辽宁省大连市八年级上期中数学试卷解析版
辽宁省大连市高新区2023-2024学年八年级上学期期中数学试卷 (含解析)

辽宁省大连市高新区2023-2024学年八年级上学期期中数学试卷(解析版)一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或127.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.610.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= .12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 .13.(3分)一个n边形的每个内角都等于144°,则n= .14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = .15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= °.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 .三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ,b= .四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC于F,CF=2,BH=3,请画出图形,并求AB的长.参考答案与试题解析一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【解答】解:选项A、B、D均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C,不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵任意多边形的外角和等于360°,∴正八边形的外角和等于360°,故选:B.【点评】本题考查了多边形的外角,掌握多边形的外角和等于360°是解题的关键.3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm【分析】根据三角形的三边关系确定第三边的范围,判断即可.【解答】解:设第三边的长为xcm,则9﹣5<x<9+5,即4<x<14,∴四根木棒中,长度为5cm的木棒,能与5cm、9cm长的两根木棒钉成一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:D.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=3【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,能画出唯一的△ABC,故本选项不符合题意;B.∠A=30°,AB=5,BC=3,不符合全等三角形的判定定理,不能画出唯一的△ABC,故本选项符合题意;C.∠B=60°,AB=6,BC=10,符合全等三角形的判定定理SAS,能画出唯一的△ABC,故本选项不符合题意;D.∠C=90°,AB=5,BC=3,符合全等直角三角形的判定定理HL,能画出唯一的△ABC,故本选项不符合题意;故选:B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或12【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°【分析】先根据三角形内角和计算出∠A=40°,再根据全等三角形的性质得到∠DBE=∠A=40°,然后计算∠ABC﹣∠DBE即可.【解答】解:∵∠ABC=∠ACB=70∴∠A=180°﹣70°﹣70°=40°,∵△ABC≌△BDE,∴∠DBE=∠A=40°,∴∠ABE=∠ABC﹣∠DBE=70°﹣40°=30°.故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应角相等.8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,然后根据△ABC的面积列出方程求解即可得到DE.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵S△ABC=36cm2,AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,解得:DE=(cm).故选:C.【点评】此题考查了角平分线的性质,三角形的面积公式,正确作出辅助线是解题的关键.9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.6【分析】直接利用基本作图方法得出DE垂直平分AB,AF=AH,再利用等腰三角形的性质、线段垂直平分线的性质得出AF+FC=BF+FC=BC,即可得出答案.【解答】解:由基本作图方法得出:DE垂直平分AB,则AF=BF,∴AF+FC=BF+FC=BC=3,而AF=AH,AC⊥FH,∴FC=CH,∴AF+FC=AH+HC=BC=3,∴△AFH的周长为:AF+FC+CH+AH=2BC=6.故选:D.【点评】此题主要考查了基本作图以及等腰三角形的性质、线段垂直平分线的性质等知识,正确得出AF+FC=BF+FC=BC是解题关键.10.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β【分析】根据直角三角形两锐角互余求出∠C=90°﹣∠CHE=90°﹣β,由三角形内角和定理得出∠B=180°﹣∠A﹣∠C=90°﹣α+β.根据全等三角形对应角相等求出∠DEF=∠C=90°﹣α+β,根据∠BED=∠BEF﹣∠DEF即可得出答案.【解答】解:∵FH⊥BC,垂足为E,∴∠CEH=∠BEF=90°,∴∠C=90°﹣∠CHE=90°﹣β,∴∠B=180°﹣∠A﹣∠C=180°﹣α﹣(90°﹣β)=90°﹣α+β.∵△ABC≌△DEF,∴∠DEF=∠B=90°﹣α+β,∴∠BED=∠BEF﹣∠DEF=90°﹣(90°﹣α+β)=α﹣β.故选:A.【点评】本题考查了全等三角形的性质,垂直的定义,直角三角形的性质,三角形内角和定理.掌握相关性质与定理是解题的关键.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= 85° .【分析】根据三角形外角的性质,得∠ACD=∠B+∠A,那么∠A=∠ACD﹣∠B=85°.【解答】解:∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°.故答案为:85°.【点评】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解决本题的关键.12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 130° .【分析】直接利用轴对称图形的性质得出∠DAC=∠BAC=65°,∠D=∠B=50°,再结合三角形内角的定理得出答案.【解答】解:∵四边形ABCD是轴对称图形,直线AC是它的对称轴,∴∠DAC=∠BAC=65°,∠D=∠B=50°,∴∠BCA=∠DCA=180°﹣65°﹣50°=65°,∴∠BCD的大小为:65°×2=130°.故答案为:130°.【点评】此题主要考查了轴对称图形的性质,正确得出对应角度数是解题关键.13.(3分)一个n边形的每个内角都等于144°,则n= 10 .【分析】根据多边形的内角和定理:(n﹣2)180°求解即可.【解答】解:由题意可得:(n﹣2)180°=n×144°,解得n=10.故答案为:10.【点评】本题主要考查了多边形的内角和定理.熟练掌握n边形的内角和为:(n﹣2)180°是关键.14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = 2 .【分析】由三角形的内角和定理可求∠BAC=120°,结合垂直的定义可求得∠CAD=30°,BD=2AD,进而可求得AD=BC=2,即可求解.【解答】解:∵∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵AD⊥AB,∴∠BAD=90°,∴∠CAD=∠C=30°,BD=2AD,∴AD=CD,∴AD=BC=2.故答案为:2.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,含30°角的直角三角形的性质,证明AD=CD是解题的关键.15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= 70 °.【分析】根据平行线的性质以及角平分线的性质得出AB=AD,进而得出AC=AD,进而得出∠DAC=∠ACB=40°,根据三角形内角和定理即可求解.【解答】解:∵∠BAD=140°,AD∥BC,∴∠ABC=40°,∵AB=AC,∴∠ACB=∠ABC=40°,∵AD∥BC,∴∠DAC=∠ACB=40°,∵BD是∠ABC的角平分线,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=20°,∴∠ABD=∠ADB=20°,∴AB=AD,∴AC=AD,∴∠ACD=×(180°−∠CAD)=×(180°−40°)=70°.故答案为:70.【点评】本题考查了三角形内角和定理,三角形角平分线的定义,平行线的性质,等腰三角形的性质与判定,证明AC=AD是解题的关键.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 +4 .【分析】根据等边三角形的性质可得AB=AC,AD=AE,∠BAC=∠DAE=60°,据此得出∠ABD=∠ACE,作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF 的值最小,此时AE+EF=FM,证明△ACM是等边三角形,得出FM=FB=4,于是得到结论.【解答】解:∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF,∴∠ABD=∠CBD=∠ACE=30°,∴点E在射线CE上运动(∠ACE=30°),作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF的值最小,此时AE+EF=FM,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴△ACM≌△ACB,∴FM=FB=4,∴AB=,∴AE+EF的最小值是AF+FM=+4,故答案为:+4.【点评】本题考查的是轴对称的性质﹣最短路径问题,掌握轴对称的性质、等边三角形的判定和性质是解题的关键.三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.【分析】设∠B=α,根据等腰三角形的性质得∠B=∠C=α,∠B=∠BAD=α,进而得∠CDA=∠B+∠BAD=2α,则∠CAD=∠CDA=2α,∠BAC=3α,进而根据∠C+∠CAD+∠CDA=180°可解得α=36°,据此可得∠BAC的度数.【解答】解:设∠B=α,∵AB=AC,∴∠B=∠C=α,∵AD=BD,∴∠B=∠BAD=α,∴∠CDA=∠B+∠BAD=2α,∵AC=CD,∴∠CAD=∠CDA=2α,∴∠BAC=∠BAD+∠CAD=3α,在△CAD中,∠C+∠CAD+∠CDA=180°,∴α+2α+2α=180°,解得:α=36°,∴∠BAC=3α=3×36°=108°.【点评】此题主要考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质,灵活三角形内角和定理进行角度计算是解决问题的关键19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).【分析】利用AAS证明△COE≌△OBD,得CE=OD=15cm.【解答】解:∵OB⊥OC,∴∠BOD+∠COE=90°,∵CE⊥OA,BD⊥OA,∴∠CEO=∠ODB=90°,∴∠BOD+∠B=90°,∴∠COE=∠B,在△COE和△OBD中,,∴△COE≌△OBD(AAS),∴CE=OD=15cm,∴摆球到OA的水平距离CE的长为15cm.【点评】本题主要考查了全等三角形的判定与性质,证明△COE≌△OBD是解题的关键.20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ﹣5 ,b= 1 .【分析】(1)根据轴对称的性质作图,即可得出答案.(2)关于y轴对称的点的横坐标互为相反数,纵坐标相等,由此可得a+1=﹣4,b﹣2=﹣1,求出a,b的值即可.【解答】解:(1)如图,ΔA1B1C1即为所求.点A1(1,4),B1(5,4),C1(4,1).(2)∵点P与点C关于y轴对称,C(4,﹣1),∴点P的坐标为(﹣4,﹣1),∴a+1=﹣4,b﹣2=﹣1,解得a=﹣5,b=1.故答案为:﹣5;1.【点评】本题考查作图﹣轴对称变换,熟练掌握轴对称的性质是解答本题的关键.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.【分析】(1)连接BE,CE,根据角平分线的性质得到EM=EN,根据线段垂直平分线的性质得到BE=CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到AM=AN,设BM=CN=x,列方程即可得到结论.【解答】(1)证明:连接BE,CE,∵AE平分∠BAC,EM⊥AB,EN⊥AC,∴EM=EN,∵DE垂直平分BC,∴BE=CE,∴Rt△BEM≌Rt△CEN(HL),∴BM=CN;(2)解:∵∠M=∠ANE=90°,∴Rt△AME≌Rt△ANE(HL),∴AM=AN,设BM=CN=x,∵AB=2,AC=8,∴x+2=8﹣x,∴x=3,∴BM=3.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形是解题的关键.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.【分析】(1)①根据要求作出图形即可;②根据要求作出图形即可;(2)证明AE=AF=AB,再利用等腰三角形的性质以及三角形内角和定理证明即可.【解答】解:(1)①如图,射线BE即为所求;②如图,线段AE,EF即为所求;(2)△BEF是直角三角形.理由:∵BE平分∠ABC,∴∠ABE=∠EBD,∵AC∥BD,∴∠AEB=∠EBD,∴∠ABE=∠AEB,∴AB=AE,∵AB=AF,∴AE=AF=AB,∴∠AFE=∠AEF,∠ABE=∠AEB,∵∠ABE+∠AFE+∠BEF=180°,∴2∠AEF+2∠AEB=180°,∴∠AEF+∠AEB=90°,∴∠BEF=90°,∴△BEF是直角三角形.【点评】本题考查作图﹣复杂作图,直角三角形的判定,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= 2 cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.【分析】(1)当t=3时,点P运动到线段BC上,即可得到BP的长度;(2)分三种情况讨论,①当点P在AB上时,②当点P在BC上时,③当点P在AD 上时,根据全等三角形的判定与性质、等腰三角形的性质即可得到答案;(3)根据题意,要使一个三角形与△DCQ全等,则点P的位置可以有四个,根据点P 运动的位置,即可计算出时间.【解答】解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)①当点P在AB上时,△CDP是等腰三角形,∴PD=CP,在矩形ABCD中,AD=BC,∠A=∠B=90°,∴△DAP≌△CBP(HL),∴AP=BP,∴AP==2,∴t==1,②当点P在BC上时,△CDP是等腰三角形,∵∠C=90°,∴CD=CP=4,∴BP=CB﹣CD=2,∴t==3,③当点P在AD上时,△CDP是等腰三角形,∵∠D=90°,∴DP=CD=4,∴t==9,综上所述,t=1或3或9时,△CDP是等腰三角形;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,矩形的性质,线段的动点问题,解题的关键是掌握全等三角形的判定与性质及动点的运动状态,从而进行分类讨论.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= 20 °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.【分析】(1)①先根据角的运算得出∠BAD的度数,根据三角形内角和求出∠ABC的度数;再根据直角三角形两锐角互余可得出∠ABG的度数,作差可得结论;②连接AH,可得出AB=AH=AC,再根据∠BAC=α,∠DAE=α,可得出∠BAF+∠CAE=α,∠HAF+∠HAG=α,所以∠CAE=∠HAG;进而可得△AGH≌△AGC (SAS),再由全等三角形的性质可得结论;(2)在BG延长线上取点H,使HF=BF.连结AH.由垂直平分线的性质可得AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,所以∠DAE=x+y,由此表达∠BAC,∠BAF,∠HAF,由∠HAE=∠DAE+∠HAE,可得x+2y=x+y+∠HAE,所以∠HAE=y,即∠HAE=∠CAE;由此可得△ACG≌△AHG(SAS),所以CG=HG,由此可得结论.【解答】解:(1)①∵∠BAC=α=120°,∠DAE=α=60°,∠CAE=20°,∴∠BAD=120°﹣60°﹣20°=40°,∵BF⊥AD,∴∠AFB=90°,∴∠ABF=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=30°,∴∠CBG=∠ABF﹣∠ABC=50°﹣30°=20°;故答案为:20.