第2章习题讨论课 - -

合集下载

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

利用上述关系式,可测量电阻。
返回首页
习题讨论课1—
简单—电阻电路分析
(总第七、八讲)
重点和要求:
1. 参考方向的正确使用。
2. 分压、分流、功率的计算。
3. 欧姆定律、KCL、KVL的使用。
4. 等效的概念 电源的等效变换、电阻的Y-变换。
1. 求入端电阻。
(1) 求Rab、 Rac 。
c
4
4
2
2
4
a 3
a
(2) 求 Rab .
4 2
6
4
2 0.6
b
ab
2. 用电源等效变换化简电路。
(3) 求 Rab .
2 2 1 2 4
a
b 4
a
a
6A
10
等效 R
+ 2A
+
_ 6V
_ Us
b
b
3. 电路如图
g
2A
R=3
(1) 求I1, I2, I3, Uab, Ueg;
e
1 a
b 2 f
(2) 若R变为5 ,
U
I
+
US _
+
U
Ri
_
0
Ii
U=US – Ri I
R Ri: 电源内阻, 一般很小。
一个实际电压源,可用一个理想电压源uS与一个电阻Ri 串联的支路模型来表征其特性。
二、实际电流源
实际电流源,当它向外电路供给电流时,并不
是全部流出,其中一部分将在内部流动,随着端电 压的增加,输出电流减小。
I
u
GiU
is us Ri ,
Gi
1 Ri

流体力学课后习题答案第二章

流体力学课后习题答案第二章

第二章 流体静力学2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。

解:08509.8 1.814994Pa p gh ρ==⨯⨯=2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。

解:0()490010009.8(0.4 1.5) 49009800 1.15880PaM B A p p g h h ρ=+-=+⨯⨯-=-⨯=-2-3 水箱形状如图,底部有4个支座。

试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。

解:底面上总压力(内力,与容器内的反作用力平衡)()10009.81333352.8KN P ghA ρ==⨯⨯+⨯⨯=支座反力支座反力(合外力)3312()10009.8(31)274.4KN G g V V ρ=+=⨯⨯+=2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。

如活塞上加力为2520N(包括活塞自重)。

求容器底的压强和总压力。

解:压强2252010009.8 1.837.7kPa (0.4)/4G p gh A ρπ=+=+⨯⨯= 总压力 237.71/429.6KN P p A π=⋅=⨯⋅=2-5多管水银测压计用来测水箱中的表面压强。

图中高程单位为m ,试求水面的绝对压强。

解:对1-1等压面02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞将两式相加后整理0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPap g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+=2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。

流体力学课后习题答案第二章

流体力学课后习题答案第二章

第二章 流体静力学2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。

解:08509.8 1.814994Pa p gh ρ==⨯⨯=2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。

解:0()490010009.8(0.4 1.5) 49009800 1.15880PaM B A p p g h h ρ=+-=+⨯⨯-=-⨯=-2-3 水箱形状如图,底部有4个支座。

试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。

解:底面上总压力(内力,与容器内的反作用力平衡)()10009.81333352.8KN P ghA ρ==⨯⨯+⨯⨯=支座反力支座反力(合外力)3312()10009.8(31)274.4KN G g V V ρ=+=⨯⨯+=2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。

如活塞上加力为2520N(包括活塞自重)。

求容器底的压强和总压力。

解:压强2252010009.8 1.837.7kPa (0.4)/4G p gh A ρπ=+=+⨯⨯= 总压力 237.71/429.6KN P p A π=⋅=⨯⋅=2-5多管水银测压计用来测水箱中的表面压强。

图中高程单位为m ,试求水面的绝对压强。

解:对1-1等压面02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞将两式相加后整理0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPap g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+=2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。

数据结构第二章习题课

数据结构第二章习题课

数据结构第二章习题课1、试描述头指针、头结点、开始结点的区别、并说明头指针和头结点的作用。

答:开始结点是指链表中的第一个结点,也就是没有直接前趋的那个结点。

链表的头指针是一指向链表开始结点的指针(没有头结点时),单链表由头指针唯一确定,因此单链表可以用头指针的名字来命名。

头结点是我们人为地在链表的开始结点之前附加的一个结点。

有了头结点之后,头指针指向头结点,不论链表否为空,头指针总是非空。

而且头指针的设置使得对链表的第一个位置上的操作与在表其他位置上的操作一致(都是在某一结点之后)。

2、何时选用顺序表、何时选用链表作为线性表的存储结构为宜?答:在实际应用中,应根据具体问题的要求和性质来选择顺序表或链表作为线性表的存储结构,通常有以下几方面的考虑:1) 基于空间的考虑。

