任意角的三角函数(单位圆定义法)
单位圆与任意角的三角函数课件-高一下学期数学北师大版(2019)必修第二册

分析:如图设角的终边与单位圆交于点,则点
, ,且 = 1。点 , 在角的终边上,
则 = 2 + 2 ,分别过点, 作轴的垂线, ,
垂足为, ,易知△ ∽△ ,所以
点 , ,那么:
三角函数
的正弦函
数
的余弦函
数
定义
记法
符号表示
点的纵坐标
=
点的横坐标
=
概念剖析:
(1)是一个任意角,也就是实数(弧度数)所以,设是一个任意角实际上就
是说明它是一个任意的实数
(2)终边与单位圆的交点 , ,实际上给出了两对对应关系
2 11
,
3
6
上的最值。
例7、比较函数值的大小
(1)下列结论正确的是( )
A、400 > 50
B、220 < 590
C、130 > 500
D、 −40 < 310
(2)比较下列各组数的大小
6
6
①3, 4
② ,
对 点 练 习
1、在单位圆中, = − :(1)画出角;(2)求角的正弦函数值和余弦函数
4
值。
2、若角的终边过点
1 3
,
2 2
,求,。
3、已知角的顶点为坐标原点,始边为轴的非负半轴,若 4, 是角终边上一
点,且 =
2 5
− ,求的值。
5
3、常见的特殊角的三角函数值
实数对应点的纵坐标,实数对应点的横坐标。
由于对于任意一个角,它的终边是唯一确定的,所以交点 , 唯一确定,也
数学素材:为什么用单位圆上点的坐标定义任意角的三角函数

为什么用单位圆上点的坐标定义任意角的三角函数在人教版《普通高中实验教科书·数学4·必修(A版)》(简称“人教A 版”)中,三角函数采用了如下定义(简称“单位圆定义法”):“如图1,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;(2)x叫做α的余弦,记作cosα,即cosα=x;(3)叫做α的正切,记作tanα,即tanα=(x≠0).可以看出,当α=(k∈Z)时,α的终边在y轴上,这时点P的横坐标x等于0,所以无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.”1.部分教师的疑惑和意见由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的定义,即在角α的终边上任取一点P(x,y),P到原点的距离为r,比值,,分别定义为角α的正弦函数、余弦函数和正切函数(简称“终边定义法”).其理由主要有以下几点:第一,“单位圆定义法”中,“交点是特殊的,缺乏一般性,不符合数学定义的要求”;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”.有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”.第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广.有的老师说,“用单位圆上点的坐标定义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值.而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义.”第三,“单位圆定义法”不利于解题.有的老师说,在解“已知角α终边上一点的坐标是(3a,4a),求角α的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义法”很不方便.为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始.2.对三角函数发展历史的简单回顾回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法.1450年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了.后来,由于间接测量、测绘工作的需要而出现了平面三角.三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus,1436—1476)于1464年出版《论各种三角形》,这部著作首次对三角学做出了完整、独立的阐述.其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理.这部著作为三角学在平面与球面几何中的应用奠定了牢固基础.后来,哥白尼的学生雷提库斯(G. J. Rhaeticus,1514—1576)将传统的圆中的弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割).法国数学家韦达(F. Vieta,1540—1603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化.