②GH=GC,理由如下:证明:如图1,连结AH,∵点B与点H关于直线AD对称,AF⊥BH,∴BF=HF,∴AD是BH的垂直平分线,∴AB=AH,∠BAF=∠HAF,∵AB=AC,∴AH=AC,∵∠BAC=α,∠DAE=α,∴∠BAF+∠CAE=α,∠HAF+∠HAG=α,∴∠CAE=∠HAG;∵AG=AG,∴△AGH≌△AGC(SAS).∴GH=GC;(2)BG=2BF﹣CG;证明:如图2,在BG延长线上取点H,使HF=BF.连结AH.∵AF⊥BH,BF=HF,∴AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,∴∠DAE=x+y,∵∠DAE=∠BAC.∴∠BAC=2x+2y,∴∠BAF=∠BAC﹣∠CAD=2x+2y﹣x=x+2y.∴∠HAF=∠BAF=x+2y,∵∠HAE=∠DAE+∠HAE,∴x+2y=x+y+∠HAE,∴∠HAE=y,即∠HAE=∠CAE;∵AB=AC,AB=AH,∴AC=AH,∵AG=AG.∴△ACG≌△AHG(SAS).∴CG=HG;∵BG=BH﹣GH,BH=2BF,∴BG=2BF﹣CG.【点评】本题在三角形背景下考查旋转的相关知识,属于三角形的综合应用,熟练掌握三角形全等的判定及性质,轴对称的性质是解题的关键.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC 于F,CF=2,BH=3,请画出图形,并求AB的长.【分析】(1)根据题意可得∠B=30°,结合△CDE是等边三角形即可求出∠BDE=∠B,从而得证.(2)以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM=CA,即可得出△ACM是等边三角形,然后证明△ACD≌△MCE,△MCE≌△MBE即可得证;(3)分两种情况进行讨论,当点F在线段AC上时和点F在AC延长线上时,分别计算即可.【解答】(1)证明:在△ABC中,∠ACB=90°,∠A=60°,∴∠B=30°,∵△CDE是等边三角形,∴∠CED=60°,∵∠CED=∠B+∠BDE,∴∠BDE=60°﹣30°=30°,∴∠BDE=∠B,∴DE=BE.(2)解:如图,以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM =CA,∵∠A=60°,∴△ACM是等边三角形,∴∠ACM=∠AMC=60°,又∵△CDE是等边三角形,∴CD=CE,∠DCE=60°,∴∠ACM=∠DCE,∴∠ACM﹣∠DCM=∠DCE﹣∠DCM,即∠ACD=∠MCE,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∵∠AMC=60°,∴∠BME=180°﹣∠AMC﹣∠CME=180°﹣60°﹣60=60°,∴∠CME=∠BME,∵∠BCM=∠ACB﹣∠ACM=90°﹣60°=30°,∴∠BCM=∠ABC,∴MC=MB,又∵ME=ME,∴△MCE≌△MBE(SAS),∴CE=BE,又∵△CDE是等边三角形,∴CE=DE,∴DE=BE.(3)解:如图,当点F在线段AC上时,以C为圆心,CA长为半径画弧,交AB边于M,连结ME,BE,CM,则△ACM为等边三角形,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∠EMB=60°=∠CME,又∵CM=BM,∴△CME≌△BME(SAS),∴BE=CE,∵CE=DE,∴BE=DE,∵EH⊥BD,∴BD=2BH,∵BH=3,∴BD=6,∵EF∥AB,∴∠CFE=∠A=60°,∴∠CFE=∠CMA.∵∠ECF=∠ECD+∠ACD=60°+∠ACD,∠CDM=∠A+∠ACD=60°+∠ACD,∴∠ECF=∠CDM,又∵∠ECF=∠CDM,∴△ECF≌△CDM(SAS),∴DM=CF=2,∴BM=BD﹣DM=6﹣2=4,∵CM=AM,CM=BM,∴AM=BM,∴AB=2BM=8;如图,当点F在AC延长线上时,同理可得BD=2BH=6.∵EF∥AB,∴∠F+∠A=180°,∴∠F=120°,∵∠AMC=60°,∴∠CMD=120°,∴∠F=∠CMD.∵∠ACM=∠DCE=60°,∴∠FCE+∠MCD=180°﹣120°=60°,∠MCD+∠MDC=∠AMC=60°.∴∠FCE=∠MDC.又∵CD=CE,∴△FCE≌△MDC(AAS),∴MD=FC=2,∴MB=BD+MD=8.同理AM=BM=8,∴AB=2AM=16.综上所述,AB的长为8或16.【点评】本题考查等边三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线是解题关键.。
2020-2021大连市八年级数学上期中一模试卷带答案

2020-2021大连市八年级数学上期中一模试卷带答案一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣2.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°3.已知一个等腰三角形一内角的度数为80o,则这个等腰三角形顶角的度数为() A.100o B.80o C.50o或80o D.20o或80o4.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=15.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB.∠A=12∠B=13∠CC.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C6.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C.40004000210x x-=-D.40004000210x x-=-7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.下列运算正确的是()A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 9.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°10.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .252711.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.14.已知:a+b=32,ab=1,化简(a ﹣2)(b ﹣2)的结果是 . 15.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.16.当x =_____时,分式22x x -+的值为零. 17.分解因式:2x 2﹣8=_____________ 18.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 19.化简的结果是_______.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=. 22.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).23.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?24.如图,已知AB ∥CD,分别探讨下面的四个图形中∠APC 与∠PAB,∠PCD 的关系,请你从所得关系中任意选取一个加以说明.25.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.3.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o ,顶角为180808020o o o o --=;()2等腰三角形的顶角为80o .因此这个等腰三角形的顶角的度数为20o 或80o .故选D .本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.4.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D 项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x ,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A 中∠A+∠B=∠C ,即2∠C=180°,∠C=90°,为直角三角形,同理,B ,C 均为直角三角形, D 选项中∠A=2∠B=3∠C ,即3∠C +32∠C +∠C =180°,∠C =036011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.6.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10.故选C.考点:多边形内角与外角.8.A解析:A【解析】【分析】A.利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B.利用同底数幂的乘法法则计算得到结果,即可做出判断;C.利用单项式乘单项式法则计算得到结果,即可做出判断;D.利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.9.D解析:D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.10.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2. 11.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式12.D解析:D【解析】∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=0,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=0,∴(x+z )2﹣4y (x+z )+4y 2=0,∴(x+z ﹣2y )2=0, ∴z+x ﹣2y=0.故选D .二、填空题13.6【解析】【分析】直接利用多项式乘法去括号进而得出一次项系数为0求解即可【详解】∵的乘积中不含的一次项∴=中∴故答案为:6【点睛】本题主要考查了多项式乘多项式解答本题的关键在于正确去括号并计算解析:6【解析】【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【详解】∵(42)(3)x m x -+的乘积中不含x 的一次项,∴(42)(3)x m x -+=24(122)6x m x m +--中1220m -=∴6m =故答案为:6.【点睛】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算. 14.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a ﹣2)(b ﹣2)=ab ﹣2(a+b )+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求解析:2【解析】【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=32,ab=1时,原式=1﹣2×32+4=2.故答案为2.考点:整式的混合运算—化简求值.15.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.16.2【解析】由题意得:解得:x=2故答案为2解析:2【解析】由题意得:20{20xx-=+≠,解得:x=2. 故答案为217.2(x+2)(x﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.a<-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a<-2且a≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程22x ax-+=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a<-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.19.2x-3【解析】【分析】先通分把异分母分式化为同分母分式然后再相加减【详解】12x2-9+2x+3=12x+3x-3+2x-3x+3x-3=12+2(x-3)x+3x-3=2x+3x+3x-3=2x解析:【解析】【分析】先通分,把异分母分式化为同分母分式,然后再相加减.【详解】+====, 故答案为:. 【点睛】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.211443a a =++. 【解析】 试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-,∴原式=11143=-+. 考点:分式的化简求值.22.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.所求的多边形的边数为7,这个多边形对角线为14条.【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n 的值,再根据对角线的计算公式即可得出答案.【详解】设这个多边形的边数为n ,根据题意,得:(n ﹣2)×180°=360°×2+180°,解得 n =7,则这个多边形的边数是7,七边形的对角线条数为:12×7×(7﹣3)=14(条), 答:所求的多边形的边数为7,这个多边形对角线为14条.【点睛】本题考查了对多边形内角和定理和外角和的应用,注意:边数是n 的多边形的内角和是(n-2)•180°,外角和是360°.24.图()1结论360APC PAB PCD ∠+∠+∠=o ;图()2结论APC PAB PCD ∠=∠+∠;图()3结论PAB APC PCD ∠=∠+∠;图()4结论PCD PAB APC ∠=∠+∠.证明见解析.【解析】【分析】关键是过转折点作平行线,根据两直线平行,内错角相等,同位角相等,同旁内角互补或结合三角形的外角性质求证即可.【详解】解:图()1结论360.APC PAB PCD ∠+∠+∠=o图()2结论.APC PAB PCD ∠=∠+∠图()3结论.PAB APC PCD ∠=∠+∠图()4结论.PCD PAB APC ∠=∠+∠如图1:过点P 做.PF AB P,AB CD Q ∥.PF CD ∴P180.APF A ∴∠+∠=o 180.CPM C ∠+∠=o 两式相加得360.A C APM CPM ∠+∠+∠+∠=o即360.APC PAB PCD ∠+∠+∠=o 如图2:过点P 做.PE AB P因为,PE AB CD P P所以,.BAP APE EPC PCD ∠=∠∠=∠,APE EPC BAP PCD ∠+∠=∠+∠即.APC PAB PCD ∠=∠+∠如图3: PAB APC PCD ∠=∠+∠.延长BA 与PC 交于点F .AB CD Q P ,.PFA PCD ∴∠=∠(两直线平行,同位角相等),又,PAB APC PFA ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PAB APC PCD ∴∠=∠+∠.如图4:,AB CD Q ∥.PFB PCD ∴∠=∠(两直线平行,同位角相等),又PFB APC PAB ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PCD APC PAB ∴∠=∠+∠.【点睛】本题考查平行线的性质.熟练掌握平行线的性质并能灵活运用是解决此题的关键.25.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用。
辽宁大连市名校联盟2024-2025学年八年级上学期期中数学 试题(解析版)