当要求存储的线性表长度变化不大,易于事先确定其大小时,为了节约存储空间,宜采用顺序表;反之,当线性表长度变化大,难以估计其存储规模时,采用动态链表作为存储结构为好。

2) 基于时间的考虑。

若线性表的操作主要是进行查找,很少做插入和删除操作时,采用顺序表做存储结构为宜;反之,若需要对线性表进行频繁地插入或删除等操作时,宜采用链表做存储结构。

并且,若链表的插入和删除主要发生在表的首尾两端,则采用尾指针表示的单循环链表为宜。

3、在顺序表中插入和删除一个结点需平均移动多少个结点?具体的移动次数取决于哪两个因素?答:在等概率情况下,顺序表中插入一个结点需平均移动n/2个结点,删除一个结点需平均移动(n-1)/2个结点。

具体的移动次数取决于顺序表的长度n以及需插入或删除的位置i。

i越接近n 则所需移动的结点数越少。

4、为什么在单循环链表中设置尾指针比设置头指针更好?答:尾指针是指向终端结点的指针,用它来表示单循环链表可以使得查找链表的开始结点和终端结点都很方便,设一带头结点的单循环链表,其尾指针为rear,则开始结点和终端结点的位置分别是rear->next->next 和rear, 查找时间都是O(1)。

第二章课后习题答案

第二章课后习题答案

第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。

分块矩阵、第二章矩阵习题课.doc

分块矩阵、第二章矩阵习题课.doc

教案(首页)备课笔记附后urj二、分块矩阵的运算(与矩阵类似)特别地分块对角矩阵(与对角矩阵类似)0 03 00、 0-2 -b 求 |4 A 10,A -1 ,A4r 提示:|a| = |a』a 』=)0、 AA T=0、0、 /〔0 A)<0 A, 〔0 A,\AA 7' o*例 求证 A = 0^> A 1A = 0证明:必要性=> 显然充分性 <=设A = (。

] a 2… %)T"%)% 0 a; a 2 …% % a[a x • • a\ % • • ♦ …就% ♦ • • ♦特别地 a 1i a i = 0 (顶= 1,2,…〃) J J / c \"1 j即 用灼=(c 如,%,…勾)"?二嫌+出+…站=0.\a nl )得。

u = a 2j = = a nj = 0 (J = 1,2,…〃)所以 A = 0JJJ§矩阵的分块法(简介)一、矩阵的分块矩阵按行按列分块 A =(O| a 2… a n ) =A -1l0=3,0•.•人以二=0 故矿 0Cj= 0第三章矩阵习题课例2 设1 = (1,2,3),” = (1,?,!)电二6/”,求妃一本章小结1、矩阵概念特殊矩阵0,",A,行矩阵、列矩阵2、矩阵运算3、线性方程组的矩阵形式AX =b4、逆矩阵可逆的充要条件证明矩阵可逆的方法(1) AB = E (2) |ApO (3)可逆阵之积可逆5、解矩阵方程AX = B,XB = C二典型例题讲解「2 1]例1 设人= ,矩阵8满足BA = B + 2E求B-1 2提示B(A — E) = 2EB A-E =22 E B =2L 1 1)1 ——2 37提示A = a T j3= 2 \ —,时=33 - 1I 2 )= a T/3 [••• 0 =a T(/3 a’)。

…(时)』=3卜' W/3 = 3卜' A例3 设〃阶方阵+ B都可逆,求证人一】+3一'可逆,并求其逆矩阵提示A-】+ B'l = A" E + EB-i = + A^AB'1 = + (A"1 + Bi )-1 = (A-1 (A + B)B-】尸=B(A + A(2)\0 1)。

2第二章 链烃课后习题答案 大学有机化学,第三版,医学类

2第二章 链烃课后习题答案 大学有机化学,第三版,医学类

第二章 链烃1、链烃是怎样分类的?下列各碳氢化合物的分子式所可能代表的化合物属于哪一类(此题只讨论链烃范围内的分类)? (1) C 3H 8 (2) C 6H 12 (3) C 6H 10答:(1)C 3H 8符合C n H 2n +2 所以是烷烃(2)C 6H 12符合C n H 2n 所以是烯烃(3)C 6H 10符合C n H 2n -2所以是炔烃或者是二烯烃2、指出下面化合物中各碳原子属于哪一类型(伯、仲、叔季)。

