操作系统课程设计题目详细说明
操作系统课程设计(小型的操作系统)

操作系统课程设计报告题目:一个小型的操作系统班级:计122(杏)学号:1213023075姓名:贾苏日期:2014/06/231.实验平台(1)软件平台:开发系统平台:Windows 7 (64)Microsoft visual c++ 6.0测试系统平台:Windows 7 (64)(2)硬件平台:cpu:AMD A6-3420 APU内存:4GB硬盘:500G2.所需实现的功能及相应的阐述:(1)进程调度管理为了贴切现实中的os,采用RR(轮转调度算法),且不提供用户显式的选择调度算法,即对用户是透明的。
现实中的处理器主频为1Ghz~3Ghz,选取中间点为1.5Ghz,得时间片大小为0.7ns ,为方便计算*10,则时间片大小定为7ns。
假设进程之间的调度和切换不耗费cpu时间。
(2)死锁的检测与处理检测当然采用的是银行家算法处理:让用户选择kill一个进程,释放他所占有的所有资源。
(3)虚拟分页调度管理虚拟分页:给出的是逻辑值访问磁盘将那个数据块放入到内存中内存中的地址采用一定的算法相对应于磁盘的地址。
特规定访存采用的是按字节寻址内存的大小128KB外存的大小1MB即整个系统可以提供1MB的逻辑地址空间供进程进行访问(在地址总线足够扫描内存的情况下)。
虚拟地址映射采用:直接映射法规定的8kB为一个页面,故内存有16个页面,外存有128个页面。
如果产生了内存已满,便会产生缺页中断,淘汰采用FIFO算法,利用一个队列来做。
部分内外存的对应表0 0,128,2*128+0.......1 1,129,2*128+1.......2 2,130,2*128+2.......16 127,128+16,2*128+16.........(4)I/O中断处理设中断来自两个方面:1.DMA输送开始和结束时的中断设定一个宏定义为DMA一次传输的数据量的大小->DmaNum 假定为10kb每次DMA开始:耗费1ns cpu时间进行中断处理DMA 结束:耗费2ns cpu 时间进行中断处理由操作系统课程知,DMA 传输数据时不需要CPU 的干预。
操作系统课程设计题目和要求

操作系统课程设计一、课程设计目的通过课程设计,加深学生对教材中的重要算法的理解,同时通过用C语言编程实现这些算法,并在LINUX或Windows平台上实现,让学生更好地掌握操作系统的原理及实现方法,提高学生综合运用各专业课知识的能力。
二、课程设计内容课题1 进程调度算法的模拟1.用语言来实现对n个进程采用不同调度算法的进程调度。
2.每个用来标识进程的进程控制块PCB用结构来描述,包括以下字段:(1)进程优先数ID,其中0为闲逛进程,用户进程的标识数为1,2,3…。
(2)进程优先级Priority,闲逛进程(idle)的优先级为0,用户进程的优先级大于0,且随机产生,优先数越大,优先级越高。
(3)进程占用的CPU时间CPUtime,进程每运行一次,累计值等于4。
(4)进程总共需要运行时间Alltime,利用随机函数产生。
(5)进程状态,0:就绪态;1:运行态;2:阻塞态。
(6)队列指针next,用来将多个进程控制块PCB链接为队列。
3.优先数改变的原则(1)进程在就绪队列中每呆一个时间片,优先数增加1。
(2)进程每运行一个时间片,优先数减3。
4.在调度前,系统中拥有的进程数PCB_number由键盘输入,经初始化后,所有的进程控制块PCB链接成就绪队列。
以下两题任选一题课题2.1 系统动态分配资源的模拟编程序模拟银行家算法,要求能体现算法的全过程课题2.2 进程同步模拟编写程序模拟实现五哲学家就餐问题。
以下两题任选一题课题3.1 设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率:1、先进先出的算法(FIFO)2、最近最少使用算法(LRU)3、最佳淘汰算法(OPT)4、最不经常使用算法(LFU)课题3.2 内存管理模拟使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。
操作系统课程设计题目及要求

操作系统课程设计一、关于选题与评分标准1、选题方法:课程设计题目一人一题,按照学号顺序号依次选题(你在班级的序号除以5求余数即为你的题目号),题目具体要求见题目所述。
2、操作系统课程设计成绩为:程序运行*60%+设计报告*40%,操作系统课程设计需要提交设计报告(打印稿,报告内容见附页)。
注意事项:操作系统实验严禁抄袭,无论是不同小组之间还是与往届之间,一旦确认为抄袭作品记为零分。
被抄袭的作品与抄袭作品的处理相同。
二、操作系统课程设计内容(一)、设计一个有N个进程的进程调度程序[问题描述]通过一个简单的进程调度模拟程序的实现,加深对各种进程调度算法,进程切换的理解。