2024-2025学年度第一学期联盟试卷(一)八年级 数学注意事项:1.请准备好必要的答题工具在答题卡上作答,在试卷上作答无效.2.本试卷共三大题,23小题,满分120分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分)1. 第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,如图所示巴黎奥运会项目图标中,轴对称图形是( )A. B. C. D.【答案】B【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B .2. 如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAE 的度数是( )A. 90°B. 108°C. 120°D. 135°【答案】B 【详解】解:正五边形的内角和=(52)180540−×°=°, ∴∠BAE=5401085=°°,故选:B .3. 在平面直角坐标系中,点()6,2P −关于x 轴的对称点的坐标是( )A. ()6,2−−B. ()6,2C. ()2,6−D. ()6,2−【答案】A【详解】解:点()6,2P −关于x 轴的对称点的坐标是()6,2−−,故选A .4. 如图,在ABC 和DEF 中,A D ∠=∠,AC DF =,要使得ABC DEF ≌△△,还需要补充一个条件,则下列错误的条件是( )A. BF CE =B. //AC DFC. B E ∠=∠D. AB DE =【答案】A 【详解】解: 在ABC 和DEF 中,已有,A D AC DF ∠=∠=, ∴要使ABC DEF ≅△△,只需增加一组对应边相等或对应角即可,即需增加的条件是AB DE =,DFE B E ∠=∠∠=∠,观察四个选项可知,只有选项A 符合,故选择:A .5. 已知等腰三角形的两边长分别为5cm 、2cm ,则该等腰三角形的周长是( )A. 7cmB. 9cmC. 12cm 或者9cmD. 12cm【答案】D【详解】若2cm 为腰长,5cm 为底边长,∵2+2=4<5,不能组成三角形,∴不合题意,舍去;若2cm 为底边长,5cm 为腰长,则此三角形的周长为:2+5+5=12cm .故选D .6. 小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A. 1mB. 1.6mC. 1.8mD. 1.4m【答案】D 【详解】解:90BOC ∠=° ,90BOD COE ∴∠+∠=°,90BDO ∠=°,90CEO ∠=°, 90BOD OBD ∴∠+∠=°,90COE OCE ∠+∠=°,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=−=+−=+−=.故选:D .7. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ’、BB 的中点,只要量出A ’B ’的长度,就可以知道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两点确定一条直线C. 两角及其夹边分别相等的两个三角形全等D. 两点之间线段最短【答案】A【详解】解: 点O 为AA ′、BB ′的中点,OA OA ∴′=,OB OB ′=,由对顶角相等得AOB A OB ′′∠=∠,在AOB 和A OB ′′△中,OA OA AOB A OB OB OB ′′= ∠=∠′′ =, ()SAS AOB A OB ′′∴△≌△,AB A B ′′∴=,即只要量出A B ′′的长度,就可以知道该零件内径AB 的长度,故选:A .8. 如图,在ABC 中,62B ∠=°,34C ∠=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 50°B. 45°C. 40°D. 35°【答案】A 【详解】解:根据作图可知,MN 垂直平分AC ,∴AD CD =,∴34DAC C ∠=∠=°,∵18084BAC B C ∠=°−∠−∠=°,∴843450BAD BAC DAC ∠=∠−∠=°−°=°,故A 正确.故选:A .9. 元旦联欢会上,3 名同学分别站在 ABC 三个顶点的位置上.游戏时,要求在他们中间放一个凳子,该先坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三条角平分线的交点C. 三边中线的交点D. 三边上高的交点【答案】A【详解】解:∵ABC 的垂直平分线的交点到ABC 三个顶点的距离相等,∴凳子应放置的最适当的位置时在ABC 的三边垂直平分线的交点,故选:A .10. 如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE 的长为( )A. 2cmB. 36cm 13C. 12cm 5D. 3cm【答案】C 【详解】解:如图,过点D 作DF BC ⊥于F ,∵BD 是ABC ∠的平分线,DE AB ⊥,∴DE DF =,∵18cm AB =,12cm BC =, ∴1118122623ABC DE S DF =×+×= , 即6111812223DE DE ×+×=, 解得()12cm 5DE =. 故选:C .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 如图,ABC 中,4AB AC ==,P 是BC 上任意一点,过P 作PD AC ⊥于D ,PE AB ⊥于E ,若12ABC S =△,则PE PD +=_________【答案】6【详解】解:连接AP ,由图可得,ABCABP ACP S S S =+△△△, ∵PD AC ⊥于D ,PE AB ⊥于E ,12ABC S =△, ∴()1111442122222AB PE AC PD PE PD PE PD ×+×=××+××=+=, ∴6PE PD +=.故答案为:6.12. 小明将两把完全相同的长方形直尺如图放置在AOB ∠上,两把直尺的接触点为P ,边OA 与其中一把直尺边缘的交点为C ,点C 、P 在这把直尺上的刻度读数分别是2、5,则OC 的长度是______.【答案】3cm【详解】解:过P 作PN OB ⊥于N ,由题意得:PM PN =,PC OB ∥,PM OA ⊥,PO ∴平分AOB ∠,COP NOP ∴∠=∠,∵PC OB ∥,CPO NOP ∴∠=∠,COP CPO ∴∠=∠,OC PC ∴=, C 、P 在这把直尺上的刻度读数分别是2、5,()523cm PC ∴=−=,OC ∴长度是3cm .故答案为:3cm .13. 如图,在Rt △ABC 与Rt △DCB A =∠D =90°,请你添加一个条件(不添加字母和辅助线),使Rt △ABC ≌Rt △DCB ,你添加的条件是______.【答案】AB =DC【详解】解:添加条件是AB =CD .理由是:∵∠A =∠D =90,AB =CD ,BC =BC ,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =CD .14. 如图,亮亮想测量某湖A ,B 两点之间的距离,他选取了可以直接到达点A ,B 的一点C ,连接CA ,CB ,并作BD AC ∥,截取BD AC =,连接CD ,他说,根据三角形全等的判定定理,可得ABC DCB △≌△,所以AB CD =,他用到三角形全等的判定定理是______.的【答案】SAS【详解】解:∵BD AC ∥,∴ACB DBC ∠=∠,在ACB △与DBC △中,AC BD ACB BDC BC CB = ∠=∠ =, (SAS)ACB DBC ∴ ≌,AB CD ∴=, 故答案为:SAS .15. 如图,在等边ABC 中,BF 是AC 上中线且4BF =,点D 在线段BF 上,连接AD ,在AD 的右侧作等边ADE ,连接EF ,则AE EF +的最小值为 ____________________.【答案】4【详解】解:ABC 、ADE 都是等边三角形,AB AC ∴=,AD AE =,60BAC DAE ∠=∠=°,BAD CAE ∴∠=∠,()SAS BAD CAE ∴ ≌,ABD ACE ∴∠=∠,AF CF = ,30ABD CBD ACE ∴∠=∠=∠=°,∴点E 在射线CE 上运动(30ACE ∠=°), 作点A 关于CE 的对称点M ,连接FM 交CE 于E ′,此时AE E F ′′+的值最小,即AE E F ME E F FM ′′′′+=+=,CA CM = ,260ACM ACE ∠=∠=°, ACM ∴ 是等边三角形,ABC 是等边三角形,(AAS)ACM ACB ∴≌ ,4BF FM ∴==,即:AE EF +的最小值是4,故答案:4.三、解答题(本题共8小题,共75分)16. 如图,点B 、E 、C 、F 在同一直线上,90A D ∠=∠=°,BE CF =,AC DF =.求证:B DEF ∠=∠.【答案】见解析【详解】证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在Rt ABC △和Rt DEF △中,AC DF BC EF = =, ∴()Rt Rt HL ABC DEF ≌△△,∴B DEF ∠=∠.17. 学习完《利用三角形全等测距离》后,数学兴趣小组同学就“测量河两岸A 、B 两点间距离”这一问题,设计了如下方案. 课题测量河两岸A 、B 两点间距离为测量工具 测量角度的仪器,皮尺等 测量方案示意图测量步骤 ①在点B 所在河岸同侧的平地上取点C 和点D ,使得点A 、B 、C 在一条直线上,且CD BC =;②测得100,65DCB ADC ∠=°∠=°;③在CD 的延长线上取点E ,使得15BEC ∠=°;④测得DE 的长度为30米.请你根据以上方案求出A 、B 两点间的距离AB .【答案】A 、B 两点间的距离AB 为30米【详解】解:100,65DCB ADC ∠=°∠=° ,18015CAD DCB ADC ∴∠=°−∠−∠=°.15E ∠=° ,CAD E ∴∠=∠.在DCA △和BCE 中,CAD E ACD ECB CD BC ∠=∠ ∠=∠ =(AAS)DCA BCE ∴△△≌,AC EC ∴=.BC CD = ,AC BC CE CD ∴−=−,30AB DE =∴=米,即A 、B 两点间的距离AB 为30米.18. 如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请写出ABC 关于x 轴对称的111A B C △的各顶点坐标;(2)请画出ABC 关于y 轴对称的222A B C △;(3)在x 轴上求作一点P ,使点P 到A 、B 两点的距离和最小,请标出P 点,并直接写出点P 的坐标______.【答案】(1)点()11,1A −,()14,2B −,()13,4C −(2)见解析 (3)()2,0【解析】【小问1详解】解:ABC 与111A B C △关于x 轴对称,∴点()11,1A −,()14,2B −,()13,4C −.【小问2详解】如图,222A B C △即为所求.【小问3详解】如图,点P 即为所求,点P 的坐标为(2,0).故答案为:(2,0).19. 图1是一个平分角的仪器,其中OD OE FD FE ==,.(1)如图2,将仪器放置在ABC 上,使点O 与顶点A 重合,D ,E 分别在边AB AC ,上,沿AF 画一条射线AP ,交BC 于点P .AP 是BAC ∠的平分线吗?请判断并说明理由.(2)如图3,在(1)的条件下,过点P 作PQ ⊥AB 于点Q ,若69PQ AC ==,,ABC 的面积是60,求AB 的长.【答案】(1)AP 是BAC ∠的平分线,理由见解析(2)11AB =【解析】【小问1详解】解:AP 是BAC ∠平分线理由如下:在ADF △和AEF △中,AD AE AF AF DF EF = = =,∴()SSS ADF AEF △△≌∴DAF EAF ∠=∠,∴AP 平分BAC ∠.【小问2详解】解: ∵AP 平分BAC ∠,PQ AB ⊥,∴APC △的高等于PQ ,∵6PQ =.∴69227APC S =×÷=△,∵33ABP ABC APC S S S =−=△△△∴2332611ABP AB S PQ =÷=×÷=△.的20. 如图,△ABC 中,∠A <60°,AB =AC ,D 是△ABC 外一点,∠ACD =∠ABD =60°,用等式表示线段BD 、CD 、AC 的数量关系,并证明.【答案】ACBD CD =+,证明见解析 【详解】ACBD CD =+. 证明:如图,延长BD 至E ,使BE AB =,连接AE ,CE .ABE ∴ 是等腰三角形.·60ABD =∠ ,ABE ∴ 是等边三角形.AE AB BE ∴==,60AEB ∠=. AB AC = ,AE BE AC =∴=.ACE AEC ∴∠=∠.60ACD =∠ ,ACD AEB ∴∠=∠.ACE ACD AEC AEB −∠=∠−∠∴∠.即ECD CED ∠=∠.CD DE ∴=.BE BD DE BD CD ∴=+=+.AC BD CD =∴+.21. 已知:如图,AC ∥BD ,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①作BE 平分∠ABD 交AC 于点E ;②在BA 的延长线上截取AF=BA ,连接EF ;(2)判断△BEF 的形状,并说明理由.【答案】(1)①见解析;②见解析;(2)△BEF 直角三角形;证明见解析.【详解】解:(1)①如图,点E 即为所求;②如图,AF ,EF 即为所求;(2)∵BE 平分∠ABD ,∴∠ABE=∠EBD .∵AC ∥BD ,∴∠EBD=∠AEB ,∴∠ABE =∠AEB ,∴AE=AB .∵AB=AF∴AE=AF ,∴∠AFE =∠AEF ,∵∠ABE +∠AEB+∠AFE +∠AEF=180°∴∠AEB+∠AEF=90°即∠BEF =90°∴△BEF 是直角三角形.22. 已知:在ABC 中,D 是BC 的中点.是【问题解决】(1)如图1,若6AB =,4AC =,求AD 的取值范围.小明的做法是:延长AD 至点M ,使AD MD =,连接BE ,证明ACD MBD △≌△,小明判定全等的依据为:______.【类比探究】(2)如图2,在BC 的延长线上存在点M ,BAC BCA ∠=∠,CM AB =,求证:2AM AD =.【变式迁移】(3)如图3,90BAM NAC ∠=∠=°,AB AM =,AC AN =,试探究线段AD 与MN 的关系,并证明.【答案】(1)SAS ;(2)见解析;(3)2,MN AD MN AD =⊥,证明见解析 【详解】(1)解:∵D 是BC 的中点,∴BD CD =,∵,,D BD CD ADC M M A DB D =∠==∠,∴()ADC MDB SAS ≌,其中判定全等的依据为SAS ,故答案为:SAS ;(2)解:延长AD 到E ,使AD DE =,连接BE ,∵D 是BC 的中点,CD BD ∴=,在ADC △和EDB △中DC DB ADC EDB DA DE = ∠=∠ =, (SAS)ADC EDB ∴△≌△,,BE AC BCA EBD ∴=∠=∠,,,BAC BCA ACM ABC BAC EBA EBD ABD ∠=∠∠=∠+∠∠=∠+∠ ,ACM EBA ∴∠=∠,在ACM △和EBA △中,AC EB ACM EBA CM BA = ∠=∠ =, (SAS)ACM EBA ∴ ≌,2AM AE AD ∴==.(3)解:2,MN AD MN AD =⊥, 证明如下:如图,在AD 的延长线上截取DH AD =,连接CH ,则2AH AD =,∵D 是BC 的中点,CD BD ∴=,(SAS)CDH BDA ∴ ≌,,CH AB AHC BAE ∴=∠=∠,,90AB AM BAH =∠=° ,,90CH AM AHC ∴=∠=°,90ACH CAH ∴∠+∠=°,90NAC ∠=° ,90NAM CAH ∴∠+∠=°,NAM ACH ∴∠=∠,(SAS)NAM ACH ∴ ≌,,90MN AH AMN AHC ∴=∠=∠=°, 2,MN AD MN AD ∴=⊥.23. 在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:【模型探究】已知,在ABC 中,AB BC =,点P 是ABC 外部一点,过点P 作射线AE .(1)如图1,若ABC 是等边三角形,AE 经过BAC ∠内部,60BPA ∠=°,求证:60APC ∠=°. 小宁的做法是:在AE 上截取BQ BP =,构造“手拉手模型”,得出结论.请你帮助小宁完成证明:【模型应用】(2)如图2,已知30BAC BPA ∠=∠=°.当AE 经过BAC ∠内,求APC ∠的度数. 【拓展提高】(3)如图3,已知30BAC BPA ∠=∠=°.当AE 在AC 下方,求APC ∠的度数.【答案】(1)证明见解析部分;(2)120°;(3)60APC ∠=°【详解】(1)证明:如图1,在AE 上取一点Q ,使BQ BP =,∵60BPA ∠=°,∴BPQ 是等边三角形,∴60QBP BPQ BQP ∠=∠=∠=°, ∵ABC 是等边三角形,∴60ABC ∠=°,∴ABC QBP ∠=∠, ∴ABC QBC PBQ QBC ∠−∠=∠−∠,即ABQ CBP ∠=∠, 在BAQ 和BCP 中,AB BC ABQ CBP BQ BP = ∠=∠ =∴()BAQ BCP SAS ≌,∴180********BPCAQB BQP ∠=∠=°−∠=°−°=°, 1206060APC BPC BPQ ∴∠=∠−∠=°−°=°; (2)解:如图2,在AE 上取一点,M BM BP =,30,BAC BPA AB BC ∠=∠=°= , 30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,18030150BPC BMA ∴∠=∠=°−°=°, 15030120APC ∴∠=°−°=°;(3)解:如图3.在PA 延长线上取一点M ,使得BM BP =,30,BAC BPA AB BC ∠=∠=°= ,30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,30BPC M ∴∠=∠=°,303060APC BPM BPC ∴∠=∠+∠=°+°=°.。
