第六章轴向受力构件2—偏心受压柱

合集下载

第6章-受压构件的截面承载力-自学笔记

第6章-受压构件的截面承载力-自学笔记

第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。

图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。

(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。

即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。

尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。

偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。

当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。

就是图6-2b这种情况。

当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。

就是图6-2c这种情况。

§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。

§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。

轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。

《偏心受压柱》课件

《偏心受压柱》课件
理的截面尺寸、配筋等参数。
节点设计
节点设计是结构设计的关键环节 ,需要考虑节点的连接方式、传
力路径和构造要求。
构造措施
根据计算结果和节点设计,采取 相应的构造措施,如加腋、加强 筋等,以提高柱的承载能力和稳
定性。
04
偏心受压柱的施工与维护
Chapter
施工工艺
基础施工
按照设计要求进行基础开挖、 排水、混凝土浇筑等作业,确 保基础稳固。
材料选择
钢材
高强度钢材能够提供良好的承载 能力和耐久性,适用于大型建筑
和重要结构。
混凝土
混凝土具有较好的抗压性能和耐久 性,适用于一般民用建筑和临时结 构。
其他材料
根据特殊需求,可以选择其他适合 的材料,如铝合金、玻璃钢等。
结构设计
计算分析
根据柱的承载要求和使用环境, 进行详细的计算和分析,确定合
《偏心受压柱》PPT课件
目录
• 偏心受压柱的基本概念 • 偏心受压柱的受力分析 • 偏心受压柱的设计与优化 • 偏心受压柱的施工与维护 • 偏心受压柱的案例分析
01
偏心受压柱的基本概念
Chapter
定义与特性
定义
偏心受压柱是指承受轴向力和弯 矩的柱子,其中轴向力偏离柱子 的中心线。
特性
偏心受压柱在承受压力时会产生 弯曲和剪切变形,其承载能力与 截面尺寸、材料强度、偏心距等 因素有关。
质量检测
对偏心受压柱的尺寸进行测量, 包括长度、直径、厚度等,确保 符合设计要求。
对柱体与其他结构或部件的连接 部位进行检查和试验,确保连接 牢固、无松动现象。
外观检测 尺寸检测 强度检测 连接检测
对偏心受压柱的外观进行检查, 包括表面平整度、无裂纹、无明 显缺陷等。

第六章 轴心受力构件承载力

第六章 轴心受力构件承载力

N
初始受力
试验表明,在整个加载过程中,由于钢 筋和混凝土之间存在着粘结力,两者压应变 基本一致。
变形条件:s =c = 物理关系: s Es
钢筋:
y y
fy Es
fy
Es
1
s fy
混凝土:
y
2 2 fc 0 0 fc
由平衡条件得:
Ass1—单根间接钢筋的截面面积; fy—间接钢筋的抗拉强度设计值; s——沿构件轴线方向间接钢筋的 间距; dcor—构件的核心直径; Asso——间接钢筋的换算截面面
) N 0.9( f c Acor 2f y Asso f y As
注:1.为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安 全,《规范》规定螺旋式箍筋柱的承载力不应比普通箍筋 柱的承载力大50%。 2.凡属下列情况之一者,不考虑间接钢筋的影响而按普通箍 筋柱计算承载力: (1)当l0/d >12时,因长细比较大,因纵向弯曲引起螺旋筋不 起作用; (2)当算得受压承载力小于按普通箍筋柱算得的受压承载力; (3)当间接钢筋换算截面面积小于纵筋全部截面面积的25% 时,可以认为间接钢筋配置得太少,套箍作用的效果不明 显。间接钢筋间距不应大于800mm及dcor/5,也不小于40mm。
螺旋式箍筋柱的受力特点:
轴向压力较小时,混凝土和纵筋分别受 压,螺旋箍筋受拉但对混凝土的横向作用不 明显;接近极限状态时,螺旋箍筋对核芯混 凝土产生较大的横向约束,提高混凝土强度, 从而间接提高柱的承载能力。当螺旋箍筋达 到抗拉屈服强度时,不能有效约束混凝土的 横向变形,构件破坏。在螺旋箍筋受到较大 拉应力时其外侧的混凝土保护层开裂,计算 时不考虑此部分混凝土。