答:C 1C 7和三个支链碳是伯碳原子; C 2C 4C 5是仲碳原子; C 6是叔碳原子; C 3是季碳原子。

3、指出CH 3CH =CH 2和CH 2=CHCH 2C≡CH 中各碳原子的杂化状态(sp 3、sp 2、sp )。

答:4、命名下列化合物(1) (2) CH 3CH(CH 2)2 CCH 3CH 3CH 2CH 3CH 3spsp 3sp 2sp 2CH 2=CH -CH 2-C ≡CHsp 2sp 2sp 3sp CH 3-CH =CH 2(CH )CHCH CHCH 3CH 2CHCCH 2CH 3CH 37CH 36CH 5CH 24CH 2 3CCH 332CH 213CH 3(3) (4)(5)(6)答:(1) 异戊烷(2-甲基丁烷) (2) 3,3,4-三甲基己烷 (3) 2,3-二甲基丁烷 (4) 2,2,3,3,4-五甲基己烷 (5) 2-乙基-1-丁烯 (6)4,4-二甲基-1-己烯-5-炔5、写出下列各化合物的构造式(1) 2-甲基-3-乙基戊烷 (2) 2,3-二甲基-4-乙基己烷 (3) 2,3-二甲基-1-丁烯 (4) 2-甲基-2-丁烯 (5)顺-3,4-二甲基-2-戊烯(构造式) (6) (2Z ,4E )-2,4-己二烯 答:(1) (2)(3) (4)(5) (6)6、下列各式中,哪几个是同一化合物?(1) (2)CH 33CH 3CHCHCH 3 (CH 3)3CC(CH 3)2CHCH 3CH 2CH 3C 2H 5CCH 2CH 3CH 2CH 3CH CHCH 2CH 3CH 3C 2H 5CH 3CH CH CH CH 2CH 3CH 3CH 3C 2H 5CH 2=CCHCH 3CH 3CH 3(CH 3)2CHCH 2CHCH 2CH 3CH 3CH 2CHCH 2CHCH 3CH 3CH 3CH 3CH 3C =CHCH 3CH 3=CCH 3HCH(CH 3)2CH 3 C CC C CH 3H HCH 3HH(3) (4)(5)(6)答:1,2,6为同一化合物;4,5为同一化合物7、下列化合物中,哪些有顺反异构体?如有,写出各异构体的构型式并命名(Z /E法)。

土力学第2章-第四讲

土力学第2章-第四讲

14
一、重点讨论——2.5 土的结构
→ 土的结构指的是什么? → 粗粒土结构以什么结构为主?哪种力起主 要作用? → 细粒土结构形成中何种力起主要作用? → 细粒土结构分为哪几种?其沉积环境分别如何? 为什么其环境会导致该结构?
15
习题讨论课
1. 已知某土试样的土粒比重为2.72,孔隙比为0. 95,饱和度为0.37。 若将此土样的饱和度提高到0.90时,1m3的土应加多少水?
能反映土的物理力学性质
无黏性土:颗粒级配 黏性土:液限、塑性指数
《建筑地基基础设计规范》(GB 50007-2002)分类法 《土的分类标准》(GBJ 145-90)分类法
标 准
对同一种土,采用不同的分类标准,得到的土的名称并不相同。在 实践中应该根据具体工程所属的行业,选择适宜的方法。
7
习题讨论课
解: (1)绘制三相草图
(2)加水前:V=1m3,则由
V e = v = 0.95 Vs
Vs = 0.513m3 Vv = 0.487m 3 Va = 0.307m3
(3)加水后:V=1m3,则由
V e = v = 0.95 Vs
Vs = 0.513m3 Vv = 0.487m 3 Va = 0.049m3 Vw= 0.438m 3
上节内容回顾
常用的物理性质指标间的换算关系
方法:三相草图法 思路:先求解三相草图上的全部质量和体积, 再依据定义求解表达式 技巧:假设任一参数(体积)为1 换算关系:教科书 P49 表2-8
ma=0 m mw ms
Air Water Solid
Va Vw Vs Vv V
质量
1
体积
上节内容回顾
土的物理状态指标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网孔法与节点
接 律易于掌握。
法。