辽宁省大连市八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形中具有稳定性的是()A. B. C. D.2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B.C. D.3.如图,点B、E、C、F在一条直线上,AB=DE,∠A=∠D,则以下所给的条件不能证明△ABC≌△DEF的是()A. BE=CFB. ∠B=∠DEFC. AC=DFD. AC∥DF4.一个多边形的内角和等于1260°,则它是()A. 五边形B. 七边形C. 九边形D. 十边形5.如图,∠1=∠2,∠B=∠D,则下列结论错误的是()A. △ABC≌△CDAB. ∠1=∠CADC. AD∥BCD. AB=CD6.画△ABC的边BC上的高,正确的是()A. B.C. D.7.如图,为了促进当地旅游发展,某地要在三条公路围成的一块三角形平地ABC上修建一个度假村,要使这个度假村到三条公路的距离相等,应该修在()A. △ABC三边中线的交点B. △ABC三个角的平分线的交点C. △ABC三边高线的交点D. △ABC三边垂直平分线的交点8.如图,在Rt△ABC中,∠ACB=90°,∠B=2∠A,CD⊥AB,BD=1,则AD的长度是()A. 1B. 2C. 3D. 49.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A. 40°B. 75°C. 85°D. 140°10.在四边形ABCD中∠C=55°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△EAF周长最小时,∠EAF的度数为()A. 55°B. 70°C. 125°D. 110°二、填空题(本大题共6小题,共18.0分)11.如图,C是AB中点,AD=CE,CD=BE,则判断△ACD≌△CBE的根据是______.12.如图,在△ABC中,∠A=______.13.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD为______.14.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=37°,PB=PF,则∠APF=______°.15.等腰三角形的周长为18,若一边长为8,则它的腰长为______.16.如图,在等腰△ABC中,AB=AC,∠A=36°,AE=a,CE=b,AB的垂直平分线DE交AB于点D,交AC于点E,请用含a、b的代数式表示△ABC周长为______.三、解答题(本大题共10小题,共102.0分)17.如图,在△ABC中,AD⊥BC,∠1=∠2,∠C=65°.求∠BAC的度数.18.如图,△ADE是等边三角形,DE∥BC,分别交AB、AC于点D、E.求证:△ABC是等边三角形.19.如图,AB=DE,AB∥DE,BE=CF.求证:AC=DF,AC∥DF.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-3,1)、B(-1,-1)、C(-2,2).(1)不用画图,请直接写出△ABC关于y轴对称的图形△A1B1C1的三个顶点的坐标:A1______,B1______,C1______.(2)在图中画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形△A2B2C2,并直接写出三个顶点的坐标:A2______,B2______,C2______.(3)若△ABC内有任意一点P的坐标为(x,y),则在△ABC关于直线m(直线m 上各点的横坐标都为1)对称的图形△A2B2C3上,点P的对应点P2的坐标为______(用含x和y的式子表示)(建议:先用铅笔画图,确定无误后用黑色水性笔画在答题卡上).21.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.22.求证:如果两个三角形全等,那么它们对应角的角平分线相等.请根据图形,写出已知、求证,并证明.已知:求证:23.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.24.如图,点D为∠ABC的角平分线上一点,DE∥BC交BA于点E,F是线段BD的中点.请过点F画直线分别交射线DE、BC于点G、H(点E与点G不重合),探究BE、BH、EG之间的数量关系,并证明.25.如图1,在等腰△ABC中,AB=AC,∠BAC=45°,BD⊥AC,点P为边AB上一点(不与点A、点B重合),PM⊥BC,垂足为M,交BD于点N.(1)请猜想PN与BM之间的数量关系,并证明;(2)若点P为边AB延长线上一点,PM⊥BC,垂足为M,交DB延长线于点N,请在图2中画出图形,并判断(1)中的结论是否成立若成立,请证明;若不成立,请写出你的猜想并证明.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.答案和解析1.【答案】A【解析】解:A选项中分割成了两个三角形,所以具有稳定性,其他则不具备,故选:A.根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.本题主要考查三角形的稳定性.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.2.【答案】D【解析】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.【答案】A【解析】解:∵∠A=∠D,AB=DE,∴添加∠B=∠DEF,利用ASA可得△ABC≌△DEF;∴添加AC=DF,利用SAS可得△ABC≌△DEF;∴添加AC∥DF,∴∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:A.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS、HL是解题的关键.4.【答案】C【解析】解:设这个多边形的边数为n,∴(n-2)×180°=1260°,解得n=9,∴这个多边形为九边形.故选:C.设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=1260°,然后解方程即可.本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.5.【答案】B【解析】解:∵,∴△ABC≌△CDA,故A正确;∴AB=CD,∠ACB=∠CAD,故D正确;∴AD∥BC,故C正确;故选:B.根据全等三角形的判定和性质判断即可.本题考查了全等三角形的判定,根据全等三角形的判定和性质判断是解题的关键.6.【答案】D【解析】解:A.此图形知BD不是三角形的高,不符合题意;B.此图形中BD是AC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是BC边上的高,符合题意;故选:D.过三角形的顶点向对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高,据此解答.本题考查了三角形的高线,熟记概念是解题的关键.钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.7.【答案】B【解析】解:要使这个度假村到三条公路的距离相等,则度假村应该修在△ABC内角平分线的交点,故选:B.根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC和∠CAB的角平分线的交点处.此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.8.【答案】C【解析】解:在Rt△ABC中,∵∠ACB=90°,∠B=2∠A,∴∠A=30°,∠B=60°.∵CD⊥AB,∴∠BDC=∠ADC=90°.在Rt△DBC中,∵∠B=60°,∴∠BCD=30°,又BD=1,∴BC=2BD=2,∴CD==.在Rt△DAC中,∵∠A=30°,CD=,∴AC=2,∴AD==3.故选:C.利用直角三角形的两锐角互余,求出∠A、∠B的度数,利用直角三角形中含30°角的边间关系,求出BC、AC的长,利用勾股定理求出AD.本题考查了直角三角形中含30°角的边间关系,勾股定理等知识.含30°角的直角三角形的边间关系:在直角三角形中,30°角所对的边等于斜边的一半.解决本题亦可通过相似或者锐角三角函数.9.【答案】C【解析】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.故选:C.根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.10.【答案】B【解析】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=55°,∴∠DAB=125°,∴∠HAA′=55°,∴∠AA′E+∠A″=∠HAA′=55°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=55°,∴∠EAF=125°-55°=70°.故选:B.要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=55°,进而得出∠EA′A=∠EAA′,∠FAD=∠A″,∠EAA′+∠A″AF=55°,即可得出答案.本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.11.【答案】SSS【解析】解:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,,∴△ACD≌△CBE(SSS).故答案为:SSS由已知条件AD=CE,CD=BE,和AC=CB,根据三角形全等的判定定理SSS可证得△ACD≌△CBE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.【答案】60°【解析】解:∵∠ACD=∠A+∠ABC,∴x+70=x+x+10,x=60,∴∠A=60°,故答案为:60°.根据三角形外角的性质列方程可得结论.本题考查了三角形外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和.13.【答案】54°【解析】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.故答案为54°.根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.【答案】74【解析】解:∵△ABC≌△DEF,∴∠E=∠B=37°,∵PB=PF,∴∠PFB=∠B=37°,∴∠APF=37°+37°=74°,故答案为:74.根据全等三角形的性质可得∠E=∠B=37°,再根据等边对等角可得∠PFB=∠B=37°,再由三角形外角的性质可得∠APF的度数.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.【答案】5或8【解析】解:①当等腰三角形的底长为8时,腰长=(18-8)÷2=5;则等腰三角形的三边长为8、5、5;5+5>8,能构成三角形.②当等腰三角形的腰长为8时,底长=18-2×8=2;故答案为:5或8.由于已知长度的边没有指明是等腰三角形的底边还是腰,因此要分类讨论,最后要根据三角形三边关系定理判断求出的结果是否符合题意.本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.【答案】3a+2b【解析】解:∵DE垂直平分线段AB,∴EA=EB=a,∴∠A=∠ABE=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠EBC=∠ABC-∠ABE=36°,∴∠BEC=∠C=72°,∴BC=BE=a,∴△ABC的周长=2a+2b+a=3a+2b.故答案为3a+2b.只要证明EA=EB=BC即可解决问题;此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.17.【答案】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠DAC=90°-65°=25°,∠1=∠2=45°,∴∠BAC=∠1+∠DAC=45°+25°=70°.【解析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据三角形的内角和定理求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.本题考查的是三角形内角和定理,垂直的定义,熟知三角形的内角和等于180°是解答此题的关键.18.【答案】证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;【解析】根据△ABC为等边三角形,则∠C=∠B=60°,由DE∥BC得到∠ADE=∠C=∠B=∠AED=60°,然后根据等边三角形的判定方法得到△ADE是等边三角形;本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定与性质是解决问题的关键.19.【答案】证明:∵AB∥DE,∴∠B=∠DEC.∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF,∠ACB=∠F,∴AC∥DF.【解析】先根据平行线的性质求出∠B=∠DEC,再由BE=CF可知BE+EC=CF+EC,即BC=EF,由SAS定理即可得出△ABC≌△DEF,由此可得出结论.本题考查的是全等三角形的判定与性质,熟知判定全等三角形的SAS定理是解答此题的关键.20.【答案】(3,1)(1,-1)(2,2)(4,1)(3,-1)(4,2)(x+5,y)【解析】解:(1)△ABC关于y轴对称的图形△A1B1C1的三个顶点的坐标:A1(3,1),B1(1,-1),C1(2,2).故答案为(3,1),(1,-1),(2,2).(2)△A2B2C2如图所示,A2(4,1),B2(3,-1),C2(4,2),故答案为(4,1),(3,-1),(4,2).(3)点P向右平移5个单位得到点P2,P2坐标为(x+5,y).故答案为(x+5,y).(1)根据关于y轴对称横坐标互为相反数,纵坐标不变即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;(3)寻找规律,利用规律即可解决问题;本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠B,DF平分∠D,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.【解析】根据角平分线的定义和四边形的内角和进行解答即可.此题考查平行线的判定,关键是根据角平分线的定义和四边形的内角和进行解答.22.【答案】解:已知:△ABC≌△A'B'C',AD平分∠BAC,A'D'平分∠B'A'C',求证:AD=A'D',证明:∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B',∠BAC=∠B'A'C',∵AD平分∠BAC,A'D'平分∠B'A'C',∴∠BAD=∠B'A'D',,∴△ABD≌△A'B'D'(ASA),∴AD=A'D'.【解析】根据全等三角形的性质得出AB=A'B',∠B=∠B',∠BAC=∠B'A'C',根据“SAS”判断△ABD≌△A'B'D',进而证明即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.【解析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.24.【答案】解:分两种情况:(1)当点M在线段ED上时,线段BE、BH、EG之间的数量关系是:BE=EG+BH.证明:如图1,,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,又∵ED∥BC,∴∠CBD=∠BDE,∴∠BDE=∠ABD,∴BE=ED=EG+DG,∵F是线段BD的中点,∴BF=DF,∵ED∥BC,∴∠D=∠FBH,∠DGF=∠BHF,∴△DGF≌△BHF(AAS),∴BE=EG+DG=EG+BH;(2)当点G在线段DE延长线上时,BE、BH、EG之间的数量关系是:BE=BH-EG.证明:如图2,由(1),可得△DGF≌△BHF(AAS),∴DG=BH,∵BE=DE,∴BE=DG-EG=BH-EG.【解析】分两种情况:(1)当点G在线段ED上时,线段BE、BH、EG之间的数量关系是:BE=BG+BH.先根据等角对等边可得BE=DE,证明△DGF≌△BHF,得DG=BH,可得结论;(2)当点G在线段DE延长线上时,BE、BH、EG之间的数量关系是:BE=BH-BG.由(1),可得BH=DG,BE=DE,相减可得结论.本题考查全等三角形的判定和性质、角平分线定义、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.25.【答案】解:(1)结论:PN=2BM.理由:如图1中,作PF∥AC交BC于F,交BD于E.∵BD⊥AC,PF∥AC,∴PF⊥BD,∠BPE=∠A=45°,∴∠BEP=90°,∴∠BPE=∠PBE=45°,∴BE=PE,∵PM⊥BC,∴∠PMB=∠PEN=90°,∵∠BNM=∠PNE,∴∠NPE=∠EBF,∵∠PEN=∠BEF=90°,∴△PEN≌△BEF(ASA),∴PN=BF,∵AB=AC,∴∠ABC=∠C,∵∠PFB=∠C,∴PB=PF,∵PM⊥BF,∴BM=MF,∴PN=2BM.(2)结论不变.理由:如图2中,作PF∥AC交CB的延长线于E,交DB的延长线于F.∵∠ABD=∠PBF=∠BPF=45°,∴BF=PF,∵∠EBF=∠EPM,∠EFB=∠EMP,BF=PF,∴△BFE≌△PFN(ASA),∴PN=BE,∵∠E=∠C=∠ABC=∠PBE,∴PE=PB,∵PM⊥EB,∴EM=BM,∴PN=2BM.【解析】(1)结论:PN=2BM.如图1中,作PF∥AC交BC于F,交BD于E.只要证明△PEN≌△BEF(ASA)即可解决问题;(2)结论不变,证明方法类似(1);本题考查等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.【答案】(1)证明:∵∠ACB=∠AED=90°,∴∠DEF+∠AEC=∠ACE+∠BCG=90°,∵AE=AC,∴∠AEC=∠ACE,∴∠DEF=∠BCG,在△BCG与△DEF中,∴△BCG≌△DEF,(ASA),∴BG=DF,∠BGC=∠DFC,∴∠BGF=∠BFG,∴BF=BG,∴BF=DF;(2)解:CH=EH,理由:如图3,延长FH至L,使HL=FG,连接LE,则HL+HG=FG+HG,即LG=FH,∵∠ACB=∠AED=90°,CF、EG分别为AB、BD的中线,∴CF=EG,∵∠ABC=∠BDE,∠CBF=∠CFB,∠D=∠DGE,∴∠BFC=∠DGE,∵AB=BD,∴BF=BG,∴∠BFG=∠BGF,∵∠BGF=∠DGH,∴∠CFH=∠EGL,在△CFH与△EGL中,,∴△CFH≌△EGL,(SAS),∴CH=EL,∠ELH=∠CHF,∴∠ELH=∠EHL,∴EH=EL,∴EH=CH.【解析】(1)根据余角的性质得到∠DEF=∠BCG,根据全等三角形的性质得到BG=DF,∠BGC=∠DFC,根据等腰三角形的性质即可得到结论;(2)如图3,延长FH至L,使HL=FG,连接LE,于是得到LG=FH,根据直角三角形的性质得到CF=EG,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,直角三角形的性质,关键是巧妙作辅助线证明三角形全等.。