[基本要求]1、进程调度算法:采用动态最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)。
2、每个进程有一个进程控制块(PCB)表示。
进程控制块可以包含如下信息:进程名---进程标示数ID优先数PRIORITY 优先数越大优先权越高到达时间---进程的到达时间为进程输入的时间。
、进程还需要运行时间ALLTIME,进程运行完毕ALLTIME=0,已用CPU时间----CPUTIME、进程的阻塞时间STARTBLOCK-表示当进程在运行STARTBLOCK个时间片后,进程将进入阻塞状态进程的阻塞时间BLOCKTIME--表示当进程阻塞BLOCKTIME个时间片后,进程将进入就绪状态进程状态—STATE队列指针NEXT 用来将PCB排成队列。
3、调度原则:进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。
进程的到达时间为进程输入的时间。
进程的运行时间以时间片为单位进行计算。
进程在就绪队列中待一个时间片,优先数加1每个进程的状态可以是就绪R(READY)、运行R(Run)阻塞B(BLOCK)、或完成F(Finish)四种状态之一。
就绪进程获得CPU后都只能运行一个时间片。
用已占用CPU时间加1来表示。
如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减3,然后把它插入就绪队列等待CPU。
燕山大学操作系统课程设计说明书

目录1概述--------------------------------------------------------------------------------------31.1 目的--------------------------------------------------------3 1.2 主要完成的任务----------------------------------------------3 1.3 使用的开发工具、开发语言------------------------------------3 1.4 本软件解决的主要问题 ---------------------------------------42 设计的基本理念、概念和原理------------------------------------------------42.1 设计的基本理念----------------------------------------------4 2.2 基本概念----------------------------------------------------4 2.3 基本原理----------------------------------------------------53 总体设计----------------------------------------------------53.1基本的技术路线:面向对象--------------------------------------------------------5 3.2模块关系及总体流程-------------------------------------------54 详细设计----------------------------------------------------74.1 变量设计----------------------------------------------------7 4.2 线程的设计--------------------------------------------------7 4.3 button按钮的设计-------------------------------------------85编码设计----------------------------------------------------95.1开发环境----------------------------------------------------9 5.2注意事项----------------------------------------------------9 5.3主要代码设计------------------------------------------------9PUTTER线程的设计---------------------------------------------------9 MOVER1线程的设计---------------------------------------------------10 