12.2.3全等三角形的判定ASA-AAS (2)
12.2全等三角形的判定(AAS,ASA,HL)教案

-针对实际问题时,引导学生将问题抽象成几何模型,运用全等三角形的性质进行求解,如:在计算不规则图形的面积时,通过全等三角形将不规则图形转化为规则图形。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全一样的情况?”(如拼图、制作三角形框架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形的判定方法的奥秘。
另外,对于全等三角形在实际生活中的应用,学生在小组讨论中提出的例子较为有限。这说明我对这个知识点的实际应用案例介绍还不够丰富,今后的教学中,我需要补充更多贴近学生生活的实例,帮助他们更好地理解全等三角形的应用价值。
此外,在教学过程中,我也注意到了一些学生的疑问,比如在全等三角形的判定过程中,如何快速准确地找出对应边和对应角。针对这个问题,我打算在下一节课的复习环节中,专门设计一些练习题,帮助学生巩固这方面的技能。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版数学八年级上册12.2三角形全等的判定ASA、AAS说课稿

1. ASA和AAS全等判定定理的陈述。
二、学情分析
(一)学生特点
本节课所面向的学生是八年级的学生,他们正处于青春期,具有以下特点:年龄特征上,他们具有较强的求知欲和好奇心,对新鲜事物充满兴趣;认知水平上,学生已经具备了一定的逻辑思维能力和空间想象力,能够理解和运用一些基本的几何概念和定理;学习兴趣上,学生对直观的几何图形和问题较为感兴趣,喜欢通过实际操作和探索来学习;学习习惯上,学生可能已经形成了自己的学习方法,但需要进一步培养良好的学习习惯,如预习、复习和主动思考。
3.在实际操作中,学生可能缺乏将理论应用到具体问题中的能力。
4.学生可能在逻辑推理和证明过程中遇到困难,难以形成完整的证明思路。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.利用多媒体工具展示生动的三角形全等实例,引导学生观察和发现全等三角形的特征,引发学生对全等判定定理的好奇心。
1.完成一些全等三角形判定的练习题,以巩固课堂所学知识。
2.阅读相关教材内容,加深对全等判定定理的理解。
3.设计一个几何问题,要求使用ASA或AAS定理来解决,以提高学生的应用能力。
作业的目的是巩固学生对全等判定定理的理解和应用,同时培养他们的独立思考和解决问题的能力。
五、板书设计与教学反思
(一)板书设计
4.在讲解过程中,我会不断地提问和引导学生思考,鼓励他们提出问题和解决问题,以深入理解全等判定定理的内涵。
12.2《直角三角形全等的判定》-(共29张PPT)

例2.已知,如图,AC⊥BC,BD⊥AD.
(1)已知∠CAB=∠ DBA,求证:BC=AD.
(2)已知AC=BD,求证:BC=AD.
证明:
D
C
(1)∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°. 在△ABC和△BAD中,
(3)∠DAB = ∠CBA( AAS); D
C
(4)∠DBA = ∠CAB (AAS ).
A
B
四、练习:
1.如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿两条直线行走,并同时到 达D,E两地,DA⊥AB,EB⊥AB,D,E与路段 AB的距离相等吗?为什么?
答: D,E与路段AB的距离相等.
求证:AD=BC.
证明:连接DC. ∵ AD⊥AC,BC⊥BD, ∴∠A=∠B=90°. 在Rt△ADC和Rt△BCD中,
DC=CD, AC=BD, ∴Rt△ADC≌Rt△BCD(HL). ∴AD=BC.
例4.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.
求证:ED⊥AC.
证明:∵AE⊥AB,BC⊥AB, ∴∠EAD=∠ABC=90°. 在Rt△EAD和Rt△ABC中,
AD
AB——DE AC——DF
BC——EF
∠A——∠D
B
E
∠B——∠DEF
C
F ∠ACB——∠F
2:我们已经学过判定全等三角形的方法有哪些?
(SSS)、(SAS)、(ASA)、(AAS)
3、思考:
(1)如图:Rt△ACB、与Rt△A1C1B1中,∠C与∠C1是直 角,用我们已经学过的知识,除了两直角相等以外,你还
12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
12.2全等三角形的判定ASA

知识要点: (1) 两角和它们的夹边对应相等的两个三角形全等. 简写成“角边角”或“ASA”. (2) 两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”. (3)探索三角形全等是证明线段相等(对应边相等), 角相等(对应角相等)等问题的基本途径。
数学思想:
要学会用分类的思想,转化的思想解决问题。
A
B
D
E
练习 P41
A
1. 如图, AB⊥BC, AD⊥DC,∠1=∠2,
2
1
求证AB=AD.
B
D
C
2、如图,要测量河两岸相对两点A,B两 点的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A,C,E在一条直线上,这时 测得DE的长就是AB的长,为什么?
A
B
如图,已知AB=DE,AC=DF,要说明△ABC≌△DEF, 还需增加一个什么条件?
A
D
B
E
C
F
知识梳理:
三角全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
用符号语言表达为: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD
B
A
C
D
∴ △ABC ≌△ DEF(SSS) E
∴△ABC≌△DEF(ASA)
1、SSS:三边对应相等
2、SAS 两边及夹角对应相等 3、ASA两角夹边对应相等 4、AAS 两角及一角的对边对应相等
你能行吗?
B C D E
AB=DE可以吗? ×
1、如图∠ACB=∠DFE,BC=EF, 那么应补充一个条件 ------------------------- , A 才能使△ABC≌△DEF (写出一 个即可)。 F AB ∥ DE ∠ B= ∠ E (ASA) 或∠A=∠D (AAS) 或 AC=DF (SAS)
12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等