总之,16世纪,三角学从天文学中分离出来,成为数学的一个独立分支.不过,值得注意的是,这时所讨论的“三角函数”仅限于锐角三角函数,而且研究锐角三角函数的目的在于解三角形和三角计算.任意角的三角函数的研究,与圆周运动的研究有直接关系.17世纪,“数学从运动的研究中引出了一个基本概念.在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数──或变量间的关系──的概念.” “正弦、余弦函数是一对起源于圆周运动,密切配合的周期函数,它们是解析几何学和周期函数的分析学中最为基本和重要的函数;而正弦、余弦函数的基本性质乃是圆的几何性质(主要是其对称性)的直接反映.”任意角的三角函数的系统化是在18世纪的微积分研究中完成的.“微积分的一般工作的结果是:初等函数被充分地认识了,并实际已将它们发展成为我们今天所见到的样子.”“三角函数的数学也系统化了.Newton和Leibniz给出了这些函数的级数展开式.两个角的和与差的三角函数sin(x+y),sin(x-y)……的公式的发展应归功于一批人……最后,Euler于1748年在关于木星和土星运动中的不等式的一篇得奖文章中给出了三角函数的一个十分系统的处理.在Euler1748年的《引论》中已经搞清了三角函数的周期性,并引入了角的弧度制.” 3.任意角的三角函数与锐角三角函数的关系从上述简单回顾可以看到,任意角的三角函数虽然与三角学(锐角三角函数)有渊源关系,某种意义上可以把前者看成是后者的进一步发展,但它们研究的是两类不同的问题.“三角学所讨论的课题是三角形的各种各样的几何量之间的函数关系” ,锐角三角函数是解三角形的工具;而任意角的三角函数却不限于此,它是一个周期函数,是研究现实世界中周期变化现象的“最有表现力的函数”.另外,从数学发展的历史看,任意角的三角函数在18世纪之所以得到系统研究(其中很重要的是函数的三角级数展开式问题),一个主要原因是三角函数具有周期性,这一特殊属性在天文学、物理学中有大量的应用.三角级数“在天文学中之所以有用,显然是由于它们是周期函数,而天文现象大都是周期的” ,而这种应用又与当时的数学研究的中心工作──微积分紧密结合,人们在研究行星运动的各种问题时,需要确定函数的Fourier展开式,而这种展开式(三角级数)的系数是用定积分表示的.所以,锐角三角函数是研究三角形各种几何量之间的关系而发展起来的,任意角三角函数是研究现实中的周期现象而发展起来的.它们研究的对象不同,表现的性质也不同.我们既不能把任意角的三角函数看成是锐角三角函数的推广(或一般化),又不能把锐角三角函数看成是任意角的三角函数在锐角范围内的“限定”.4.用“单位圆定义法”的理由用单位圆上点的坐标定义任意角的三角函数有许多优点.(1)简单、清楚,突出三角函数最重要的性质──周期性.采用“单位圆定义法”,对于任意角a,它的终边与单位圆交点P(x,y)唯一确定,这样,正弦、余弦函数中自变量与函数值之间的对应关系,即角a(弧度)对应于点P的纵坐标y──正弦,角a(弧度)对应于点P的横坐标x──余弦,可以得到非常清楚、明确的表示,而且这种表示也是简单的.另外,“x= cosa,y= sina是单位圆的自然的动态(解析)描述,由此可以想到,正弦、余弦函数的基本性质就是圆的几何性质(主要是对称性)的解析表述”,其中,单位圆上点的坐标随着角a每隔2π(圆周长)而重复出现(点绕圆周一圈而回到原来的位置),非常直观地显示了这两个函数的周期性.“终边定义法”需要经过“取点──求距离──求比值”等步骤,对应关系不够简洁;“比值”作为三角函数值,其意义(几何含义)不够清晰;“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系不一致,而且“比值”需要通过运算才能得到,任意一个角所对应的比值的唯一性(即与点的选取无关)也需要证明;“比值”的周期性变化规律也需要经过推理才能得到.以往的教学实践表明,许多学生在结束了三角函数的学习后还对三角函数的对应关系不甚了了,与“终边定义法”的这些问题不无关系.(2)有利于构建任意角的三角函数的知识结构.“单位圆定义法”以单位圆为载体,自变量a与函数值x,y的意义非常直观而具体,单位圆中的三角函数线与定义有了直接联系,从而使我们能方便地采用数形结合的思想讨论三角函数的定义域、值域、函数值符号的变化规律、同角三角函数的基本关系式、诱导公式、周期性、单调性、最大值、最小值等.例如:● P(x,y)在单位圆上|x|≤1,|y|≤1,即正弦、余弦函数的值域为[-1,1];● |OP|2=1sin2a +cos2a =1;●对于圆心的中心对称性sin(π+a)=-sina,cos(π+a)=-cosa;●对于x轴的轴对称性sin(-a)=-sina,cos(-a)=cosa;●对于y轴的轴对称性sin(π-a)=sina,cos(π-a)=-cosa;●对于直线y=x的轴对称性sin(-a)=cosa,cos(-a)=sina;● sina在[-,]内的单调性a:- 0 πx:-1010-1 sina在[-,]上单调递增,在[,]上单调递减;……另外,学生在学习弧度制时,对于引进弧度制的必要性较难理解.