2020-2021学年辽宁省大连市中山区八年级(上)期中数学试卷 (解析版)

2020-2021学年辽宁省大连市中山区八年级第一学期期中数学试卷一、选择题(共10小题).1.(3分)下列四个数学符号中,是轴对称图形的是()A.⊥B.≌C.≥D.≠2.(3分)下列说法中,正确的是()A.面积相等的两个图形是全等图形B.形状相等的两个图形是全等图形C.周长相等的两个图形是全等图形D.能够完全重合的两个图形是全等图形3.(3分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.a3÷a2=a5D.(a2)3=a5 4.(3分)如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需要添加一个条件是()A.∠ABC=∠ACB B.∠DCB=∠D C.AC=BC D.AB=DC5.(3分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A 和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS6.(3分)计算3a•2b=()A.5ab B.5a C.6ab D.6b7.(3分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°8.(3分)如图,△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EO C.AD⊥l D.AB∥EF9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°10.(3分)如图,在平面直角坐标系中,A(0,2),B(4,2),点P是x轴上任意一点,当PA+PB有最小值时,P点的坐标为()A.(0,0)B.(1,0)C.(2,0)D.(3,0)二、填空题(共6小题).11.(3分)如图,∠B=∠C,∠1=∠2,图中共有全等三角形对.12.(3分)a7÷a4=.13.(3分)如图,在△ABC中,已知AC=16,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于30,则BC的长是.14.(3分)计算:(2a2b)2=.15.(3分)如图,AD与BC交于O点,OA=OB,依据SAS,使△AOC≌△BOD,则还需添加条件.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB =5,DC=2,则△ABD的面积为.三、解答题(本题共4小题,其中17、18、19题各10分,20题9分,共39分)17.(10分)计算:(1)x2y2•(﹣xy3);(2)(﹣4x3+2x)÷2x.18.(10分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.19.(10分)如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.20.(9分)如图,在平面直角坐标系中,已知A(﹣3,3).B(﹣5,﹣1).C(﹣1,﹣2).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)在(1)的条件下,连接A1A、C1A,直接写出△A1C1A的面积.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)如图,∠CAD为△ABC的外角,AB=AC.作∠CAD的平分线AE.(1)依题意补全图形(要求:尺规作图,保留作图痕迹,不写作法);(2)求证:AE∥BC.22.(10分)如图,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形.23.(10分)已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.25.(11分)如图1,Rt△ABC中,AC=BC,点P在线段AB上,BD⊥CP于点D,CE∥BD,CE=CD,AE交直线CP于点F.。
八年级上册大连数学期中精选试卷达标检测(Word版 含解析)

八年级上册大连数学期中精选试卷达标检测(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO 是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯==,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-2.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析 【解析】 【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系; ②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论. 【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD . 理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC , ∴∠BAD=∠CAE . 又 BA=CA ,AD=AE , ∴△ABD ≌△ACE (SAS ) ∴∠ACE=∠B=45°且 CE=BD . ∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD . 故答案为垂直,相等; ②都成立,理由如下: ∵∠BAC =∠DAE =90°, ∴∠BAC +∠DAC =∠DAE +∠DAC , ∴∠BAD =∠CAE , 在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC , ∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF ,得出PF=CQ ,由AAS 证明△PFD ≌△QCD ,得出,再证出F 是BC 的中点,即可得出结果;(2)过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,可得BE=12BF ,由(1)证明方法可得△PFD ≌△QCD 则有CD=12CF ,即可得出BE +CD =8. 【详解】解:(1)如图①,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同, ∴BP=CQ , ∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD , 又∵AB=AC , ∴∠B=∠ACB , ∴∠B=∠PFB , ∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC , ∴△PFD ≌△QCD , ∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值. 如图②,点P 在线段AB 上, 过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形, ∵PE ⊥BF ∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.4.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析 【解析】 【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题; 【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下: 如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6), ∴OB=OA=6,∠AOB=90°, ∵P 为AB 的中点,∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中,ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩, ∴△PON ≌△PAM (SAS ), ∴PN=PM ,∠OPN=∠APM , ∴∠NPM=∠OPA=90°, ∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G . ∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°, ∴∠AOG=∠DBO , ∵OB=OA , ∴△DBO ≌△GOA , ∴OD=AG ,∠BDO=∠G , ∵∠BDO=∠PEA , ∴∠G=∠AEP , 在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△PAE ≌△PAG (AAS ), ∴AE=AG , ∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE . (1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】 【分析】(1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可. 【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABCSAC BC =⨯=⨯⨯=,故答案为:21 2(2)连接CE,过点E作EM⊥AC于点M,作EN⊥BC于点N,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM与△DEN中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴22) CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)22 2+=当AC=3,CD=CB=7时,CE=2(37)52+=∴点E的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.二、八年级数学轴对称解答题压轴题(难)6.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.7.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF ≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF 是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD ⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE ≌△ADF (SAS ),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF 为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD=BD ,AD ⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.8.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C∠=∠=︒,80BAD∠=︒,求CDE∠的度数;(2)如图②,若75ABC ACB∠=∠=︒,18CDE∠=︒,求BAD∠的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究BAD∠与CDE∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.9.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.10.如图,已知DCE∠与AOB∠,OC平分AOB∠.(1)如图1,DCE∠与AOB∠的两边分别相交于点D、E,90AOB DCE∠=∠=︒,试判断线段CD与CE的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE=.理由如下:如图1,过点C作C F OC⊥,交O B于点F,则90OCF∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC ∴=又456590︒∠+∠=∠+∠=在CDO ∆与CEF ∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形O DCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD∆与CNE∆中,13CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS∆∆≌,∴,CD CE DM EN==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在Rt CMO∆中,1490590302AOB∠=︒-∠=︒-∠=︒,∴12OM OC=,同理12ON OC=,∴1122OE OD OC OC OC+=+=.方法二:如图3(2),以CO为一边作60FCO∠=︒,交O B于点F,∵OC平分AOB∠,∴1260∠=∠=︒,∴3180260FCO∠=︒-∠-∠=︒,∴13∠=∠,32FCO∠=∠=∠,∴COF∆是等边三角形,∴CO CF=,∵4560DCE∠=∠+∠=︒,6560FCO∠=∠+∠=︒,∴46∠=∠,在CDO∆与CEF∆中,1346CO CF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA∆∆≌,∴,CD CE OD EF==.∴OE OD OE EF OF OC+=+==.②在图4中,(1)中的结论成立,OE OD OC-=.如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.观察下列等式:22()()-=-+a b a b a b3322-=-++a b a b a ab b()()443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.12.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积:方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n )2;(m+n )2-4mn ;(2)(m-n )2=(m+n )2-4mn ;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n )2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n )2-4mn ;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n )2=(m+n )2-4mn ;(3)由(2)可知(a+b )2=(a-b )2+4ab ,∵a-b=5,ab=-6,∴(a+b )2=(a-b )2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.13.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=-∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.14.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).证明如下:∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a+b ,三位数是100b+10(a+b )+a ,右边的两位数是10b+a ,三位数是100a+10(a+b )+b ,∴左边=(10a+b )×[100b+10(a+b )+a]=(10a+b )(100b+10a+10b+a )=(10a+b )(110b+11a )=11(10a+b )(10b+a ),右边=[100a+10(a+b )+b]×(10b+a )=(100a+10a+10b+b )(10b+a )=(110a+11b )(10b+a )=11(10a+b )(10b+a ),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).考点:规律题四、八年级数学分式解答题压轴题(难)16.已知分式A=2344(1)11a a a a a -++-÷--. (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1)22a A a +=-;(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.详解: (1)A =2344111a a a a a -+⎛⎫+-÷ ⎪--⎝⎭=()()()2113211a a a a a -+--÷--=22a a +-. (2)变小了,理由如下:()()()()()()()()21522512212121a a a a a a A B a a a a a a ++-+-++-=-==-+-+-+ .∵a >2 ∴a -2>0,a+1>0,∴()()1221A B a a -=-+>0,即A >B (3) 24122a A a a +==+-- 根据题意,21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 ,即:符合条件的所有a 值的和为11.点睛:比较大小的方法:(1)作差比较法:0a b a b ->>;0a b a b -<⇒<(a b ,可以是数,也可以是一个式子)(2)作商比较法:若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b .17.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