页 缺点:是网孔法具有只适用于平面电路的局限性。
第1页
前一页
下一页
回首页
第2章习题讨论课
标注
五角
星符
号者
西 为课
安 电
程要
子 重点
科 技
掌握

上 页
★(3)节 点电位

定义:择其电路中任意节点作参考点,以n-1个独立节点 电位作未知量,依KCL、元件VAR建立n-1个独立节点电 位方程,解方程得节点电位,进而求得支路电流、电压、 功率。
效电源并接上待求支路,由最简等效电路求得待求量。
ZYR

作 ★ (5)最大功率传输定理与戴维宁定理或诺顿定理相结合,求解最大功率
问题是最简便的方法。它告诉我们:功率匹配条件: RL= R0 最大功率公式:
pL max

uoc2 4R0

pL max

1 4
R0isc
2
第3页
前一页
下一页
回首页
第2章习题讨论课
技 组。等效法比较灵活,变换形式多样,目的性强,若等效正确,一似复杂的问题,按照某种正确的等效变换思路心算就可得
出正确结果。
ZYR
制 方程法、等效法也应结合使用。比如说在用方程法求解时,在不影响求解 作 量的情况下尽可能应用简易的等效方法(常用电源互换等效、串并联等效)对电
2、图示电路,求RL分别等于1Ω、2Ω、3Ω时电流IL。
西 安

本题属复杂、局部求解的问题,但

电 子
求的是负载多次改变时的负载电流。推
以 2V
科 荐应用戴维宁定理求解。

ZYR
技 大
(1)求开路电压Uoc。自a、b
学 点断开RL,设Uoc、I1、I2如题2
图(a)所示。简单计算可得
荐 2 6V 戴 维 宁
当u=u1=1V时
22
i 2A
u1
当u=u2=2V时 i 2 2 1A u2
两答案均能满足N吸收2W功率的条件。
西
安 电
4、在图示电路中,若要求输出电压u0不
子 科 技
受电压源us2的影响,问受控源中的α应为 何值?
大 学

3
u1
u1
2
us1
6
us2 uo R0
is
不要用支路电 流法!!
3 i1
1、图示电路,求各支路电流。
解 本题属全面求解的问题,推荐应用
3 iA
3 i6
网孔法或节点法求解。
西
安 电
在原图电路中设网孔电流iA、iB、iC及
子 科 技
支路电流i1~ i6如题1图中所标。观察电路 对照网孔方程通式,直接写得网孔方程
i2
i4 i5
i3
3 iB
电 子
2. 全面求解的复杂电路,选择方程法求解简便。所谓全面求解电路即求解量比
科 较多。如,图示电路求解各支路电流;或求各元件吸收的功率;类似这样的问
技 大
题均属全面求解的电路问题。例如,一个有3个网孔6条支路的电路,求各支路
学 电流,选用网孔法需解三元联立方程组(过程较费时一些),但解出3个网孔
ZYR
局部求解电路即求解量比较少,更多的是只求一个电流、或电压、或功率。例
如,求解负载上得到最大功率问题,选用戴维宁定理或诺顿定理结合最大功率
传输定理求解就非常简便;与之相比较,若选用网孔法(或节点法)求解,所列
第4页
前一页
下一页
回首页
第2章习题讨论课
写的方程中包含未知的负载电阻RL,求解出的网孔电流(或节点电位)、支路电 流、负载上功率均是RL的函数,dpL/dRL= 0找到极大值点,最后,将极大值点 代入求功率公式得到最大功率。显然,这一求解过程是相当麻烦的。
2 22 4 211 3V
题 2 图(a)
第8页
前一页
下一页
回首页
第2章习题讨论课
(2)求等效内阻Ro。作求Ro电路如(b)图,则
ab
Ro 2 // 2 1 2 // 2 3
(3)求负载电流IL。画出戴维宁等效电源并接
西 安 电 子
上RL如(c)图,则
IL
U oc Ro RL

