长方体和正方体复习课 ppt课件
合集下载
五年级下册长方体与正方体体积课件人教版(34张PPT)

A.4
B.6
C.8
D.12
4.长方体玻璃缸,长4dm,宽3dm,高5dm,缸中的水深2.5dm,水
的体积是( )dm3
A.30
B.37.5
C.50
D.60
5
填上合适的数.
10m3= ( )dm3
3020cm3= (
230mL= ( )L
3.05L3= (
2.7m3= (
)dm3= (
)L
)dm3 )cm3
长方体与正方体体积
1
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的 长方体的体积是75立方厘米,则原长方体的最长的棱是 ______厘米. 2.一个长方体表面积为40平方厘米,上、下两个面为正方形, 如果正好可以截成两个相等体积的正方体,则这个长方体的 体积是_____立方厘米. 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已 知全部棱长之和是220cm,长方体的体积是______立方厘米
的体ቤተ መጻሕፍቲ ባይዱ是( )dm3
A.30
B.37.5
C.50
D.60
4
你来选择
1.一个棱长是8厘米的正方体的体积与一个长方体体积相等,这个长方
体高16厘米,它的底面积是( )
A.32厘米2 B.9厘米 C.15厘米 D.120厘米
2.至少需要( )个小正方体可以拼成大正方体.
A.4
B.6
C.8
D.12
3.正方体的表面积是底面积的( )倍.
2
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的长方体的体积是75立方厘 米,则原长方体的最长的棱是8厘米. 解:75÷(5×5)=75÷25=3(厘米),3+5=8(厘米), 2.一个长方体表面积为40平方厘米,上、下两个面为正方形,如果正好可以截成两个 相等体积的正方体,则这个长方体的体积是 16立方厘米. 解:40÷10=4(平方厘米),因为2×2=4,所以小正方体的棱长是2厘米,则体积是: 2×2×2×2=16(立方厘米) 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已知全部棱长之和是220cm, 长方体的体积是4500立方厘米 解:根据“长与宽之比为2:1,宽与高之比为3:2”,可得:长:宽:高=6:3:2, 利用棱长总和求出一组长宽高的和是:220÷4=55厘米,由此再利用长宽高的比分别求 出这个长方体的长宽高,再根据长方体3的体积公式V=abh,即可解答.
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件

公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
《长方体和正方体的体积》ppt课件

06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02
五年级下册数学习题课件-3长方体和正方体人教版(共47张PPT)

每个面的面积:_2_×__2_=__4_(_d_m_2_)_____。 正方体的表面积:__4_×__6_=__2_4_(_d_m_2)______。
五年级下册数学习题课件-3 长方体和正方体 人教版(共47张PPT)
4. 一个不锈钢花瓶的形状是正方体,棱长和是36 cm,制作这个花瓶至少需要 不锈钢板多少平方厘米? 36÷12=3(cm) 3×3×6=54(cm2)
20×30×2+8×30×2+20×8=1840(cm2)
3. 一个长方体包裹,它的长、宽、高分别是5 dm,4 dm,2 dm。如果实际用纸 是表面积的1.4倍,那么包装这个包裹至少要用多少平方分米的包装纸? (5×4+5×2+4×2)×2×1.4=106.4(dm2)
4. 小区门前的水池的形状是长方体,它的宽是6 m,长是宽的1.5倍,深1.2 m。 如果把水池的四周和底面贴上瓷砖,那么贴瓷砖的面积是多少平方米? 长:6×1.5=9(m) 9×6+9×1.2×2+6×1.2×2=90(m2)