【区级联考】辽宁省大连市金普新区2021-2022学年-有答案-八年级上学期期中质量监测考试数学试题
【区级联考】辽宁省大连市金普新区2021-2022学年八年级上学期期中质量监测考试数学试题一、单选题1. 下面有4个汽车标志图案,其中是中心对称图形的是()A. B.C. D.2. 下列运算正确的是()A.+=B.=C.÷=1D.2(a−1)=2a−13. 如图,△ACB≅△A′CB′,∠BCB′=30∘,则∠ACA′的度数为( )A.20∘B.30∘C.35∘D.40∘4. 如图,△ABC中,DE是AC的垂直平分线,AD=5,AE=4,则△ADC的周长是()A.9B.13C.14D.185. 下列条件能判定△ABC≅△DEF的一组是()A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠A=∠D,∠C=∠F,AC=DFD.△ABC的周长等于△DEF的周长6. 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35∘,则∠C的度数为()A.35∘B.45∘C.55∘D.60∘7. 如图,在△ABC中,∠C=90∘,BD平分∠ABC,交AC于点D,AC=10cm,AD:CD=5:4,则点D到AB的距离为()cm.A.5B.4C.D.8. 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44∘,则∠P的度数为()A.44∘B.66∘C.88∘D.92∘二、填空题已知点P(−3, 2),点P关于x轴的对称点坐标为________.如图,在△ABC中.BC=5cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD // AB,PE // AC,则△PDE的周长是________cm已知(2x²−4x+1)(x+b)的结果中不含x²项,则b=________与单项式−3a2b的积是6a3b2−3a2b2+9a2b的多项式是________.如图,AB=AC,AD是∠EAC的平分线,若∠B=72∘,则∠DAC=________.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.在平面直角坐标系中,已知点A(1, 2),B(5, 5),C(5, 2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标________.如图,在△ABC中,∠A=36∘,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有________个等腰三角形.三、解答题因式分解:(2x+1)²−(x+3)²−(x−1)²+1.已知:如图,C为BE上一点,点A、D分别在BE两侧,AB // ED,AB=CE,BC= ED.求证:AC=CD.先化简,再求值:,其中,.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A 到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)如图,在△ABC中,∠ABC=50∘,∠ACB=80∘,延长CB至D,使DB=BA,延长BC至E,使CE=CA,连接AD和AE,求∠D,∠DAE的度数.观察下列各式:1²+3²−4²=−2×1×3;①2²+4²−6²=−2×2×4;②3²+5²−8²=−2×3×5;③…(1)按照上面的规律,请你猜想第n个等式是________;(2)请你用学过的知识证明你的猜想.阅读下面材料:勾股定理的逆定理:如果是直角三角形的三条边长a,b,c,满足a²+b²=c²,那么这个三角形是直角三角形.能够成为直角三角形三条边长的正整数,称为勾股数.例如:3²+4²=5²,3、4、5是一组勾股数.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m²−1,c=m²+1,那么a,b,c为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE 与CD相交于点O,连接OA.(1)求证:BE=DC;(2)求∠BOD的度数;(3)求证:OA平分∠DOB.(4)猜想线段OA、OB、OD的数量关系,并证明.参考答案与试题解析【区级联考】辽宁省大连市金普新区2021-2022学年八年级上学期期中质量监测考试数学试题一、单选题1.【答案】D【考点】中心对称图形生活中的旋转现象轴对称图形【解析】根据中心对称图形的概念:把一个图形绕某一点旋转180∘,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.D选项是中心对称.故选:D.2.【答案】B【考点】积的乘方及其应用同底数幂的除法【解析】直接利用同底数幂的除法法则以及合并同类项法则和积的乘方运算法则分别求出即可.【解答】A、a3+a3=2a3,故该项错误;B、(ab)3=a3b3,故B项正确,C、.x6=a5=3________,故该项错误;D、2(a−1)=2a−2,故该项错误,故选B.3.【答案】B【考点】全等三角形的性质【解析】先根据全等三角形的性质得∠ACB=∠ACB,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30∘【解答】解:△ACB=ΔA′CB∠ACB=∠A′C′∴∴ ACB−∠ACB=∠A′CB′−∠A′CB即△ACA′=∠BCB又∠B′0∘△ACA′=30∘故选:B.4.【答案】D【考点】线段垂直平分线的性质【解析】由DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD=CD=5,AC=2AE=8,继而求得△ADC的周长【解答】:DE是AC的垂直平分线,AD=CD=5,AC=2AE=8,∴△ADC的周长是:AD+ CD+AC=18.故选D.5.【答案】C【考点】全等三角形的判定全等三角形的性质与判定全等三角形的性质【解析】直接根据三角形全等的判定条件进行排除选项即可.【解答】A、由ΔA=∠D,∠B=∠E,∠C=∠F不能判定△ABC≅△DEF,故错误;B、由SSA′不能判定△ABC≅△DEF,故错误;C、由A5A可以判定△ABC=△DEF,故正确;D、由△ABC的周长等于△DEF的周长不能判定△ABC≅△DEF,故错误;故选C.6.【答案】C【考点】等腰三角形的性质:三线合一【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分>8AC,AD⊥BC,因此∠DAC=∠BAD=35∘,∠ADC=90∘,从而可求得∠C=55∘.故选C【解答】此题暂无解答7.【答案】D【考点】角平分线性质定理的逆定理【解析】如图,过点D作DE⊥AB于点E,根据|AAB可证△DEB=△DCB,可得DE=CD,根据AC=10cm,AD:CD=5:可得CD的长,进而可得DE的长.【解答】如图,过点D作DE⊥AB于点E,BD平分LABC,DB=∠DBC,又DEB=2C=90∘BD=BD△DEB≅△DCB(AAS)DE=CD∵ AC=10cmAD:CD=5:4,∴CD=45+4×10=409DE=CD=409.故答案是D.c8.【答案】D【考点】三角形内角和定理【解析】本题考察等腰三角形的性质,全等三角形的判定,三角形的外角定理.【解答】解:PA=PBΔA=∠B∵ AM=8k,BN=AK∴△AMK≅△BKN,∠AMK=∠BKN,:∠MKB=∠A+∠AMK∠A=∠MKN=44∘∠P=180∘−2×44∘=92∘故选D.二、填空题【答案】(3, 2)【考点】关于x轴、y轴对称的点的坐标轴对称图形多边形内角与外角【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.【解答】点5P(−3,2)关于x轴的对称点坐标为(−3,−2).故答案是(−3,−2)【答案】5【考点】平行线的性质等腰三角形的判定与性质角平分线的性质【解析】分别利用角平分线的性质和平行线的性质,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC的长,即5cm.【解答】解::BP、CP分别是∠ABC和△ACB的平分线,∴∠ABP=∠PBD,∠ACP=∠PCE:PDIIAB,PEllAC∠ABP=∠BPD∠ACP=∠CPE2PBD=∠BPD,∠PCE=∠CPEBD=PD,CE=PE∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm故答案为:5.【答案】2【考点】多项式乘多项式【解析】原式利用多项式乘多项式法则计算,合并后令√项系数为0,即可求出b的值.【解答】(2x2−4x+1)(x+b)=2x3−4x2+x+2bx2−4bx+b=2x3+(2b−4)x2+(1−4b)x+b,因为(2x2−4x+1)(x+b)的结果中不含x2项,所以2b−4=0,解得b=2.故答案是2.【答案】【答−2ab+b−3【考点】多项式除以单项式【解析】试题解析:根据题意,得.(6a3b2−3a2b2+9a2b)÷(−3a2b)=−2ab+b−3故答案为−2ab+b−3【解答】此题暂无解答【答案】72∘【考点】三角形的角平分线、中线和高角平分线的性质【解析】根据等边对等角可得∵ B=±C,根据角平分线的性质得∠EAC=2∠DAE,然后根据内角和外角的关系可得∠EAC=∠B+∠C=2∠B,所以2B=∠DAE,根据同位角相等两直线平行可得ADIIBC,再利用两直线平行内错角相等得到DAC的度数.【解答】∴ AB=AC,∴∠B=ZC,AD是:∠EAC的平分线,∴∠EAC=2∠DAE,又∠EAC=∠B+∠C=2∠B,∴∠B=∠DAE,∴ADIIBC,∴∠DAC=2C=∠B= 72∘.故答案是72∘.【答案】45【考点】全等三角形的性质与判定角平分线的性质全等三角形的性质【解析】根据三角形全等的判定和性质,先证△ADC≅△BDF,可得BD=AD,可求∠ABC=∠EAD=45∘【解答】AD⊥BC于D,BE⊥AC于E∠EAF+∠AFE=90∘∠DBF+∠BFD=90∘又∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF在Rt△ADC和Rt△BDF中,{∠CAD=∠FBD ∠BDF=∠ADC BF=AC△ADC≅△BDF(AAS)∴BD=AD即∠ABC=∠BAD=45∘故答案为45.【答案】(1.5),(1,−1)(5,−1)【考点】坐标与图形性质全等三角形的性质全等三角形的判定【解析】如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5)(1,−1)(5,−1)故答案为(1,5)或(1,−1)或(5,−1)了【解答】此题暂无解答【答案】5.【考点】三角形内角和定理角平分线的性质【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】∵ AB=AC△ABC是等腰三角形;AB=AC,∠A=36∘∴∠ABC=∠C=72∘:BD是△ABC的角平分线,∠ABC=36∘∴∠ABD=∠DBC=12ΔA=∠ABD=36∘BD=AD∴△ABD是等腰三角形;在△BCD中,∠BDC=180∘−∠DBC−∠C=180∘−36∘−72∘=72∘∠C=∠BDC=72∘BD=BC△BCD是等腰三角形;BE=BCBD=BE△BDE是等腰三角形;∠BED=(180∘−36∘)+2=72∘∠ADE=∠BED−∠A=72∘−36∘=36∘ΔA=∠ADEDE=AE∴△ADE是等腰三角形;…图中的等腰三角形有5个.故答案为5.三、解答题【答案】[加加加(x−2)(x+2)【考点】因式分解-提公因式法因式分解-十字相乘法【解析】首先利用平方差公式进行重组,进而利用提取公因式分解因式得出即可.【解答】解:(2x+1)2−(x+3)2−(x−1)2+=[(2x+1)+(x+3)]][(2x+1)−(x+3)]−[(x−1)+1](x−1)=(3x+4)(x−2)−x(x−2)=(x−2)(2x+4)=2(x−2)(x+2)【答案】证明见解析.【考点】全等三角形的性质与判定平行线的判定与性质全等三角形的性质【解析】根据ABIIED推出∠B=EE,再利用SAS判定△ABC≅△CED从而得出AC=CD 【解答】ABED∠B=∠E在△ABC和△CED中,{AB=CE ∠B=∠E BC=ED△ABC≅△CEDAC=CD【答案】—2ab,1.【考点】平方差公式多项式除以单项式完全平方公式与平方差公式的综合【解析】先用平方差公式和用多项式除以单项式的法则进行计算,然后去括号,合并同类项化简,最后代入求值.【解答】解:(a2b−2ab2−b3)÷b−(a+b)(a−b)=a2−2ab−b2−(a2−b2)=a2−2ab−b2−a2+b2=−2abb=−1时,当a=12×(−1)=1原式=−2×12【答案】见解析【考点】垂线段最短线段的性质:两点之间线段最短平行线的判定与性质【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AM+EI最短,但AM与BN未连起来,要利用线段公理就要想办法使M和N重合起来,利用平行四边形的特征可以实现这一目的.【解答】解:如图,作BB‘垂直于河岸GH,使BB‘等于河宽,连接AB,与河岸EF相交于M,作MN⊥GH则MNIIBB‘且MN=BB于是MNBB‘为平行四边形,故NB=MB′根据“两点之间线段最短”,AB‘最短,即AM+BN最短.故桥建立在MN处符合题意.【答案】∠D=25∘∠DAE=145【考点】三角形内角和定理【解析】由DB=BA即可得到∠D=∠EAD,根据已知条件及三角形外角等于与它不相邻两个内角之和即可得到2D的值,要求么DAE,根据三角形内角和定理可知只需求出么E即可.由CE=CA即可得到E==CAE,再结合三角形外角等于与它不相邻两个内角之和即可得到LE的值,进而可得么DAE的值.【解答】解:△ABC=50∘∠ACB=80∘(已知),∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−80∘=50∘(三角形内角和等于180∘DB=BA(已知),∠ABC=25∘等边对等角),ΔD=∠DAB=12CE=CA(已知),∠ACB=40∘(等边对等角),∴ E=2CAE=12∠DAE=∠DAB+∠EAC+∠CAE=25∘+50∘+40∘=15∘【答案】(1)n2+(n+2)2−(2n+2)2=−2n(n+2);(2)见解析.【考点】规律型:数字的变化类有理数的混合运算有理数的乘方【解析】(1)观察可知,等是左边是相差为2的两个自然数的平方和再减去这两个数的和的平方,右边是−2与这两个数的积.按此规律即可用含n的代数式表示上述数量关系,并利用整式知识作出证明.【解答】(1)解:12+32−42=−2×1×322+42−62=−2×2×432+52−82=−2×3×5…第n个等式是n2+(n+2)2−(2n+2)2=−2n(n+2))(2)证明::左边=n2+n2+4n+4−4n2−8n−4=−2n2−4n右边=−2n2⋅4n,左边=右边,n2+(n+2)2−(2n+2)2=−2n(n+2)【答案】见解析【考点】勾股定理勾股定理的逆定理根的判别式【解析】根据勾股定理逆定理,证明当a=2m,b=m2−1,c=m2+1时,a2+b2=c2即可.令m为任意大于1的整数,即可得到一组勾股数【解答】解:正确.理由:m表示大于1的整数,…a,b,c都是正整数,且c是最大边,(2m)2+(m2−1)2=(m2+1)2a2+b2=c2即a、b、c为勾股数.当m=2时,可得一组勾股数3,4,5.【答案】见解析【考点】全等三角形的判定全等三角形的性质三角形的角平分线、中线和高【解析】根据题意构造两个三角形,用SSS 定理证明△ABD ≅ΔA 1B 1D 1,得到∵ B =AB .