混凝土结构:2-2_偏心受压柱设计讲解

混凝土结构:2-2_偏心受压柱设计讲解
根据小偏心受压破坏时的截面应力图形和基本假定,简化 出小偏心受压柱的承载力计算简图(图3-15)。
距轴向压力较近的一侧钢筋为As′, 距轴向压力较远的一侧钢筋为As。
载小 力偏 计心 算受 简压 图柱

图 3-15
根据承载力计算简图和内力平衡条件,并满足承载能力
极限状态设计表达式的要求,可建立基本公式如下:
若ξ≥1.6–ξb,取σs= – fy´及ξ=1.6-ξb(当ξ>h/h0时,取 ξ=h/h0),代入式(3-10)和式(3-11)求得As和As´,计算完 毕。
求出的As和As´必须满足最小配筋率要求。 小偏心受压柱正截面设计步骤见图3-17。
已知:M、N、b、h、fc、fy、f y'、l0、 as、as'
当x<2a′时,受压钢筋的应力达不到fy′,截面承载力可按 下式计算:
KNe f y As (h0 a )
式中e′——轴向压力作用点至受压钢筋As′合力点的距离。
小偏心受压柱
小偏心受压破坏时,受压区混凝土被压碎,近侧钢筋As´ 的应力达到fy´,而远侧钢筋As可能受拉,也可能受压,一般不 会达到屈服强度。
则按As=ρminbh0配筋。
(2)已知As´,求As 这种情况下,基本公式中有两个未知数ξ和As,直接利用 基本公式求出两个未知数ξ和As,步骤如下:
s

KNe
f
' y
As'
(h0
f cbh02
a' )
1 1 2s
x = ξ h0 若2a′≤x≤ξbh0时,由实用公式计算As。
h0——截面有效高度; A——构件截面面积;
ξ1 ——考虑截面应变对截面曲率的影响系数,当>1时,取 =1;对于大偏心受压柱,直接取=1;

第六章轴向受力构件2—偏心受压柱

第六章轴向受力构件2—偏心受压柱

6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
③ 过于细长的偏压柱(长细比l0/h >30 细长柱): ◆ 侧向挠度 f 的影响已很大; ◆ 在未达到截面承载力极限状态之前,侧向挠度 f 已呈不 稳定发展; ◆ 柱的轴向荷载最大值发生在荷载增长曲线与截面承载力 Nu-Mu相关曲线相交之前; ◆ 这种破坏为失稳破坏。在E点的承载力以达到最大,但 此时截面内钢筋应力并未达到屈服强度,混凝土也未压碎, 应避免这种破坏发生。所以只对②考虑二阶效应。 由图可见,这三个柱虽然具有相同的外荷载偏心距ei值,其 承受纵向力N值的能力是不同的,其值分别为Nus、Num、Nul, 即由于长细比加大降低了构件的承载力。
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态
ÊÜ À­ Æ »µ ÊÜ Ñ¹ Æ »µ
6.3.2 两种偏心受压破坏形态的界限
大、小偏心受压破坏形态的根本区别是破坏时远离纵 向力一侧的纵向钢筋是否达到受拉屈服。
6.3.3 附加偏心距ea和初始偏心距ei
考虑到工程中实际存在着竖向荷载作用位置的不确定性、 混凝土质量的不均匀性、配筋的不对称性以及施工偏差等因 素,规范在偏心受压构件受压承载力计算中,规定必须计入 轴向压力在偏心方向的附加偏心距ea。参考国外规范的经验, 规范把ea取为20mm和偏心方向尺寸的1/30两者中的较大值。 因此,轴向压力的计算初始偏心距ei应为:
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应 N
N0
Nus Num
Nusei Numei
Nul Nul ei
Num fm Nul fl
M0