3 长方体和正方体
第1课时 长 方 体
1. 仔细想,认真填。 (1) 同学们正在用一些小棒和橡皮泥拼搭长方体的框架。
① 上图是小明已经拼搭好的部分,他还需要( 5 )个橡皮泥小球、( 1 ) 根9 cm小棒、( 2 )根5 cm小棒、( 3 )根3 cm小棒,就可以拼搭成一个长 ( 9 )cm、宽( 5 )cm、高( 3 )cm的长方体框架。 ② 长方体框架上面是( 长方 )形,长是( 9 )cm,宽是( 5 )cm。 ③ 长方体框架( 左 )面和( 右 )面的长是5 cm,宽是3 cm。 ④ 把长方体框架的所有棱都粘上胶带,至少需要( 68 )cm长的胶带。 (2) 在长、宽、高不全相等的长方体中,最多可以有( 2 )个面是正方形。 在这样的长方体中,有( 4 )个长方形的面相同。
部编版五年级数学下册第三单元《认识长方体和正方体的认识》 (复习课件)

3.判断。(对的画“√”,错的画“×”)
(1)有两个面是完全一样的正方形的长方体,一定是正方
体。( )
辨析:错在没理解正方体的特征。
有两个面是完全一样的正方形的
(2)有四个面是完全 长方体不一定是正方体。 一样的正方形的长方体,一定是正方体。( )
提升点 1 正方体的拼摆
4.用棱长为1 cm的小正方体摆一摆。 (1)摆一个稍大的正方体,至少需要( 8 )个小正
4.为迎接“五一”国际劳动节,工人叔叔要 在工人俱乐部的四周装上彩灯(地面的四 边不装)。已知工人俱乐部长90m,宽55m,高22m, 工人叔叔至少需要多长的彩灯线?(选题源于教材 P21第6题) 提示:俱乐部的形状是长方体,要求工人叔叔至少需 要多长的彩灯线,就是求4个高,2个长,2个宽的总和。 90×2+55×2+22×4=378(m) 答:工人叔叔至少需要378 m长的彩灯线。
(40+30+20)×4=360(cm) 答:至少需要360 cm长的胶带。
3.(1)和a平行的棱有几条? (2)和a相交并垂直的棱有哪几条? (3)和b平行的棱有几条? (选题源于教材P21第3题)
(1)和a平行的棱有3条。 (2)和a相交并垂直的棱有4条,分别是b,c,a和b所 在面中与b相对的棱,a和c所在面中与c相对的棱。 (3)和b平行的棱有3条。 我发现每条棱都有3条棱和它平行且相等,有交点 的2条棱相互垂直。
长方体和正方体 都有6个面,12 条棱,8个顶点。
学会这些知识可以解 决什么实际问题呢?
判断:4个棱长为1cm的小正方体能拼成一个大正
方体。
(× )
正方体的12条棱 长度相等。
这个魔方是什么形状的?它的棱长是多少?有
几个面的形状完全相同? 它是正方体,
苏教版六年级上册数学《体积和体积单位》长方体和正方体PPT课件

2.先求总份数,再求各部分占总量 的百分之几或几分之几。最后求各部分量。 例1.六年1班有45人,男生与女生人数的比 是4:5,男生和女生各有多少人? 例2.学校运进120本儿童读物,按3:4:5分 配给四、五、六年级,三个年级各分多少本?
2、稍复杂的按比例分配应用题 特点:已知一个数的量(部分量或相差量)和各部分 量的比,求总量或其他部分量。 方法:1.(归一法)先求每份数,再求几份数是多少。
7立方厘米 6立方厘米 10立方厘米
9、在括号里填上合适的单位名称:
橡皮的体积大约是 集装箱的体
6( 立方厘米)
积大约是40
( 立方米 )
9、在括号里填上合适的单位名称:
水桶的容积大 西瓜的体积大约 约是12( 升 ) 是4(立方分米)
谢谢观看!
分数、百分数应用题
(归类总结)
分百应用题是六年级上册的重点,也是 一个难点,它涉及了第二,第三,第五以及 第六单元的部分内容,所占比例很大。要想 让学生们准确地掌握好各个类型应用题的特 点,以及解答方法,首先,要对应用题进行 分类,让学生掌握应用题的解题策略。其次, 对于一些平时练习出现的易混易错的典型应 用题进行对比,归类,从而掌握其正确的解 答方法。最后还要对学生进行不同类型应用 题的分组练习,从而进一步提高学生分析解 决应用题的能力。
方法:用单位“1”已知的量×分率=对应量 对应量÷对应分率=所求单位“1”的量。
例:公园里有20颗杨树,柳树的棵树是杨树的3/5, 同时又是柏树的75%,柏树有多少棵?
