随机过程知识点汇总

合集下载

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。

若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。

随机过程知识点总结

随机过程知识点总结

知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。

其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。

关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。

第二章 随机过程总结

第二章   随机过程总结

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

随机过程知识点汇总3

随机过程知识点汇总3

第一章随机过程的基本概念与基本类型一. 随机变量及其分布1随机变量X,分布函数F(x)二P(X < x)X连续型随机变量X的概率分布用概率密度 f (x) 分布函数F(x)二f (t)dt2. n维随机变量X =(X i,X2,…,X n)其联合分布函数F(x) H F a’X?,…,X n) =P(X1空X-X2乞x2,…,X n乞x n,)离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量X EX =二x k p k连续型随机变量X EX二"xf (x)dx匚方差:DX = E(X -EX)2二EX2-(EX)2反映随机变量取值的离散程度协方差(两个随机变量X,Y ):B XY =E[(X — EX)(Y —EY)] =E(XY) — EX .EY独立=不相关:=:-=0予oO 予离散g(t)二' e iX k P k 连续g(t) e iX f (x)dx'J重要性质:g(0)=1 , g(t) <1 , g(—t)=g(t) , g k(0)=i k EX k5 •常见随机变量的分布列或概率密度、期望、方差0 —1分布P(X =1) =p,P(X =0) =q EX二p DX = p q二项分布k k n -kP(X = k) = C n p q EX=np DX=n pq泊松分布-kP(X =k) =e EXk!DX=扎均匀分布略离散型随机变量X的概率分布用分布列P k 二P(X 二X k)分布函数F(x) = 7 P k相关系数(两个随机变量X,Y ):B XYDX DY若'=0,则称X,Y不相关。

4 .特征函数g(t)二E(e itX)6.N 维正态随机变量 X =(X ,,X 2^ ,X n )的联合概率密度II T A.f(X i ,X 2, ,X n )二 ---------- n-exo{(x-a) B (x-a)} 2 (2 二)2|B|2a =(a .,a 2,…,aj , x =(x i , X 2,…,X n ), B = (b ij )nn 正定协方差阵二•随机过程的基本概念 1•随机过程的一般定义设r 1, P)是概率空间,T 是给定的参数集,若对每个r T ,都有一个随机变量 X 与之对应, 则称随机变量族fx (t,e),t ・T /是 (JP)上的随机过程。

随机过程知识点总结

随机过程知识点总结
= ∑


∑ = 1

矩阵表示
= ()
3、 各状态平均返回时间
=
1

第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1

[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、


2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]


!
+
( + ) − () = ∫
()

相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )

随机过程复习提纲汇总

随机过程复习提纲汇总

随机过程复习提纲汇总随机过程是概率论中研究随机现象的一种数学工具,它描述了随机事件或变量在时间或空间上的演化规律。

随机过程在概率论、统计学以及各个科学领域中都有广泛的应用。

在复习随机过程的过程中,可以按照以下提纲进行系统地总结和复习:一、随机过程的定义和基本概念1.随机过程的定义和基本性质2.随机变量和随机过程的关系3.有限维分布和无限维分布4.随机过程的连续性和可测性二、随机过程的分类1.马尔可夫链和马尔可夫过程2.马尔可夫链的平稳分布和细致平衡条件3.各类随机过程的特性和应用(如泊松过程、布朗运动等)三、随机过程的数学描述1.随机过程的表示方法(如状态空间表示、样本函数表示等)2.随机过程的独立增量性质3.随机过程的平稳性质和相关函数四、随机过程的统计特性1.随机过程的均值和方差2.随机过程的相关函数和自相关函数3.随机过程的功率谱密度和自相关函数之间的关系五、随机过程的极限理论1.强大数定律和中心极限定理在随机过程中的应用2.极限理论在随机过程中的应用(如大数定律、中心极限定理等)六、马尔可夫过程的统计推断1.马尔可夫链的参数估计2.马尔可夫过程的参数估计3.马尔可夫过程的隐马尔可夫模型和参数估计七、随机过程的应用1.随机过程在金融领域的应用2.随机过程在电信领域的应用3.随机过程在信号处理领域的应用以上是一个较为全面的随机过程复习提纲,按照这个提纲进行复习可以帮助系统地回顾和学习随机过程的各个重要概念、定理和应用。