第6章 轴向

第6章 轴向

面的短边尺寸。
1. 短柱的试验研究
短柱的受力分析和破坏形态
1) 当荷载较小时, 混凝土和钢筋都处于弹性阶段, 纵筋和混凝土的压应力与荷载成正比,但钢筋的 压应力比混凝土的压应力增加得快。 2) 随着荷载继续增加, 柱中开始出现微细裂缝, 在临近破坏荷载时,柱四周出现明显的纵向裂缝, 箍筋间的纵筋发生压屈,向外凸出,混凝土被压 碎,柱子即告破坏。
构造要求
当计算中考虑间接钢筋的作用时,其间接钢筋的间距 不应大于80mm,且不宜小于40mm。
间接钢筋的直径应符合普通箍筋柱中箍筋的要求。纵 向钢筋至少要用6根,通常为6~8根沿圆周等距离配置。
例3:已知:某旅馆底层门厅内现浇钢筋混凝土柱,承受轴 心压力设计值N=4900kN,从基础顶面至二层楼面高度为 H=5.2m。砼C30,由于建筑要求柱截面为圆形,直径 d=470mm。柱中纵筋用HRB335级钢筋,箍筋用HPB235级 钢筋。 求:柱中配筋。
【解】(1) 求稳定系数。柱计算长度为 l0=1.0H=1.0×6.4m=6.4m 且l0/b=16 查表得 φ=0.87。
(2) 计算纵向钢筋面积As′。 As′=2803mm2 (3) 配筋。选用纵向钢筋8φ22(As′=3041mm2)。 箍筋为: 直径 d≥d/4=5.5mm d≥6mm 取φ6 间距 s≤400mm s≤b=400mm s≤15d=330mm取s=300mm 所以,选用箍筋φ6@300。
A—构件截面面积,当纵向钢筋配筋率大于3%时,
A 应改为Ac=A-As/; fy′—纵向钢筋的抗压强度设计值; As′—全部纵向钢筋的截面面积;
式中系数0.9,是可靠度调整系数。
计算方法 (1)截面设计 已知:构件截面尺寸b×h,轴向力设计值,构件 的计算长度,材料强度等级。 求:纵向钢筋截面面积

第6章 偏心受力构件

第6章 偏心受力构件
分肢1的1-1轴线平面),则视为 M全y 部由该分肢承受。 • (3)刚度验算
• 如前所述一般也只按 验算。注意当弯矩绕虚轴作用时,应 按换算长细比验算。大小,均应设置横隔,横隔 的设置方法与轴心受压格构柱相同。格构柱分肢的 局部稳定也同实腹式柱。
b1 15 235
t
fy
§6-5 偏心受力构件的设计
6.5.1 框架柱的计算长度
6.5.3 格构式压弯构件的截面设计
1.截面的初步选择
图6.16是格构式压弯构件的常用截面形式,当弯矩不 大时,可以用双对称的截面形式(图6.16a、b、d);如 果弯矩较大时,可以用单轴对称的截而(图6.24c),并 将较大的肢件放在压力较大的一侧。如前所述,由于格 构式压弯构件中存在着较大的剪力,故多采用缀条式构 件。缀条一般采用单角钢。
(b)、(c)],对此种构件应进行下列计算:
①弯矩作用平面内的整体稳定性计算
弯矩绕虚轴作用的格构式压弯构件,由于截面中部空心,不
能考虑塑性的深入发展,故弯矩作用平面内的整体稳定计算
适宜采用边缘屈服准则
N
mxM x
f
x A
W1x 1 x N
N
' Ex
• ②分肢的稳定计算
• 弯矩绕虚轴作用的压弯构件,在弯矩作用平面外的整体稳定性一 般由分肢的稳定计算得到保证,故不必再计算整个构件在平面外 的整体稳定性。
分肢2