分数除法应用题的解题策略
1、从分率句入手,找准单位“1” 单位“1”的量未知,可以设为ⅹ。
2、用单位“1”的量(x)×对应分率=对 应的数量。
2.(按比例分配法)先求总份数,再求 部分量占总量的几分之几,最后求出各部分量或总量。
2、稍复杂的按比例分配应用题 特点:已知一个数的量(部分量或相差量)和各部分 量的比,求总量或其他部分量。 方法:1.(归一法)先求每份数,再求几份数是多少。
7立方厘米 6立方厘米 10立方厘米
9、在括号里填上合适的单位名称:
橡皮的体积大约是 集装箱的体
6( 立方厘米)
积大约是40
( 立方米 )
9、在括号里填上合适的单位名称:
水桶的容积大 西瓜的体积大约 约是12( 升 ) 是4(立方分米)
谢谢观看!
分数、百分数应用题
(归类总结)
分百应用题是六年级上册的重点,也是 一个难点,它涉及了第二,第三,第五以及 第六单元的部分内容,所占比例很大。要想 让学生们准确地掌握好各个类型应用题的特 点,以及解答方法,首先,要对应用题进行 分类,让学生掌握应用题的解题策略。其次, 对于一些平时练习出现的易混易错的典型应 用题进行对比,归类,从而掌握其正确的解 答方法。最后还要对学生进行不同类型应用 题的分组练习,从而进一步提高学生分析解 决应用题的能力。
方法:用单位“1”已知的量×分率=对应量 对应量÷对应分率=所求单位“1”的量。
例:公园里有20颗杨树,柳树的棵树是杨树的3/5, 同时又是柏树的75%,柏树有多少棵?
分数除法应用题的解题策略
1、从分率句入手,找准单位“1” 单位“1”的量未知,可以设为ⅹ。
2、用单位“1”的量(x)×对应分率=对 应的数量。
2.(按比例分配法)先求总份数,再求 部分量占总量的几分之几,最后求出各部分量或总量。
人教版五年级数学下册第三单元《长方体和正方体的体积》PPT课件

36立方厘米
24立方厘米
27立方厘米
要知道一个物体的体积,就要看这个物体含有多少个体积单位
物体含有多少个体积单位,体积就是多少。
二 新课探究
?
长方体所占空间的大小叫做长方体的体积。 长方体的体积可以怎样算呢? 数体积单位个数的方法求长方体的体积。
下面的长方体都是用棱长1cm的小正方 体摆成的,你知道这个长方体的体积吗?
答:这个铁球的体积是70立方分米。
用12个棱长为1厘米的小正方体摆出不同的长方体
长(厘米) 宽(厘米) 高(厘米) 正方体的个数 体积(厘米3)
第一个长 方体
第二个长 方体
第三个长 方体
第四个长 方体
长 12 cm
高 1 cm
宽 1 cm
高 1 cm 长 6 cm
宽 2 cm
高 1 cm 长 4 cm
?
正方体的体积怎么样计算呢? 正方体的是特殊的长方体是 长宽高都相等的长方体。
棱长
棱长
棱长
正长方体的体积 =棱长长 × 棱宽长 ×棱高长
棱长a a棱长
棱a长
正方体的体积V == 棱a长长a×a棱宽长 ×棱高长 V = a3
V = a3 3a
a×a×a
{
a+a+ 3 ×a
a
比较a×3和a3 a×3表示3和a相乘 a3表示3个a相乘
一个长方体,长7cm,宽4cm,高3cm,它的体 积是多少?
V=abh
=7×4×3 =84(cm3)
计算下面长方体的体积
3 分米
0.8 分米 2 分米
6米 2. 2 米 0. 4 米
V = abh = 2×0.8×3 = 4.8(立方分米)
人教版《长方体和正方体》完美版课件24(共18张PPT)

那就让我 们开动
脑筋吧!
A
B
C
D
思考:上面的长方体是由体积1立方厘米的小正方体品拼摆出来的,如何快速地数出上图中各长方体中小 正方体的个数?