GETTER1线程的设计--------------------------------------------------11 “开始”按钮的设计--------------------------------------------------12 “结束”按钮的设计--------------------------------------------------14 5.4解决的主要难题----------------------------------------------16 6测试出现的问题及其解决方案-------------------------------167工程总结----------------------------------------------------16 8参考文献----------------------------------------------------16多道程序缓冲区协调操作演示程序设计说明书1概述1.1目的计算机操作系统是计算机系统中最不可缺少的,最常用的软件,也是核心的,最接近于计算机硬件的软件。
《操作系统》课程设计说明书

河南城建学院《操作系统》课程设计说明书设计题目:UNIX/Linux文件系统分析专业:计算机科学与技术指导教师:邵国金耿永军陈红军班级:0614082学号:061408261姓名:贠炳森同组人:叶矿辉、陈宇计算机科学与工程系2011年1月7日前言在现在计算机更新如此迅速的时代要学好计算机软件技术,特别是操作系统的学习,不仅要努力学好课本上的基础知识,还要经常在图书馆看些有关这方面的书籍,而更重要的是要有足够的实践经验,也要注重和同学的交流,经常尝试性的做些小的操作系统,对自己技术的提升会有很大的帮助。
同时,学习计算机操作系统技术,除了需要刻苦努力外,还需要掌握软件和操作系统的原理与设计技巧。
如何学习和掌握操作系统技术的原理与实际技巧呢?除了听课和读书之外,最好的方法恐怕就是在实践中练习。
例如,自己设计一个小型操作系统,多使用操作系统,多阅读和分析操作源代码等。
但由于我们的条件和学时有限,在理论学习过程中没有给同学们提供更多的实验机会。
本操作系统课程设计,是给同学提供一个集中实验的机会。
希望同学们通过该设计加深对所学习课程的理解。
本设计是基于课程中学到的UNIX系统调用,使用操作系统环境是Red Hat Linux 9,言语开发环境是Linux的GNU C或C++。
我做的课程设计是:Linux/Unix文件系统分析。
在Linux系统下,使用与文件相关的系统调用实现对物理设备文件的读写,参照Linux系统源代码以及Grub 系统的源代码,对不同介质上的FAT格式文件系统进行分析。
要求在Linux环境下设计出C语言程序,实现以下功能:1)分析UNIX SysV/Linux系统引导记录的作用;2)分析UNIX SysV/Linux的超级块及其结构,并建立相关数据结构,通过编程实现UNIX SysV/Linux文件系统内各部分的定位。
3)至少要实现对给定i节点文件的只读访问目录一.系统环境 (3)1.1硬件环境 (3)1.2软件环境 (3)二.设计目的及要求 (3)三.总体设计 (5)四.详细设计 (6)五.调试与测试 (6)六.设计中遇到的问题及解决方法 (6)七.Linux/Unix文件系统分析源程序清单 (7)7.1 头文件 (7)7.2 示例程序 (10)八.运行结果及分析 (16)8.1 linux文件系统读取 (16)8.2 UNIX文件系统读取 (18)九.心得体会 (19)十.参考文献 (20)Linux/Unix文件系统分析一.系统环境1.1硬件环境cpu为pentium4双线程技术,频率为2.8GHZ,内存为256MB。
操作系统课程设计说明书

操作系统课程设计说明书课程设计说明书课程设计名称:操作系统题目:XXXXXXX年级:开发小组名称:小组自评成绩:小组负责人:课题组成员:姓名学号班级自评成绩分工签字课题开发日期:指导教师:1. 概述1、目的与意义题目:多道程序缓冲区协调操作设自行车生产线上有3只箱子(BOX ),箱中有N 个位置(N>=2),BOX1每个位置可存放下一个车架,BOX2每个位置可存放一个车轮,BOX3每个位置可存放下一台组装好的车。
有设有3个(类)工人,工人1不定地向箱1中放车架,工人2不定地向箱2中放车轮,工人3不定地从箱中1取出一个车架和箱2中取2个轮子,组装成一台自行车,并把它放到BOX3中。
任何一个时刻只能有1个工人对箱子操作。
有很多个搬运工(Carrier )不停地将BOX3取出运走。
其活动可分别可以抽象为图1。
采用多进程或多线程方式,运用同步和互斥机制,设计一个多道程序完成上述任务和操作。