分肢1


图6.17
• •
③ 缀材的计算
计算压弯构件的缀材时,应取构件实际剪力和按式 V
Af
fy
85 235
计算所得剪力两者中的较大值。其计算方法与格构式轴心受压构件相同。 • 2)弯矩绕实轴作用的格构式压弯构件 • 当弯矩作用在与缀材面相垂直的主平面内时〔图6.24 (d)〕,构件绕实轴产生

06-2偏心受压构件

06-2偏心受压构件

第28页,共36页。
适用条件:
➢对矩形截面受压构件,其截面应符合:
V
Vu
1.75
1.0
f t bh0
0.07N )
➢对矩形截面受压构件,截面剪力如果符合:
V 0.25c fcbh0
则可不进行承载力计算,直接按构造要求配箍。
第29页,共36页。
偏心受压构件的构造要求
轴心受压柱的纵向受力钢筋、箍筋以及混凝土保护层的各项构造措施 均适用于偏心受压柱,此外,在值心受压拄中还应满足下列构造要求: (一)截面形式及尺寸 ➢偏心受压柱多采用矩形截面,且将长边布置在弯矩作用方向。长短 边的比值一般在1.0~2.0范围内变化,当偏心距较大时,可适当加大, 但最大不宜超过3.0。
第25页,共36页。
矩形截面偏心受压构件的斜截面承载力
➢受弯构件的斜截面抗剪: ✓一般荷载作用梁的斜截面抗剪
✓以集中荷载为主的独立矩形梁的斜截面抗剪
➢偏心受压柱的斜截面抗剪: ✓以集中荷载为主的矩形截面,同时作用有轴力。
第26页,共36页。
实验曲线:
➢在偏心受压构件中除作用有弯矩和轴向压力外尚有剪力,还应进 行斜截面受剪承载力计算,
➢B:计算x(用规范提供的方法),并判断适用条件: x>xb ;
x
N b1 fcbhh
N e 0.431 fcbh02 (1 b )(h0 as' )
1 fcbh0
b
h0
➢C:计算As=As’
As
As '
N
e
N
(h0
x) 2
f y ' (h0 as ' )
第18页,共36页。
弯曲变形(挠度),以f表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(d) ρ/+ρ>=ρmin=0.6%; (e) ρ/+ρ<=ρmax=5%。
,ρ= );
6.3.5 矩形截面偏心受压构件正截面承载力计算
6.3.3.3 大偏心受压构件承载力计算 大偏压(ξ≤ξb)
6.3.5 矩形截面偏心受压构件正截面承载力计算
6.3.3.4 小偏心受压构件承载力计算 小偏压(ξ>ξb) 1)基本计算公式
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态
受拉破坏 受压破坏
6.3.2 两种偏心受压破坏形态的界限
大、小偏心受压破坏形态的根本区别是破坏时远离纵 向力一侧的纵向钢筋是否达到受拉屈服。
6.3.3 附加偏心距ea和初始偏心距ei
考虑到工程中实际存在着竖向荷载作用位置的不确定性、 混凝土质量的不均匀性、配筋的不对称性以及施工偏差等因 素,规范在偏心受压构件受压承载力计算中,规定必须计入 轴向压力在偏心方向的附加偏心距ea。参考国外规范的经验, 规范把ea取为20mm和偏心方向尺寸的1/30两者中的较大值。 因此,轴向压力的计算初始偏心距ei应为:
6.3.7 矩形截面对称配筋的计算方法
6.3.7.1 对称配筋的截面配筋设计
建筑工程中,柱截面常用对称配筋。对称配筋情况下, fy= fy/、As=As/ ,as=as/ 。
对称配筋通常用于控制截面在不同荷载组合下可能承受 正、负弯矩作用,如承受不同方向风荷载、地震荷载的框架 柱,以及为避免安装可能出现错误的预制排架柱等,都应采 用对称配筋。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应 N
N0
Nus Num
Nusei Numei
Nul Nul ei
Num fm Nul fl
M0
M