17.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形
槽中,使三角板的三个顶点A,B,C分别在槽的两壁及底边上滑
动,已知∠D=∠E=90°. (1)在滑动过程中你发现线段AD与BE有什么关系?试说明你的结 论; (2)若AD=a,EC=b,求槽底DE的宽度.
解:(1)AD=BE.证明:∵∠ABC=90°,∴∠ABD+∠CBE= 90°.∵∠DAB+∠ABD=90°,∴∠DAB=∠CBE.又∵∠D=
璃店去配一块完全一样的玻璃,那么最省事的办法是(
A.带①去 B.带②去 C.带③去 D.带①和②去
C)
11.如图,将正方形 OABC 放在平面直角坐标系中,点 O 是原点, 点 A 的坐标为(1, 3),则点 C 的坐标为( A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
A
)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 14 为10,则△DCB的周长为______.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE
=CF,∠B=∠D,AD∥BC.求证:AD=BC.
解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章
第3课时
全等三角形
12.2 三角形全等的判定
用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等
1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案
第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。
[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。
1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。
[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。
1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。
2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。
2.2 教学难点[1]数学语言表达和证明三角形全等。
[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。
此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。
4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。
6 教学过程6.1 引入新课【师】同学们好。
上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。
【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。
【师】没错。
那我们今天来继续学习两种新的判定三角形全等的方法。
【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。
请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。
2015年秋河南省漯河市临颍县新人教版八年级数学上册教案12.2.3三角形全等的判定ASA、AAS.doc
课题:11.2.3---ASA、AAS教学目标:知识与技能1.掌握“角边角”及“角角边”条件的内容2.能初步应用“角边角”及“角角边”条件判定两个三角形全等过程与方法情感、态度与价值观:通过探究三角形全等条件的活动,培养学生敢于面对困难,培养学生的学习兴趣和良好的沟通能力教学重点:“角边角”条件及“角角边”条件。
教学难点:指导学生分析问题,寻找判定三角型全等的条件。
教学过程:一、情景导入(2分钟)问题1问题2教具吗?问题3 先任意画一个△ABC,在画一个△A’B’C’,使A’B’=AB把画好的△A’B’C’剪下来,放到△ABC上,它们能重合吗?二、自学指导(8分钟)1.认真阅读课本P39--P41记住“角边角”及“角角边”条件。
2.两角和它们的夹边(可以简写成或)两角和其中一个角的对边(可以简写成或)设计意图:注意事项:有了前几次探究三角形全等的经验,的数学语言。
三、自学检测(5分钟)1.如图1已知AB=A ’B ’, ∠A=∠A ’,∠B=∠B ’, 则△ABC ≌△A ’B ’C ’的根据是()图1 图22.如图2已知:点A. F. E.C 在同一直线上,∠B=∠D ,AE=CF ,.BE ∥DF,AD=8,则BC=( )3.如图:AB ∥CD,AF ∥DE,BF=CE.∠FAB=55°,∠ABF=30°.则∠DEC=( ).A.75°B.85°C.95°D.90°4.如图,∠A=∠D ,∠1=∠2。
要 得到 △ABC ≌△DEF 还应给出的条件是( )。
A.∠E=∠BB.ED=BCC. AB=EFD.AF=CD设计意图:考查学生自学效果,提高学生自学效率注意事项:根据不同的条件选择不同的判定方法是本节课的难点,教学中要关注学生整体的掌握程度,如果自学效果不好,教师要及时点拨。
四、合作探究(10分钟)1.已知:AD,BE 是高,DF=DC,求证:AD=BD设计意图:学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,大胆发言的良好习惯注意事项:1.这道题均着重考全等三角形的判定方法,其中证明∠DBF=∠EAF 是本题的突破点。
12.2直角三角形全等的判定PPT课件
(HL)
1. 如图:△ABC≌△DEF,指出它们的对应 角、对应边。
AD
B
E
C
F
对应边:AB——DE
AC——DF
BC——EF 对应角:∠A——∠D
∠B——∠DEF ∠ACB——∠F
2. 我们已经学过判定全等三角形的方法有哪些? SSS、SAS、ASA、AAS
创设情景 引入课题
形能全等吗?
画一画:
动手实践 探索规律
任意画一个Rt△ACB ,使∠C﹦90°,再画一个
Rt△A′C′B′ ,使∠C﹦∠C′,B′C′﹦BC,A′B′﹦AB (1)你能试着画出来吗?与小组内的其他同学交流一
(2)把画好的Rt△A′C′B′放到Rt△ACB上, 它们全等吗?你能发现什么规律?
作法:
1. 画∠MC′N=90°; 2. 在射线C′M上取B′C′=BC; 3. 以B′为圆心,AB为半径画弧,交射线C′N于点A′ 4. 连接A′B′,Rt△A′C′B′就是所求作的三角形。
∴Rt△ABC≌Rt△BAD (HL). ∴ BC﹦AD.
1.如图,AB⊥BC,AD⊥DC, AB=AD.
求证:∠1=∠2 . A
12
B
D
C
3.如图,AB=CD,AE⊥BC, DF⊥BC,CE=BF. 求证:AE=DF.
C
D
F E
A
B
2.如图,C是路段AB的中点,两人 从C同时出发,以相同的速度分别 沿两条直线行走,并同时到达D,E 两地,DA⊥AB,EB⊥AB,D,E与路 段AB的距离相等吗?为什么?
直角三角形全等的判定方法: 斜边和一条直角边对应相等的两个直角三角 形全等。简写成“斜边、直角边”或“HL”.
三角形全等的判定ppt课件
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD
∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS
一
般
方
法
SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,