提示:需要设计Worker1、Worker2、Worker3、Carrier 类线程基本功能要求:(1)提供良好图形界面,显示整个系统操作过程,可以暂停和继续系统的执行;(2) 可以设定各BOX 容量;(3) 可以设定PUT 、GET 、Move 操作的速度;(4) 实时显示每个BOX 中当前物品的数量,空闲空间的数量;(5) 实时显示线程、进程所处于等待(阻塞)状态的个数;(6)程序运行结束,显示汇总数据:总的运行时间;处理个物品的个数;平均每个BOX 中的物品个数。
(7)能够将每次的实验输入和实验结果存储起来,随时可查询。
意义:通过本次课设应对消费者生产者问题有一个更加透彻的了解,加深对于多线程下的互斥同步机制的理解。
2、主要完成的任务;1、数据的输入:包括文件输入和键盘输入。
输入工人数量可用资源数量以及BOX 的容量和工人的生产时间;2、数据的处理(多线程机制):根据可用资源计算生产最大车辆人员最佳分配比例以及根据输入安装生产线按照多线程方式运转;3、数据的输出:运行中实时显示BOX 中的物品数量和余量以及系统中线程阻塞的个数和名称,以及历史纪录。
计算机操作系统课程设计题目及要求

一、设计题目
二、设计步骤
1.需求分析:了解基本原理,确定算法的基本功能,查找相关资料,
画出基本的数据流图;
2.总体设计:确定算法的总体结构、数据结构、模块关系和总体流程;
3.详细设计:确定模块内部的流程和算法步骤。
4.上机编码和调试;
5.实际数据运行测试与分析;
6.课程设计总结报告撰写。
三、课程设计报告撰写
课程设计报告主要内容:
①概述:设计主要完成的任务和解决的主要问题;
②设计的基本概念和原理;
③总体设计:实现的方法和主要技术路线;
④详细设计:使用主要控件、函数;
⑤测试与数据分析
⑥完成的情况、简要的使用说明;
⑦结果分析
⑧总结:特色、经验、教训和感受;
⑨参考文献
⑩。
操作系统课程设计题目

-操作系统性能调优策略
-多处理器系统
-多处理器系统的基本概念
-并行与分布式计算
-实时操作系统
-实时操作系统的特点与需求
-实时调度算法
-操作系统中的并发控制
-并发的基本概念
-互斥与同步机制
-课程设计进阶项目
-设计并实现一个简单的实时操作系统
-研究并发控制策略在操作系统中的应用
-分析多处理器系统中的负载均衡问题
4.章节四:内存管理
-内存分配与回收策略
-虚拟内存与分页机制
5.章节五:设备管理
-设备管理的基本原理
- I/O调度策略
6.章节六:文件系统
-文件与目录结构
-文件存储与访问控制
2、教学内容
-文件系统性能优化
-磁盘空间分配策略
-磁盘碎片整理方法
-操作系统安全性
-访问控制机制
-加密与认证技术
-操作系统实例分析
-探索操作系统在移动设备、物联网等新兴领域的应用案例
4、教学内容
-操作系统接口与用户交互
-命令行接口(CLI)与图形用户界面(GUI)
-操作系统提供的系统调用与服务
-操作系统的网络功能
-网络协议栈的基础知识
-操作系统在网络通信中的作用
-操作系统的虚拟化技术
-虚拟化技术的原理与应用
-虚拟机监控器(VMM)的作用与分类
-探讨操作系统在人机交互方面的未来发展趋势
-评估开源操作系统的标准化程度及其对行业的影响
操作系统课程设计题目
一、教学内容
本章节内容来自《操作系统》课程,针对高二年级学生,选择以下课程设计题目:
1.章节一:操作系统概述
-操作系统Hale Waihona Puke 基本概念-操作系统的历史与发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:本课程设计题目共28个,原则上一人一题。
如果题目未加说明,则必须一人一题。
题目1:动态分区分配方式的模拟11设计目的了解动态分区分配中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
2设计内容1)用C语言实现采用首次适应算法的动态分区分配过程alloc()和回收过程free()。
其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
2)假设初始状态如下,可用的内存空间为640KB,并有下列的请求序列;作业1申请130KB作业2申请60KB作业3申请100KB作业2释放60KB作业4申请200 KB作业3释放100 KB作业1释放130 KB作业5申请140 KB作业6申请60 KB作业7申请50KB作业6释放60 KB请采用首次适应算法进行内存块的分配和回收,同时显示内存块分配和回收后空闲内存分区链的情况。
3 思考1)采用首次适应算法和最优置换算法,对内存的分配和回收速度会造成什么不同的影响?2)如何解决因碎片而造成内存分配速度降低的问题?3设计目的了解动态分区分配中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