3 3 RL
科 技 大 学
所以,当RL=1Ω时, IL
3 0.75A 31
ZYR
制 当RL=2Ω时,

当RL=3Ω时,
IL

3 32

0.6 A
3
IL 3 3 0.5A
2 2 2 2
1
题2图(b)
Ro U oc
a IL RL
b
题2图(c)
6
题4图 (a)
ZYR
分析:根据叠加定理作出us2单独作用的分解电路图(受控源保留),解出u,0,令
制 u,0=0即解得满足不受us2影响的α值。但这样的求解虽概念正确,方法也无问题,
作 但求解过程麻烦。因Ro,α均未给出具体数值,中间过程不便合并只能代数式表
达,致使解算过程繁琐。
根据基本概念再仔细分析可找到较简单的方法。因找到的α值应使 u,0=0 ,那么R0上的电流为0,应用替代定理,将之断开如题4图(b)所 示情况。这是能以简化分析的关键步骤!
(3)替代定理是集总参数电路中的一个重要定理。它虽然不满足电路等效条
西 件,但経常在特定条件下化简电路,辅助其他电路分析法求解电路。在测试
安 电
电路或实验设备中使用的假负载代替真负载进行联调与实验的理论根据就是
子 科
替代定理。

大 ★(4) 戴维宁定理、诺顿定理是等效法分析电路最常的两个定理。解题过程 学 可分为三个步骤:1求开路电压uoc或短路电流isc;2求等效内阻R0;3画出等
制 作
I1

6 2

2 2

2A
5 1

I1
I2 2 2 1A
理 求
2V
则 Uoc 2 2I1 4 2 I2 1 解 2 6V
a RL ILb
2 1V 2 2
1 4V
题2图
a Uoc b I2
2 1V 2 2
1 4V
本 问 题 5V 开 路 电 压 较 短 路 电 5V 流 易 求
Ⅱ 选择求解电路方法的几点基本考虑
1. 简单电路,选用串并联等效结合KCL、KVL求解简便。所谓简单电路,即
凡能应用串并联等效化简为单一回路或单一节点偶的电路均属简单电路。否
则,称为复杂电路。简单、复杂并非看电路支路个数的多少来划分的。有的
西 安
电路有6条支路或更多的支路也属于简单电路;而有的电路尽管只有3条支路, 也可能属于复杂电路。
析法统称为等效分析法。
(1)叠加定理作为分析法用于求解电路的基本思想是“化整为零”,即将多 个独立源作用的较复杂的电路分解为一个一个(或一组一组)独立源作用的较 简单的电路,在各分解图中分别计算,最后代数和相加求出结果。
第2页
前一页
下一页
回首页
第2章习题讨论课
(2)齐次定理是表征线性电路另一特性即齐次性(又称均匀性)的重要定理,它 表述的是线性电路中响应(电压或电流)与激励(独立源)间的正比例关系。齐 次定理常辅助叠加定理、戴维宁定理、诺顿定理来分析求解电路问题。

va
vb 2

2uu 2
1u
(3)
i1 2 i
將式(1)、式(3)代入式(4),有 u2 3u 2 0
(4)
解上二次方程,得 u1 1V ,
功率是电压或电流的二次函数,有可
u2 2V 能解得两个有意义的解,本题就是如
此。
第 10 页
前一页
下一页
回首页
第2章习题讨论课
优点:是所需求解方程的个数少于支路电流法,由归纳 总 结出的节点电位方程通式观察电路直接列写方程的规律
易于掌握。
缺点:若电路图中标注的是电阻参数,整理方程较麻烦。
大 内容

ZYR
依据等效概念,运用各种等效变换方法,将电路由繁化简,
2.等效分析法

最后能方便地求得欲求的电流、电压、功率等,这类电路分

优点:是直观,解得的电流就是各支路电流,可 以用电流表测量。
缺点:是当电路较复杂时用手解算方程的工作量太大 (劝告!不要常用支路电流法求解电路问题。)
定义:以网孔电流作未知量依KVL及元件VAR 建立b-n+1个网孔回路KVL方程,解方程得网孔 电流,进而求得支路电流、电压、功率。
优点:是所需方程个数较支路电流法少,根据归 纳总结出的方程通式观察电路直接列写方程的规
科 技
(0.4 0.2 )us2 0 0.4 0.2 0
这类待求支路多次改变求支路上电流或电压或功率的问题,应用等效
电源定理求解方便。若选用网孔法、节点法、叠加定理求解,计算过程 则较麻烦。
第9页
前一页
下一页
回首页
第2章习题讨论课
3、图示电路,已知网络N吸收的功率PN=2W,求电压u。
解 在原图电路上设电流i、i1节点a、b、c及
2A
接地点,如题3 图中所示。因
第2章习题讨论课
Ⅰ 本章要点归纳
依据电路的基本
西 安
定律、元件 VAR来建立方
电 程并进行求解电
子 科
路的方法统称为
技 方程分析法。


ZYR
1.方程分析法

作 支路电流法、
相关文档
最新文档