再用边角边定理证明△ABC ≅ΔA 1B 1C 1【解答】已知:△ABC,ΔA 1B 1C 1中,AB =A 1B 1,BC =B 1C 1,AD ,A 1D 1分别为BC ,B 1C 1 边上的中线,AD =A 1D 1求证:△ABC ≅ΔA 1B 1C 1证明:ADA 1D 1分别为BC,B 1C 1边上的中线,BD =12BC,B 1D 1=12B 1C 1 又BC =B 1C 1BD =B 1D 1在△ABD 和ΔA 1B 1D 1中,{AB =AB 1AD =A 11BD =B 1D 1△ABD ≅ΔA 1B 1D 1(55S )∠B =AB 1…在△ABC 与ΔA 1B 1C 1中,{AB =A 1B 1∠B =∠B 1BC =B 1C 1△ABC ≅ΔA 1B 1C 1C 1(SAS )B 午【答案】(1)见解析:(2)60∘(3)见解析:(4)见解析.【考点】全等三角形的应用【解析】(1)根据等边三角形性质得出AB =AD ,AE =AC ,LBAID =∠BDA =,DBA =∠CAE =60∘,求出么BAE =2DAC .根据SAS 证△ABE =△ADC 即可;(2)根据全等求出4ADC =zABE ,在ΔDOB 中根据三角形的内角和定理和(ADB =∠DBA =60∘即可求出答案(3)过点A 分别作AM1BE ,AN ⊥DC ,垂足为点M ,N .根据三角形的面积公式求出AN =AM ,根据角平分线性质求出即可;(4)在○D上截取一点G,使得OG=○A.由(2)(3)知4AOD=∠BOD=∠AOE= 60∘,故可证△AOG是等边三角形,根据等边三角形性质得到AG=AO,△GAO=60∘,进而得到么DAG=△BAO,根据SAS证△DAG=△BAO,进而可得OD=OG+DG=OA+OEB.【解答】(1)证明:ΔABD和△ACE都是等边三角形,.AB=AD,AE=AC,②BAD=∠BDA=∠DBA=∠CAE=60∘∴ _BAC+CAE=∠BAC+∠BA),即.2AE=2DAC在△ABE和△ADC中{AB=AD∠B⋅AE=∠DAC AE=AC.△ABE≅△ADC(SAS).BE=DC.(2)解:由(1)知:ΔABE=ΔADC,….ADC=∠ABEADC+∠BDO=∠ABE+∠BDO=∠BDA=60∘…在ΔBOD中,4BOD=180∘−∠BDO−∠DBA−zABE=180∘−∠DBA(∠ADC+∠BDO)=180∘−60∘−60∘=60∘.(3)证明:过点A分别作AM1BE,AN1DC,垂足为点M,N.由(1)知:ΔABE=ΔADC,.SL3E===SΔtADC.12⋅BE⋅AM=12⋅DC⋅AN…AM=AN…点A在zDOE的平分线上,即OA平分zDOE.(4)解:结论:O1)=OA+OB.理由:在OD上截取一点G,使得OG=OA.由(2)(3)可知:2AOD=∠BOD=∠AOE=60∘:CS=OA…ΔAOG是等边三角形,∴AG=AOGAO=60∘________DFAB=EAO=60∘∴ ________DAG=∠BAOAD=AB,AG=AO,.ΔDAG=ΔBAO(SAS),..DG=BO,.CD=OG+DG=OA+OB.。
辽宁省大连市中山区2024-2025学年八年级上学期期中考试数学试卷
辽宁省大连市中山区2024-2025学年八年级上学期期中考试数学试卷一、单选题1.下列交通标志中,属于轴对称图形的是( )A .B .C .D .2.观察图中尺规作图的痕迹,可得线段BD 一定是ABC V 的( )A .角平分线B .高线C .中位线D .中线3.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角在边OA 、OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,就可以知道射线OC 是AOB ∠的角平分线.依据的数学基本事实是( )A .SAAB .ASAC .AASD .SSS4.如图,BF CE =,B E ∠=∠,添加一个条件,不能直接证明ABC DEF ≌△△的是( )A .A D ∠=∠B .ACB DFE ∠=∠C .AB DE =D .AC DF=5.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是( )A .70︒B .45︒C .35︒D .50︒6.下列计算正确的是( )A .224426a a a +=B .5210a a a ⋅=C .()011π-=D .()328a a -=-7.李老师做了个长方形教具,其中一边长为2+a b ,另一边长为b ,则该长方形的面积为( )A .3a b+B .26a b +C .2ab b +D .22ab b +8.如图,已知点P 在AOB ∠的平分线OC 上,PF OA ⊥于点F ,PE OB ⊥于点E ,若3PE =,则PF 的长为( )A .3B .2C .1D .49.如图,在Rt ABC △中,90ACB ∠=︒,DE 垂直平分AB 交BC 于点D .若ACD 的周长为45cm ,则AC BC +的值为( )A .25cmB .45cmC .50cmD .55cm10.如图,AD 与BC 交于点O ,过点O 作直线PQ .ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D ,连接AC ,BD .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥二、填空题11.计算86x x ÷的结果为 .12.计算:()()22x x +-= .13.已知65a b ab -==,,则()()11a b +-= .14.如图,在ABC V 和ADC △中,AB AD =,BAC DAC ∠=∠,110B ∠=︒,则D ∠= ︒.15.如图,在ABC V 中,2BAD C ∠=∠,12∠=∠,BD AD ⊥,5AB =,2AD =,则BC 的长度为 .三、解答题16.计算:(1)()()253a b a --;(2)()()312x x -+.17.如图,在平面直角坐标系中,ABC V 三个顶点的坐标为()4,1A -,()1,1B --,()3,2C -.(1)在图中画出ABC V 关于y 轴对称的A B C ''' ;(2)直接写出A ',B ',C '的坐标.18.如图,点D 在AB 上,E 在AC 上,AB AC =,B C ∠=∠,求证:AD AE =.19.如图,CAD ∠为ABC V 的外角,AB AC =.作CAD ∠的平分线AE .(1)尺规作图:依题意补全图形(保留作图痕迹可加黑,不写作法);(2)求证:AE BC ∥.20.阅读材料:如图1,“智慧小组”在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A ,B ,在直线l 上存在点C ,使得CA CB +的值最小.“智慧小组”的作法是:如图2,作点B 关于直线l 的对称点B ',连接AB ',则AB 与直线l 的交点即为点C ,且CA CB +的最小值为AB '的长.如图3,为了证明点C 的位置即为所求,“智慧小组”经探究发现,在直线上另外取点C ',连接AC ',BC ',B C '',证明AC BC AC BC ''+<+即可.(1)请完成图3中的证明;(2)如图4,在等边ABC V 中,E 是AB 中点,AD 是BAC ∠的平分线,P 是AD 上的动点.若4=AD ,则PE PB +的最小值是________;(3)如图5,在Rt ABC △中,90ACB ∠=︒,8AC =,6BC =,10AB =,AD 平分BAC ∠,分别在AD ,AC 上取点M ,N ,连接CM ,MN ,则CM MN +的最小值是________.21.定义:多项式A 化简后的项数记作()M A ,例如多项式22A x x =+,则()2M A =.多项式A ,B ,C 满足()1C A B =⨯+.如果()()()1M A M C M A ≤≤+,则称B 是A 的“好多项式”,如果()()M A M C =,则称B 是A 的“极好多项式”.(1)若1A x =-,22B x x =++均是关于x 的多项式,则B 是不是A 的“好多项式”?请判断并说明理由;(2)若2A x x m =+-,221B x x =+-均是关于x 的多项式,且B 是A 的“极好多项式”,求m 的值.22.如图1,在ABC V 中,AB AC =,点D 在AC 上,点E 在BC 延长线上,DB DE =.(1)求证:ABD CDE ∠=∠;(2)如图2,过点A 作∥A F B D ,交ED 延长线于点F ,若BAC FAB E ∠=∠+∠.求证:=AD CE ;(3)如图3,在(2)的条件下,延长AF 交EB 延长线于点H ,若DA DF =,6BD =,5CD =.求HC 的长度.23.通过对下面数学模型的研究学习,解决下列问题:【模型建立】(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE △≌△.进而得到AC =________,BC =________.我们把这个数学模型称为“K 字”模型或“一线三等角”模型.【模型应用】(2)如图2,在平面直角坐标系中,点A 坐标是()0,5,点()5,0B ,C (−2,0).AC CD ⊥且AC CD =,连接BD .求CBD ∠的度数;【模型拓展】(3)如图3,在(2)的条件下,若点E 坐标为()0,3-,点F 在直线BD 上,点G 在x 轴上,当EFG 为等腰直角三角形时,请直接写出点G 的坐标.。
2018-2019学年辽宁省大连七十九中八年级(上)期中数学试卷-附答案详解
2018-2019学年辽宁省大连七十九中八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图案中是轴对称图形的是()A. 中国移动B. 中国联通C. 中国网通D. 中国电信2.如图,已知∠ACD=60°,∠B=20°,那么∠A的度数是()A. 40°B. 60°C. 80°D. 120°3.下列长度的三根木棒能组成三角形的是()A. 3,4,8B. 4,4,8C. 5,6,10D. 6,7,144.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A. 2B. 3C. 4D. 55.点M(2,3)关于y轴对称的点的坐标为()A. (−2,−3)B. (2,−3)C. (−2,3)D. (3,−2)6.如图,下列条件不能判定△ABC≌△EDF的是()A. AB=ED,AC=EF,BC=DFB. AC=EF,BC=DF,∠C=∠FC. AB=ED,∠C=∠F,∠A=∠ED. AB=ED,BC=DF,∠C=∠F7.下列运算正确的是()A. m2⋅m3=m5B. m2+m2=m4C. (m4)2=m6D. (−2m)2⋅2m3=−4m58.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A. 20°B. 30°C. 40°D. 50°二、填空题(本大题共8小题,共24.0分)9.计算:3a⋅2a2=______.10.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是______.11.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:______.12.若(a m b n)3=a9b15,那么m+n=______.13.(m+n)(m−n)=______.14.等腰三角形两边长分别为6和8,则这个等腰三角形的周长为______ .15.如图,△ABC,∠C=90°,BD平分∠ABC交AC于点D,如果CD=6cm,那么点D到AB的距离为______cm.16.如图,已知△ABC是等边三角形,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE,则∠E=______度.三、解答题(本大题共10小题,共102.0分)17.计算:(1)(a+1)(a−1)+1;(2)(m+n)2−2mn.18.如图,在平面直角坐标系中,A(−1,5)、B(−1,0)、C(−4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1、B1、C1的坐标.19.如图,AB=AC,AD=AE.求证:∠B=∠C.20.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.21.已知x m=2,x n=3,求下列各式的值:(1)x m+n;(2)x3m+2n.22.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请分别表示出这两个图形中阴影部分的面积______ ,______ ;(2)以上结果可以验证哪个乘法公式?______ ;(3)试利用这个公式计算:20132−2014×2012.23.如图,在△ABC中,AB=AC,AD⊥于点D,AM是△ABC的外角∠CAE的平分线.(1)求证:AM//BC;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.24.在平面直角坐标系中,点B、A分别在x轴和y轴上,连接AB,已知∠ABO=30°,AC平分∠OAB交x轴于点C,且BC=4,AB=4√3.(1)求点B的坐标;(2)点P从点A出发,向点B方向在线段AB上运动,点D在点B左侧x轴上一点,且PB=PD,设点P的横坐标为t,试用t的式子表示线段OD的长;(3)在(2)的条件下,连接AD,当△ABD为等腰三角形时,求t的值.25.(一)阅读材料:如图1,△ABC是等边三角形.点D是BC边上一动点,点E、F分别在AB、AC边上,连接AD、DE、DF,且∠ADE=∠ADF=60°.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证;想法2:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证;…(1)请你根据上面的想法,在图上画出辅助线并写出辅助线的做法.请你参考上面的解法,解决下面的问题:(二)已知:在四边形ABCD中,∠ACB+∠ADB=180°,连结AB、CD.(1)如图2,当∠ABC=∠BAC=60°时,求证:DC平分∠ADB;(2)如图3,在(1)的条件下,过点A作AH⊥CD于H,延长AH交BC于E,连结BH并延长交AC于F,若AF=CE,AD=4,求CD的长.26.如图,在平面直角坐标系中,已知两点A(a,0),B(0,b)(b>a>0),在第一象限作等腰直角三角形ABC,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为______(用含a、b的式子表示);(2)当CP平分∠ACB时,猜想CN与AP的数量关系,并证明;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D、G关于x轴对称.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故不合题意;B、是轴对称图形,故符合题意;C、不是轴对称图形,故不合题意;D、不是轴对称图形,故不合题意;故选:B.直接利用轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进而判断得出答案.此题主要考查了轴对称图形的定义,正确把握定义是解题关键.2.【答案】A【解析】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:A.根据三角形的外角性质解答即可.此题考查三角形的外角性质,关键是根据三角形外角性质解答.3.【答案】C【解析】【分析】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【解答】解:A、3+4<8,不能构成三角形;B、4+4=8,不能构成三角形;C、5+6>10,能够组成三角形;D、7+6<14,不能组成三角形.故选C.4.【答案】A【解析】【分析】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD−BE=2,故选:A.5.【答案】C【解析】解:点M(2,3)关于y轴对称的点的坐标为(−2,3).故选:C.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.【答案】D【解析】解:A、AB=ED,AC=EF,BC=DF,能根据SSS判定△ABC≌△EDF,故选项正确;B、AC=EF,BC=DF,∠C=∠F,能根据SAS判定△ABC≌△EDF,故选项正确;C、AB=ED,∠C=∠F,∠A=∠E,能根据AAS判定△ABC≌△EDF,故选项正确;D、AB=ED,BC=DF,∠C=∠F,SSA不能判定两个三角形全等,故选项错误.故选:D.三角形全等条件中必须是三个元素,并且一定有一组对应边相等,对选项一一分析,选择正确答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【答案】A【解析】解:A.m2⋅m3=m5,故此选项符合题意;B.m2+m2=2m2,故此选项不合题意;C.(m4)2=m8,故此选项不合题意;D.(−2m)2⋅2m3=4m2⋅2m3=8m5,故此选项不合题意;故选:A.直接利用单项式乘单项式以及合并同类项、幂的乘方运算法则,分别判断得出答案.此题主要考查了单项式乘单项式以及合并同类项、幂的乘方运算,正确掌握相关运算法则是解题关键.8.【答案】B【解析】【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=12(180°−∠A)=12(180°−40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC−∠ABD=70°−40°=30°.故选:B.9.【答案】6a3【解析】解:3a⋅2a2=3×2a⋅a2=6a3.故答案为:6a3.根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.10.