4设计内容1)用C语言实现采用循环首次适应算法的动态分区分配过程alloc()和回收过程free()。
其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
2)假设初始状态如下,可用的内存空间为640KB,并有下列的请求序列;作业1申请130KB作业2申请60KB作业3申请100KB作业2释放60KB作业4申请200 KB作业3释放100 KB作业1释放130 KB作业5申请140 KB作业6申请60 KB作业7申请50KB作业6释放60 KB请采用循环首次适应算法进行内存块的分配和回收,同时显示内存块分配和回收后空闲内存分区链的情况。
3 思考1)采用循环首次适应算法和最优置换算法,对内存的分配和回收速度会造成什么不同的影响?2)如何解决因碎片而造成内存分配速度降低的问题?1设计目的了解动态分区分配中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
2设计内容1)用C语言分别实现采用最佳适应算法的动态分区分配过程alloc()和回收过程free()。
其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
2)假设初始状态如下,可用的内存空间为640KB,并有下列的请求序列;作业1申请130KB作业2申请60KB作业3申请100KB作业2释放60KB作业4申请200 KB作业3释放100 KB作业1释放130 KB作业5申请140 KB作业6申请60 KB作业7申请50KB作业6释放60 KB请采用最佳适应算法进行内存块的分配和回收,同时显示内存块分配和回收后空闲内存分区链的情况。
3 思考1)采用最佳适应算法和最优置换算法,对内存的分配和回收速度会造成什么不同的影响?2)如何解决因碎片而造成内存分配速度降低的问题?1设计目的了解动态分区分配中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。
2设计内容1)用C语言分别实现采用最坏适应算法的动态分区分配过程alloc()和回收过程free()。
其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。
2)假设初始状态如下,可用的内存空间为640KB,并有下列的请求序列;作业1申请130KB作业2申请60KB作业3申请100KB作业2释放60KB作业4申请200 KB作业3释放100 KB作业1释放130 KB作业5申请140 KB作业6申请60 KB作业7申请50KB作业6释放60 KB请采用最坏适应算法进行内存块的分配和回收,同时显示内存块分配和回收后空闲内存分区链的情况。
3 思考1)采用最坏适应算法和最优置换算法,对内存的分配和回收速度会造成什么不同的影响?2)如何解决因碎片而造成内存分配速度降低的问题?题目5:进程调度模拟算法1 设计目的通过算法的模拟加深对进程概念和进程调度过程的理解,掌握进程状态之间的切换,同时掌握进程调度算法的实现方法和技巧。
1.2.设计内容(1)用C语言来实现对N个进程采用动态优先权优先算法的进程调度。
(2)每个用来标识进程的进程控制块PCB用结构来描述,包括以下字段:●进程标识数ID;●进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高;●进程已占用的CPU时间CPUTIME;●进程还需占用的CPU时间ALLTIME。
当进程运行完毕时,ALLTIME变为0;●进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进入阻塞状态;●进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,进程将转换成就绪状态;●进程状态STA TE;●队列指针NEXT,用来将PCB排成队列。
(3)优先数改变的原则:●进程在就绪队列中呆一个时间片,优先数增加1;●进程每运行一个时间片,优先数减3。