6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
② 比较细长的偏压柱(中长柱或长柱)(5<l0/h≤30): ◆ f 与ei相比已不能忽略; ◆ f 随轴力增大而增大,柱跨中弯矩M = N ( ei + f ) 的增长 速 度大于轴力N的增长速度; ◆ 即M随N 的增加呈明显的非线性增长; ◆ 虽然最终在M和N的共同作用下达到截面承载力极限状态, 但轴向承载力明显低于同样截面和初始偏心距情况下的短柱; ◆ 因此,对于中长柱,在设计中应考虑附加挠度 f 对弯矩 增大的影响。
6.3.6 矩形截面非对称配筋的计算方法
计算分为截面设计和承载力复核两类。 6.3.6.1 截面设计—大偏心受压 (1) As和As/均未知,三个未知数两个方程。此时,为使 (As+As/)的总用钢量最小,应取ξ= ξb(使压区混凝土充分 发挥,并保证受拉钢筋屈服), 求得As/,最后求As 。 若求得的As/<0,则取As/=ρminbh,然后按As/已知,求As的 问题。 (2) 已知As/,求As。两个未知数,两个方程,可求解唯一 解,计算过程与双筋矩形截面受弯构件类似,计算过程 中注意验算适用条件。 例题参见教材。
N
◆ 此后,裂缝迅速开展,受压区高度减小
◆ 最后受压侧钢筋A's 受压屈服,压区混凝土 压碎而达到破坏。
◆ 这种破坏具有明显预兆,变形能力较大,破
坏特征与配有受压钢筋的适筋梁相似,承载力主
要取决于受拉侧钢筋。破坏始自受拉钢筋先屈服,
最后受压区混凝土被压碎而破坏,破坏时一般受
fyAs
f'yA's
压钢筋也能达到屈服强度。属塑性破坏。
楼盖类型
柱的类别
l0
现浇楼盖 装配式楼盖
底层柱 其余各层柱
底层柱 其余各层柱
1.0H 1.25H 1.25H 1.5H
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.2 构件的计算长度l0 (3)当水平荷载产生的弯矩设计值占总弯矩设计值 的75%以上时,框架柱的计算长度l0可按下列公式计 算,并取其中的较小值。
着荷载的增大而不断加大的,
因而弯矩的增长也就越来越快。
我们把截面弯矩中的Ne0称为初 始弯矩或一阶弯矩,而把Nf称
为附加弯矩或二阶弯矩。见图。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
(1)长细比对偏心受压柱受压承载力的影响 从二阶效应的角度根据长细比的不同,可把偏心受压构
6.3.6 矩形截面非对称配筋的计算方法
承载力复核:已知轴向力设计值N和弯矩设计值M,验算截面是否 安全;已知N值,求所能承受的弯矩设计值M。
6.3.6.3 承载力复核—大偏心受压
对轴向压力N的作用点取矩:

时,说明为大偏心受压,
按大偏心受压求出承载力Nu。

时,说明截面为小偏心
受压,应改为小偏压公式重新复核。
N
N
As 太

ssAs
f'yA's
ssAs
f'yA's
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态
② 小偏心受压破坏:
◆ 截面受压侧混凝土和钢筋的受力较大; ◆ 受拉侧钢筋应力较小; ◆ 当相对偏心距e0/h0很小时,‘受拉侧’还可能出现受压情 况; ◆ 截面最后是由于受压区混凝土首先压碎而达到破坏; ◆ 承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压 区高度较大,受拉侧钢筋未达到受拉屈服,破坏具有脆性性质; ◆ 第二种情况在设计应予避免,因此受压破坏一般为偏心距 较小的情况,故常称为小偏心受压。
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态 试验表明,从加荷开始到接近破坏为止,偏心受压构件截面的
平均应变分布也都较好地符合平截面假定。
两类破坏形态——大偏心受压破坏(受拉破坏)和小偏心受压
破坏(受压破坏) :
①大偏心受压破坏(受拉破坏):见图。
◆ 截面受拉侧混凝土较早出现裂缝,As的应力 随荷载增加发展较快,首先达到屈服。
6.3.5.2 大、小偏心的初步判别 由于As和As/未知,混凝土受压区高度无法确定。在正
常配筋情况下,可按下列方法初步判别: 按小偏心受压计算 按大偏心受压计算
大偏心 小偏心
求出
判别
6.3.5 矩形截面偏心受压构件正截面承载力计算
6.3.3.3 大偏心受压构件承载力计算 大偏压(ξ≤ξb),见图
规范还规定,当偏心受压构件的长细比l0/i≤17.5(即l0/h≤5 或l0/d≤5)时,可取η=1.0
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.2 构件的计算长度l0
(1)刚性屋盖单层房屋排架柱、露天吊车柱和栈桥 柱,其计算长度可按表6-2取用。
(2) 一般多层房屋中梁柱为刚接的框架结构,各层柱 的计算长度l0可按下表采用。
e ei
Nu
e’
Nu
x
C fy’As
fyAs
1fc
6.3.6 矩形截面非对称配筋的计算方法
计算分为截面设计和承载力复核两类。
6.3.6.3 承载力复核—小偏心受压
对轴向压力N的作用点取矩,由平衡条件可 得:
e e’ ei
Nu
x
C s sAs
1fc fy’As’
求得x值,再根据小偏心受压构件的基本公式求出Nu。
6.3.6 矩形截面非对称配筋的计算方法
计算分为截面设计和承载力复核两类。 6.3.6.2 截面设计—小偏心受压 (1)由小偏心受压计算基本公式(三个方程)可知,未知数
共有As/、As、σs和x四个,必须补充另一条件。 由于小偏心受压时,远离纵向力一侧的纵向钢筋As
不管是受拉还是受压均不会屈服。因此,As可按最小 配筋率配置,即取As=ρminbh。利用基本公式求得x和As/。
:柱的上端、下端节点处交汇的各柱线刚度之和 与交汇的各梁线刚度之和的比值。
:比值
中的较小值。
6.3.5 矩形截面偏心受压构件正截面承载力计算
6.3.5.1 基本假定 (1) 平截面假定; (2) 受拉区混凝土不参加工作; (3) 受压区混凝土应力图形采用等效矩形;
6.3.5 矩形截面偏心受压构件正截面承载力计算
件的受力情况区分为以下三类:短柱、长柱和细长柱,见下图。 ① 偏心受压短柱(l0/h≤5): ◆ 侧向挠度 f 与初始偏心距ei相比很小; ◆ 柱跨中弯矩M=N(ei+f ) 随轴力N的增加基本呈线性增长; ◆ 直至达到截面承载力极限状态产生破坏; ◆ 对短柱可忽略挠度f影响。 ◆ 破坏属于材料破坏。
小偏心受压构件破坏时的应力图形
与超筋受弯构件相似。主要是远离轴压 力一侧的钢筋As的应力 ,可能受拉 ,也可能受压,但达不到fy,对小偏压 截面的两种应力分布图形,依平衡条件 得(图) :
e e’ ei
Nu
x
C s sAs
1fc fy’As’
(近似公式) 式中 σs拉正压负,-fy/≤σs≤fy x—受压取高度,当x>h时,取x=h。
◆ 形成这种破坏的条件是:偏心距e0较大,且 受拉侧纵向钢筋配筋率合适。
6.3 偏心受压构件正截面承载力计算
6.3.1 偏心受压构件正截面破坏形态 ② 小偏心受压破坏(受压破坏)有两种情况:见图。 (A) 当相对偏心距e0/h0较小; (B) 虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时。
6.3.4 偏心受压长柱的纵向弯曲影响
6.3.4.1 偏心距增大系数—二阶效应
(2)偏心距增大系数η 规范推荐两种方法来考虑二阶效应问题,一种是较为准
确的“考虑二阶效应的弹性分析法”,另一种是规范的近似 方法。下面只对规范的方法简单的加以介绍。
为了考虑纵向弯曲的影响,《规范》将初始偏心距乘以 一个大于1的偏心距增大系数η。
相关文档
最新文档