【答案】30°或120°【解析】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°−30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.11.【答案】∠B=∠C【解析】【分析】添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.本题考查了全等三角形的判定定理的应用,能理解全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.【解答】解:∠B=∠C,理由是:∵在△ABE和△ACD中{∠A=∠A AB=AC ∠B=∠C∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.12.【答案】8【解析】解:(a m b n)3=a3m b3n.∵(a m b n)3=a9b15,∴a3m b3n=a9b15.∴3m=9,3n=15.∴m=3,n=5.∴m+n=3+5=8.故答案为:8.根据幂的乘方解决此题.本题主要考查幂的乘方,熟练掌握幂的乘方是解决此的关键.13.【答案】m2−n2【解析】解:根据平方差公式,(m+n)(m−n)=m2−n2.故答案为:m2−n2.根据平方差公式解决此题.本题主要考查平方差公式,熟练掌握平方差公式是解决本题的关键.14.【答案】20或22【解析】解:①6是腰长时,三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,②6是底边长时,三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,这个等腰三角形的周长是20或22.故答案为:20或22.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.15.【答案】6【解析】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴CD=DE=6cm.故答案为:6.过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CD=DE.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.16.【答案】15【解析】【分析】此题考查等边三角形和等腰三角形的性质以及三角形的外角,属于基础题.由DF=DE,CG=CD,得出∠E=∠DFE,∠CDG=∠CGD,再由三角形的外角得出∠GDC=∠E+∠DFE=2∠E,∠ACB=∠CDG+∠CGD=2∠CDG,从而得出∠ACB= 4∠E,进一步求得答案即可.【解答】解:∵DF=DE,CG=CD,∴∠E=∠DFE,∠CDG=∠CGD,∵∠GDC=∠E+∠DFE,∠ACB=∠CDG+∠CGD,∴∠GDC=2∠E,∠ACB=2∠CDG,∴∠ACB=4∠E,∵△ABC是等边三角形,∴∠ACB=60°,∴∠E=60°÷4=15°.故答案为:15.17.【答案】解:(1)(a+1)(a−1)+1=a2−1+1=a2.(2)(m+n)2−2mn=m2+n2+2mn−2mn=m2+n2.【解析】(1)根据平方差公式、整式的混合运算解决此题.(2)根据完全平方公式、整式的混合运算解决此题.本题主要考查平方差公式、完全平方公式、整式的混合运算,熟练掌握平方差公式、完全平方公式、整式的混合运算法则是解决本题的关键.18.【答案】解:(1)所作图形如下所示:(2)点A1、B1、C1的坐标分别为:(1,5),(1,0),(4,3).【解析】(1)利用轴对称性质,作出A、B、C关于y轴的对称点,A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)观察图形即可得出点A1、B1、C1的坐标.本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.19.【答案】证明:在△ABE与△ACD中,{AB=AC ∠A=∠A AE=AD,∴△ABE≌△ACD(SAS),∴∠B=∠C.【解析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.20.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.【解析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.21.【答案】解:(1)∵x m=2,x n=3,∴x m⋅x n=x m+n=6.(2)∵x m=2,x n=3,∴(x m)3⋅(x n)2=x3m⋅x2n=23×32=72.∴x3m+2n=72.【解析】(1)根据同底数幂的乘法解决此题.(2)根据幂的乘方、同底数幂的乘法解决此题.本题主要考查同底数幂的乘法、幂的乘方、有理数的乘方,熟练掌握同底数幂的乘法、幂的乘方、有理数的乘方是解决本题的关键.22.【答案】解:(1)a2−b2,(a−b)(a+b);(2)平方差公式:a2−b2=(a−b)(a+b);(3)20132−2014×2012=20132−(2013+1)(2013−1)=20132−(20132−1)=20132−20132+1=1.【解析】解:(1)大正方形的面积为a2,小正方形的面积为b2,故图1阴影部分的面积值为a2−b2;长方形的长和宽分别为(a+b)、(a−b),故重拼的长方形的面积为(a−b)(a+b);(2)比较上面的结果,都表示同一阴影的面积,它们相等,即a2−b2=(a−b)(a+b),可以验证平方差公式,这也是平方差公式的几何意义;(3)20132−2014×2012=20132−(2013+1)(2013−1)=20132−(20132−1)=20132−20132+1=1.(1)求出大正方形及小正方形的面积,作差即可得出阴影部分的面积;图2所示的长方形的长和宽分别为(a+b)、(a−b),由此可计算出面积;(2)根据阴影部分的面积相等可得出平方差公式;(3)利用平方差公式计算即可.本题考查了平方差公式的几何背景,注意几次分割后边的变化情况是关键,属于基础题.23.【答案】证明:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=12∠BAC.∵AM平分∠EAC,∴∠EAM=∠MAC=12∠EAC.∴∠MAD=∠MAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°.∵AD⊥BC∴∠ADC=90°∴∠MAD+∠ADC=180°∴AM//BC.(2)△ADN是等腰直角三角形,理由是:∵AM//AD,∴∠AND=∠NDC,∵DN平分∠ADC,∴∠ADN=∠NDC=∠AND.∴AD=AN,∴△ADN是等腰直角三角形.【解析】(1)根据等腰三角形的性质和平行线的判定证明即可;(2)利用平分线的定义和平行线的性质进行解答即可.此题考查等腰三角形的性质,关键是根据等腰三角形的性质和平行线的判定与性质解答.24.【答案】解:(1)如图1中,∵∠AOB=90°,∠ABO=30°,∴∠OAB=90°−30°=60°,∵AC平分∠OAB,∴∠OAC=∠CAB=30°,∴∠CAB=∠CBA,∴CA=CB=4,AC=2,∴OC=12∴OB=OC+BC=6,∴B(6,0).(2)如图2中,过点P作PF⊥BD于点F,∵PD=PB,PF⊥DB,∴DF=FB,∴OF=t,∴DF=BF=6−t,当0≤t≤3时,OD=DF−OF=6−2t,当3<t≤6时,OD=OF−DF=t−(6−t)=2t−6.(3)①当t=0时,△PDB是等腰三角形.②当BA=BD=4√3时,OD=DB−OB=4√3−6,此时6−2t=4√3−6,解得t= 6−2√3③当点D与点C重合时,△ADB是等腰三角形,此时OD=OC=2,此时2t−6=2,解得t=4,综上所述,满足条件的t的值为0或6−2√3或4.【解析】(1)证明CA=CB=4,推出OC=2,可得结论.(2)分两种情形:当0≤t≤3时,当3<t≤6时,分别求解即可.(3)分三种情形:AD=AB,AB=BD,AD=DB,分别求解可得结论.本题属于三角形综合题,考查了解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考常考题型.25.【答案】解:(一)(1)想法1:证明:如图,过点A作AM⊥DE,于点M,AN⊥DF交DF于点N,∵AD是∠EDF的平分线,∴AM=AN,∵∠ADE=∠ADF=60°,∴∠MAN=60°,∵∠BAC=60°,∴∠EAM=FAN,∴△AEM≌△AFN(ASA),∴AE=AF;想法2:如图,将△ACD绕着点A顺时针旋转至△ABG,使得AC与AB重合,连接DG,∴△ABG≌△ACD,∴AG=AD,∠GAB=∠DAC,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,∴∠GAD=60°,∴△AGD是等边三角形,∴∠ADG=∠AGD=60°,∵∠ADE=60°,∴G,E,D三点共线,∴△AGE≌△ADF(ASA),∴AE=AF.(二)(1)证明:如图2,延长AD,使DE=BD,连接BE,∵∠ACB=60°,∠ACB+∠ADB=180°,∴∠ADB=120°,∴∠EDB=60°,∴△DBE是等边三角形,∴∠ABE=∠CBD,在△ABE与△CBD中,{AB=BC∠ABE=∠CBD BE=BD,∴△ABE≌△CBD(SAS),∴∠E=∠CDB=60°,∵∠BDE=60°,∴∠ADC=∠BDC,∴DC平分∠ADB,(2)解:在△BAF与△ACE中,{AF=CE∠BAC=∠ACB AB=AC,∴△BAF≌△ACE(SAS),∴∠ABF=∠EAC,∵∠BHE=∠ABF+∠BAE,∴∠BHE=∠EAC+∠BAE=60°,∵AH⊥CD,∴∠DHB=90°−∠BHE=30°,∵∠BDC=60°,∴∠DBH=180°−∠BDC−∠DHB=90°,∵AD=4,AH⊥CD,∠ADC=60°,∴DH=1AD=2,2DH=1,∴BD=12由(1)得:CD=AD+BD,∴CD=5.【解析】(一)(1)想法1:过点A作AM⊥DE,于点M,AN⊥DF交DF于点N,由AD是∠EDF 的平分线,可得AM=AN,再由∠ADE=∠ADF=60°,可得∠EAM=FAN,利用ASA证出△AEM≌△AFN,即可得AE=AF;想法2:如图,将△ACD绕着点A顺时针旋转至△ABG,使得AC与AB重合,连接DG,证明△AGE≌△ADF(ASA),由全等三角形的性质得出结论;(二)(1)延长AD,使DE=BD,连接BE,证明△ABE≌△CBD(SAS),可得出∠E=∠CDB= 60°,则可得出结论;(2)证明△BAF≌△ACE(SAS),得出∠ABF=∠EAC,由直角三角形的性质求出BD=1,则可得出结论.本题是三角形综合题,考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,角平分线的判定与性质等知识,添加恰当辅助线构造全等三角形是本题的关键.26.【答案】(b,a+b)【解析】(1)解:过C点作CE⊥y轴于点E,∵CE⊥y轴,∴∠BEC=90°,∴∠BEC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO,在△AOB与△BEC中,{∠BEC=∠AOB ∠CBE=∠BAC BC=BA,∴△AOB≌△BEC(AAS),∴CE=OB=m,BE=OA=a,∴OE=OB+BE=a+b,∴点C的坐标为(b,a+b).故答案为:(b,a+b);(2)解:结论:CN=2AP.理由:∵△AOB≌△BEC,∴BE=OA=OP,CE=BO,∴PE=OB=CE,∴∠EPC=45°,∴∠APC=90°,∴∠1=∠2,∵∠2=∠3,∠2+∠CMP=90°,∠3+∠CAP=90°,∴∠CMA=∠CAM,∴CM=CA,∵CP⊥AM,∴AP=PM,在△ABM与△CBN中,{∠ABM=∠CBN ∠1=∠2AB=CB,∴△ABM≌△CBN(ASA),∴AM=CN,∴CN=2AP.(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,∴AD=AC,AG=AC,∴AD=AG,∵∠1+∠DAM=45°,∠5+∠DAM=45°,∴∠1=∠5,∵∠PAC=∠PAG,∴∠1+45∠6+45°,∴∠1=∠6,∴∠5=∠6,在△DAH与△GAH中,{AD=AG ∠5=∠6 AH=AH,∴△DAH≌△GAH(SAS),∴D,G关于x轴对称.(1)过C点作CE⊥y轴于点E,根据AAS证明△AOB≌△BEC,根据全等三角形的性质即可得到点C的坐标;(2)根据全等三角形的性质的性质和等量代换可得∠1=∠2,再证明CM=CA,推出AP= PM,根据ASA证明△ABM≌△CBN,根据全等三角形的性质即可得到AM=CN,可得结论;(3)根据SAS证明△DAH≌△GAH,根据全等三角形的性质即可求解.本题属于几何变换综合题,涉及的知识点有:全等三角形的判定和性质,关于直线对称的性质.关键是AAS证明△AOB≌△BEC,ASA证明△ABM≌△CBN,SAS证明△DAH≌△GAH.。
辽宁省大连市中山区2023-2024学年八年级上学期期中数学试题
辽宁省大连市中山区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在Rt △ABC 中,∠C =90°,∠A =70°,则∠B 的度数为()A .20°B .30°C .40°D .70°2.在平面直角坐标系中,点P (2,-3)关于x 轴对称的点的坐标是()A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3)3.在下列长度的组线段中,能组成三角形的是()A .2、3、6B .3、5、9C .3、4、5D .2、3、54.如图,BE CD ,是ABC 的高,且BD CE =,直接判定BCD CBE ≌△△的依据是()A .SSSB .ASAC .SASD .HL 5.下列多边形中,内角和等于外角和的是()A .三角形B .四边形C .五边形D .六边形6.如图,90ABD BED ∠=∠=︒,AC BE ⊥,AB BD =,5AC =,2DE =,则CE =()A .2B .3C .4D .57.如图,Rt ABC △中,30A ∠=︒,6AB =,则BC =()A.3B.4C.6D.不确定8.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°10.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点是等腰三角形,12.ABC13.如图,ABC=°.14.如图,在ABC 和DFE △直接证明Rt Rt ABC ≌△△15.如图,等边ABC 中,BD CE =16.如图,在ABC 中,则EDF ∠的度数为三、作图题17.如图,在平面直角坐标系xOy 中,(3,4)A -,(4,1)B -,(1,1)C -.(1)请画出ABC 关于x 轴对称的图形(2)点1A 的坐标为,线段1BB 的长为四、证明题18.已知如图,在ABC 和ADE V 中,AB AD =,AC AE =,12∠=∠.求证:BC DE =.五、问答题19.如图,一艘轮船从点A 向正北方向航行,每小时航行15海里,2小时后轮船航行到点B ,小岛P 此时在轮船的北偏西60︒方向,求此时轮船和小岛的距离.六、解答题20.如图,在 ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AC 于点D ,交AB于点E ,连接BD .(1)依题意补全图形;(2)求∠DBC 的度数.七、证明题21.如图,在ABC 中,90ACB ∠=︒,AC BC =,BD 平分ABC ∠,点E 在AB 边上,BDE A ∠=∠.求证:ADE V 是等腰三角形.(1)点B 的坐标为;(2)点C 为整点,AOC BOC ≌,若点C九、证明题24.如图,ABC 中,90,ACB CD AB ∠=︒⊥,,2CE CB BAE B =∠=∠.(1)探究CAE ∠和CAB ∠(2)若2BD AD =,求十、作图题25.综合与实践:问题情境:“综合与实践”课上,老师提出如下问题:如图,ABC 中,AB AC =,在AB 截取点D ,使BD BC =,连接CD ;作BCE ACD ∠=∠,交AB 延长线于点E .动手操作:(1)请按要求,补全图形;(画图工具不限)问题初探:(2)小明发现,图中CD CE =,请你证明此结论;深入探究:(3)数学小组经过讨论研究,提出问题:延长BC 到F ,使CF BE =,连接DF 交AC 于点G ,线段CG ,BD 有确定的数量关系.请你解答此问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年辽宁省大连市八年级上期中数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列图形中,是轴对称图形的是()
A.B.
C.D.
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误;
故选:C.
2.(3分)全等形是指两个图形()
A.大小相等B.完全重合C.形状相同D.以上都不对解:能够完全重合的两个图形叫做全等形,
故选:B.
3.(3分)下列计算正确的是()
A.a3•a2=a6B.y2+y2=2y4C.(ab2)2=ab4D.x8 ÷x2=x6解:A.a3•a2=a5,故本选项不合题意;
B.y2+y2=2y2,故本选项不合题意;
C.(ab2)2=a2b4,故本选项不合题意;
D.x8÷x2=x6,正确,故本选项符合题意.
故选:D.
4.(3分)如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()
第1 页共15 页。