(4)假设在调度前,系统中有5个进程,它们的初始状态如下:ID 0 1 2 3 4PRIORITY 9 38 30 29 0CPUTIME 0 0 0 0 0ALLTIME 3 3 6 3 4STARTBLOCK 2 -1 -1 -1 -1BLOCKTIME 3 0 0 0 0STATE READY READY READY READY READY(5)为了清楚地观察进程的调度过程,程序应将每个时间片内的进程的情况显示出来,参照的具体格式如下:RUNNING PROG: iREADY_QUEUE:->id1->id2BLOCK_QUEUE:->id3->id4===============================================ID 0 1 2 3 4PRIORITY P0 P1 P2 P3 P4CPUTIME C0 C1 C2 C3 C4ALLTIME A0 A1 A2 A3 A4STARTBLOCK T0 T1 T2 T3 T4BLOCKTIME B0 B1 B2 B3 B4STATE S0 S1 S2 S3 S42.思考(1)在实际的进程调度中,除了按调度算法选择下一个执行的进程外,还应处理哪些工作;(2)为什么对进程的优先数可按上述原则进行修改?题目6:请求调页存储管理方式的模拟11 设计目的通过对页面、页表、地址转换和页面置换过程的模拟,加深对请求调页系统的原理和实现过程的理解。
2 设计内容1)假设每个页面中可存放10条指令,分配给作业的内存块数为4。
2)用c语言模拟一个作业的执行过程,该作业共有320条指令,即它的地址空间为32页,目前它的所有页都还未调入内存。
在模拟过程中,如果所访问的指令已在内存,则显示其物理地址,并转下一条指令。
如果所访问的指令还未装入内存,则发生缺页,此时需记录缺页的次数,并将相应页调入内存。
如果4个内存块均已装入该作业,则需进行页面置换,最后显示其物理地址,并转下一条指令。
在所有320指令执行完毕后,请计算并显示作业运行过程中发生的缺页率。
3)置换算法:采用先进先出(FIFO)置换算法。
3 思考题1)如果增加分配给作业的内存块数,将会对作业运行过程中的缺页率产生什么影响?2)为什么在一般情况下,LRU具有比FIFO更好的性能?提示:(1)通过随机数产生一个指令序列,共320条指令。
指令的地址按下述原则生成:① 50%的指令是顺序执行的;② 25%的指令是均匀分布在前地址部分;③ 25%的指令是均匀分布在后地址部分;具体的实施方法是:①在[0,319]的指令地址之间随机选取一起点m;②顺序执行一条指令,即执行地址为m+1的指令;③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m′;④顺序执行一条指令,其地址为m′+1的指令;⑤在后地址[m′+2,319]中随机选取一条指令并执行;⑥重复上述步骤①~⑤,直到执行320次指令。
(2)将指令序列变换为页地址流①设页面大小为1K;②用户内存容量为4页到32页;③用户虚存容里为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);…………第310条~第319条指令为第31页(对应虚存地址为[310,319])。
按以上方式,用户指令可组成32页。
(3)计算先进先出(FIFO)算法在不同内存容量下的命中率。
其中,命中率=1-页面失效次数/页地址流长度题目7:请求调页存储管理方式的模拟21 设计目的通过对页面、页表、地址转换和页面置换过程的模拟,加深对请求调页系统的原理和实现过程的理解。
2 设计内容1)假设每个页面中可存放10条指令,分配给作业的内存块数为4。
2)用C语言模拟一个作业的执行过程,该作业共有320条指令,即它的地址空间为32页,目前它的所有页都还未调入内存。
在模拟过程中,如果所访问的指令已在内存,则显示其物理地址,并转下一条指令。
如果所访问的指令还未装入内存,则发生缺页,此时需记录缺页的次数,并将相应页调入内存。
如果4个内存块均已装入该作业,则需进行页面置换,最后显示其物理地址,并转下一条指令。
在所有320指令执行完毕后,请计算并显示作业运行过程中发生的缺页率。
3)置换算法:最近最久未使用(LRU)算法。
3 思考题1)如果增加分配给作业的内存块数,将会对作业运行过程中的缺页率产生什么影响?2)为什么在一般情况下,LRU具有比FIFO更好的性能?提示:(1)通过随机数产生一个指令序列,共320条指令。
指令的地址按下述原则生成:① 50%的指令是顺序执行的;② 25%的指令是均匀分布在前地址部分;③ 25%的指令是均匀分布在后地址部分;具体的实施方法是:①在[0,319]的指令地址之间随机选取一起点m;②顺序执行一条指令,即执行地址为m+1的指令;③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m′;④顺序执行一条指令,其地址为m′+1的指令;⑤在后地址[m′+2,319]中随机选取一条指令并执行;⑥重复上述步骤①~⑤,直到执行320次指令。
(2)将指令序列变换为页地址流①设页面大小为1K;②用户内存容量为4页到32页;③用户虚存容里为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);…………第310条~第319条指令为第31页(对应虚存地址为[310,319])。