在复习的过程中,可以结合课本、教材以及相关资料进行深入学习和巩固。

同时,通过解答题目、做习题和实际应用案例的分析,可以提高对随机过程的理解和应用能力。

复习随机过程时,要注意理论和实践相结合,注重理论概念的理解和应用技巧的掌握。

考研随机过程知识点浓缩

考研随机过程知识点浓缩

考研随机过程知识点浓缩随机过程是概率论中的重要分支,研究随机事件在时间上的演变规律。

在考研数学中,随机过程是一个重要的知识点,涉及到概率论和数理统计等多个领域。

本文将对考研随机过程的知识点进行浓缩总结,帮助考生更好地掌握重点内容。

1. 随机过程的定义随机过程是一个定义在时间轴上的随机变量族,即一系列随机变量组成的集合。

随机过程可分为连续时间随机过程和离散时间随机过程,根据时间参数的取值范围来进行区分。

2. 随机过程的分类根据随机过程的状态空间,可以将随机过程分为离散状态随机过程和连续状态随机过程。

离散状态随机过程中,状态空间为有限集合或者可列无限集合,如泊松过程;连续状态随机过程中,状态空间为连续集合,如布朗运动。

3. 马尔可夫性质马尔可夫性质是随机过程的重要性质之一,指的是在给定当前状态的条件下,未来的发展只依赖于当前状态,与过去的状态无关。

具有马尔可夫性质的随机过程可以简化计算和分析。

4. 随机过程的平稳性平稳性是随机过程的另一个重要性质,分为弱平稳和严平稳。

弱平稳指的是均值和自协方差不依赖于时间的特性;严平稳则要求联合分布在时间上的平移具有不变性。

平稳性的性质可以简化对随机过程的研究。

5. 随机过程的独立增量性质随机过程的独立增量性质指的是在不相交的时间间隔内,随机变量之间是相互独立的。

具有独立增量性质的随机过程可以通过对各个时间间隔内的随机变量进行独立分析。

6. 随机过程的马尔可夫链马尔可夫链是一种特殊的离散时间随机过程,具有马尔可夫性质。

马尔可夫链的状态空间是离散的,状态转移概率只与当前状态有关,与过去的状态无关。

马尔可夫链通常用状态转移矩阵来描述状态之间的转移规律。

7. 泊松过程泊松过程是一类具有无记忆性的离散状态随机过程,是一种常用的数学模型。

泊松过程描述了在一段时间内随机事件发生的次数,具有独立增量和稳定增量的性质。

8. 布朗运动布朗运动是连续时间的连续状态随机过程,具有平稳增量、独立增量和高斯增量的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。

独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1(p EX =pq DX =二项分布 kn k k n qp C k X P -==)(np EX =npq DX = 泊松分布 !)(k ek X P kλλ-==λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX =2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλλ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。

简记为{}T t t X ∈),(。

含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。

另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。

当t 固定时,),(e t X 是随机变量。

当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道。

分类:根据参数集T 和状态空间I 是否可列,分四类。

也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。

2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。

随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族。

随机过程的有限维分布函数族是随机过程概率特征的完整描述。

在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。

(1)均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值。

(2)方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度。

(3)协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =(4)相关函数)]()([),(t X s X E t s R X = (3)和(4)表示随机过程在时刻s ,t 时的线性相关程度。

(5)互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数。

)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数。

若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关。

3.复随机过程 t t t jY X Z +=均值函数t t Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程(1)二阶距过程:实(或复)随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E (二阶距存在),则称该随机过程为二阶距过程。

(2)正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程。

其协方差函数)),(m in(),(),(2t s t s R t s B X X X σ==(3)独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程。

进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程。

(4)马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程。

(5)正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,()()(),(21n t X t X t X )是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程。

(6)维纳过程:是正态过程的一种特殊情形。

设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W 。

则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程。

另外:①它是一个Markov 过程。

因此该过程的当前值就是做出其未来预测中所需的全部信息。

②维纳过程具有独立增量。

该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率。

③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。

(7)平稳过程:严(狭义)平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及T t t t n ∈,,,21 ,T t t t n ∈+++τττ,,,21 ,()()(),(21n t X t X t X )与()()(),(21τττ+++n t X t X t X )有相同的联合分布,则称{}T t t X ∈),(是严(狭义)平稳过程。

广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈,常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关。

则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程。

第二章 泊松过程一.泊松过程的定义(两种定义方法)1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程。

①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度。

2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程。

①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩。

第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性。

相关文档
最新文档