名称
长方体A 长方体B 长方体C 长方体D
每排个数
4 4
4 4
排数
3 3
3 3
1 2
3
4
层数
小正方体个数 长方体体积(单位 :cm³)
4×3×1=12
12
4×3×2=24
24
4×3×3=36 36
4×3×4=48 48
为什么长方体中小正方体的个数和长方体 体积的数量相同呢?
每排个数与长方体的长有什么关系?
排数与长方体的宽有什么关系?
层数与长方体的高有什么关系?
结论:小正方体个数=每排个数 × 排数 × 层数
长方体的体积就是长方体所 含体积单位的数量
猜想:长方体体积 = 长 × 宽 × 高
长方体体 积(单位 :cm³)
12
12
12
12
观察表格中的数据想一想: 1.比较这些长方体的摆法有什么共同点和不同点?
(这些长方体形状不同,体积相同) 2.为什么这些长方体形状不同而体积相同呢?
(因为它们都含有12个小正方体,也就是说它们含有同样多的体积单 位)
让我们 一起来
揭秘
知识讲解,难点突破
1 、什么是物体的体积?
物体所占空间的大小叫做
物体的体积。
粉笔
以旧引新,复习导入
2、常用的体积单位有( 立方)厘米 ( 立方分米)和( )立方。米
3、体积是 4 立方厘米的长方体里含有 ( 4)个体积是1立方厘米的小正方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(40-5-5)×(25-5-5)×5 =30×15×5 =2250(cm ) 答:这个纸盒的容积是2250平方厘米。
ppt课件
18
五、深化训练 :
(1)把一块长60厘米的长方体分成2段,表面积增加120 平方厘米,求原来长方体的体积?
120÷2×60=60×60=3600(立方厘米) 答:原来长方体的体积是3600立方厘米。
相对的面 相对的棱 正方 完全相同 长度相等 体是
特殊
正方形
的长
方体
(长、
6 12
8
6个面都是 正方形
6个面都 完全相同
12条棱 长度都
宽、高 相等)
相等。
ppt课件
7
表面积
体积
容积
意义
长方体或正方 物体所占空间 容器所能容纳
体六个面的总 的大小
物体的体积
面积
计算方法 S=长×宽×2+ V=abh
长方体和正方体的复习
ppt课件
1
ppt课件
2
小组合作要求:
1.各小组针对整理的结果再次进行交流, 查缺补漏,完善成果。
2.整理完毕后,每组推举一位同学负责 讲解本组成果。
3.以上全部完成,请快速以“标准的坐姿” 示意老师。
ppt课件
3
长方体
棱
(两个面相交的边叫做棱)
面
高 宽
长 顶点
(三条棱相交的点叫做顶点)
水的高度是4厘米,放入一块石头(完全浸没)后,水
的高度是4.5厘米,求这块石头的体积。
(4.5-4)×15×12
= 0.5×15×12
=90(立方厘米)
答:这块石头的体ppt课积件 是90立方厘米。
16
(7)一个长方体鱼缸,长是8分米,宽是5分米,
装的水高6分米。将一个棱长是4分米的正方体铁块
放入水中,铁块完全浸入水中。此时水面高多少分
ppt课件
21
4、一个长方体油桶,底面积是0.16平 方米,高是5米。如果1立方米汽油重 0.74千克,这个油桶可以装多少千克汽 油?
(2)一个长方体,如果高增加3厘米,就变成棱长为 8厘米的正方体。原来长方体的体积是多少?
(8-3)×8×8
=5×8×8
=320(立方厘米)
答:原来长方体的体积是320立方厘米。
ppt课件
19
学习园地
一间教室长8.5米、宽7.2米、高3米, 用石灰粉刷四周墙壁和顶棚,教室内门
窗面积24平方米;如果每平方米用石灰 0.2千克。要用石灰多少千克?
大正方体。 (×)
ppt课件
11
二、单位换算:
3.05立方米= ( 3050) 立方分米 7200立方厘米= ( 7.2 ) 立方分米 4.6升 = ( 4600 ) 毫升 2340 升= ( 2.34 ) 立方米 1.06立方米= ( 1 )立方米( 60 )立方厘米
ppt课件
12
三、快乐答一答:
米?
