1
练习:
1. 一个矩形的面积是18cm2,它的边长之比为2:3,它的边长应为多少?
2. 当a是怎样的实数时,下列各式在
实数范围内有意义?
(1) v a 1 (2). 2a 3
3. 已知y= x 3-3 x,求x+y 的值.
活动三.总结收获
1. 二次根式的定义及被开方数的取值范围;
2. 被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.
(3)小题请学生认真思
考后回答;
(4)(5)两小题需要
分情况讨论,请学生考虑
清楚在回答.
条件.
渗诱整体思想
(1)(2)小题学生自
己
能够解决.使学生进一
步掌握二次根式(3)小题注意符号问
题;
取值范围的习题.(4)小题请学生思考后
解答.
对第四小题
试着讨论.
学生练习1、2两小
题是基础题,学生自己能1、2两小题够完成.检查中等及以下
学生对基础知识3题是灵活应用二的掌握情况.
次根式的取值范围才能
解的题目,需要学生认真3题检查中思考.等以上学生是否
对二次根式的取
值范围有更深刻
的理解.
学生总结有何收获和经r有助于培养验教训,教师补充.学生的总结能
力,并让学生总
结经验教训有助
于学生大胆的说
板书设计16.1二次根式
二次根式定义: 课后反思: 例题:。