铁块体积4×4×4=64(立方分米) 水面升高 64÷(8×5) =64÷40 =1.6(分米) 水面高6+1.6=7.6(分米) 答:此时水面高7.6分米。
ppt课件
17
(8)一块长方形纸板,长40厘米,宽25厘米。在 这张纸板的四个角分别剪去一个边长为5厘米的小 正方形,再将它折成一个无盖纸盒。这个纸盒的容 积是多少?
ppt课件
4
长方体有几个面?这些面还有什么特点?
长方体有6个面,相对的面完全相同。
ppt课件
5
正方体
正方体有6个面,6个面完全相同。 12条棱,棱长都相等。 有8个顶点。
ppt课件
6
形体
长 方 体
正 方 体
相同点 不
同
点
关
系
面、棱 面的形状 面的大小 棱长
点
都是长方
6 12 8
形,特殊 有两个相 对的面是
常用计 量单位
辨的析体:积宽长×一就×高高个是××2木它2+ 箱的V或=aV×=a×sha=
容平平方方积米分。、米、
立方米、 立方分米、
平方厘米
立方厘米
ppt课件
V=abh
a 、 b 、h 从里面量
一般用体积单 位,液体用升 和毫升。
8
常用单位及进率 比一比! 相邻单位间的进率
长度单位: 米、平方分米、平方厘米
100
体积单位: 立方米、立方分米、立方厘米
1000
容积单位: 升、毫升辨析:棱长是6分米1的000
(用于计量液体的体积)正方体,它的表面积
和ppt课体件 积相等。
9
1立方分米=1000立方厘米 1立方米=1000立方分米
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
(4)做一个长方体形状的鱼缸,长70厘米,宽2
分米,高4分米,需要玻璃多少平方分米?
70厘米=7分米
7×2+(4×7+4×2)×2 =14+72 =86(平方分米) 答:需要玻璃86平方分米。
ppt课件
15
(5)如果在长是5分米、宽是2分米的鱼缸中加入
15L水,水面的高度是多少分米?
15÷(5×2) =15 ÷ 10 =1.5(分米) 答:水面的高度是1.5分米。 (6)一个长方体玻璃箱长15厘米、宽12厘米,原有
ppt课件
10
一、判断
(1)正方体是特殊的长方体。(√ ) (2)一个西瓜的体积约是8升。 (×)
(3)一个长方体中如果2个相对的面是正方形,
那么这个长方体其它四个面完全相同。(√ ) (4)体积单位比面积单位大。(×)
(5)一个正方体的棱长为a厘米。那么它的表面
积为6a²厘米。(×)
(6)用4个棱长是1cm的小正方体可以拼成一个
84÷12=7(厘米) 答:它的棱长是7厘米。
(2)一个长方体的棱长总和是48厘米,长时7厘米,宽是3
厘米。高是多少厘米?
48÷4-(7+3)
=12-10
=2(厘米)
答:高是2厘米。
ppt课件
14
(3)一个长方体纸箱,长和宽都是3分米,高是4 分米,做这样的一个纸箱需要纸板( 66 ) 平方分米, 它的容积是( ) 3立6 方分米。
ppt课件
20
1、教室的长为9米,宽6米,高3米,求教室的 占地面积是多少平方米?
9×6=54(平方米) 答:占地面积54平方米。
2、制作一个无盖的铁皮箱子,已知箱子的长是
3分米,宽和高都是1.5分米,至少需要多少
铁皮?
3×1.5×3+1.5×1.5×2
=13.5+5.5
=19平方分米
答:至少需要19平方分米。
1、一个盒子长8分米,宽6分米,高4分米,它的
最大占地面积是( 48 )分米。
2、把一块长方体木头锯成两个小长方体后体积
(不变 ),表面积(增加 )。
3、一杯饮料大约有150( ml )。
4、正方体鱼缸的棱长之和是36厘米,则体积是
( 27立方厘米 )。
ppt课件
13
四、解决问题:
(1)用一根84厘米长的铁丝焊成一个正方体框架, 它的棱长是多少厘米?