“单位圆定义法”可以启发学生反思:采用弧度制度量角,就是用单位圆的半径来度量角,这时角度和半径长度的单位一致,这样,三角函数就是以实数(弧度数)为自变量,以单位圆上点的坐标(也是实数)为函数值的函数,这就与函数的一般定义一致了.另外,我们还可以这样来理解三角函数中自变量与函数值之间的对应关系:把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)a被缠绕到单位圆上的点P(cosa,sina).(3)符合三角函数的发展历史.前述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”.所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.(4)有利于后续学习.前已述及,“单位圆定义法”使三角函数反映的数形关系更直接,为后面讨论三角函数的性质和图像奠定了很好的直观基础.不仅如此,这一定义还能为“两角和与差的三角函数”的学习带来方便,因为和(差)角公式实际上是“圆的旋转对称性”的解析表述,和(差)化积公式也是圆的反射对称性的解析表述.另外,这一定义中角的度量直接采用了弧度制,能为微积分的学习带来方便.例如,重要极限=1几乎就是定义的一个“推论”.5.教科书中的任意角的三角函数的引入方式“人教A版”首先通过“思考”,提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数这样做的目的主要是为了以锐角三角函数为认知基础来学习任意角的三角函数,使学生初步体会用单位圆上点的坐标表示锐角三角函数所具有的简单、方便并反映本质的好处,从而为“单位圆定义法”做好认知准备.需要注意的是,这样做并不表明任意角的三角函数与锐角三角函数之间有一般与特殊的关系.事实上,用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.6.几点说明(1)“单位圆定义法”与“终边定义法”本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.例如,由苏联科学院院士、世界著名数学家И.М.维诺格拉多夫主编,苏联百科全书出版社出版,被陈省身先生誉为“对数学的贡献,将无法估计”的、具有世界性权威的《数学百科全书》(中译本在2000年由科学出版社出版)中,采用了“单位圆定义法”;中国大百科全书出版社的《中国大百科全书·数学》(1992年版)中采用了“终边定义法”.应当说,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.值得强调的是正弦、余弦和正切函数在R(正切除a=(k∈Z) 外)上处处有定义,而不是角a的终边上取点的任意性.事实上,在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角a,这三个比值(如果有的话)都不会随点P 在a的终边上的位置的改变而改变……对于确定的角a,上面三个比值都是唯一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角a的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.(2)《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中,正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的.这样理解各三角函数的关系,那么“用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义”的担心也就不必要了.(3)“人教A版”在给出三角函数定义后,有如下两个例题:例1 求的正弦、余弦和正切值.例2 已知角a的终边经过点P0(-3,-4),求角a的正弦、余弦和正切值.它们的作用主要是让学生熟悉定义.例1的解答要用锐角三角函数知识,例2的解答要用一定的平面几何知识,而许多学生的平面几何基础较差,所以有一定的困难,这是教学中需要注意的.另外,例2还有让学生研究“终边定义法”的意图,教科书“边空”的“小贴士”表明了这一点:“由例2可知,只要知道角a 终边上任意一点的坐标,就可以求出角a的三角函数值.因此,利用角a终边上任意一点的坐标也可以定义三角函数.你能自己给出这种定义吗?”至于类似“已知角a终边上一点的坐标是(3a,4a),求角a的三角函数值”的问题,显然是一个细枝末节问题,与三角函数的核心知识无关.参考文献:① [美]M. 克莱因. 古今数学思想(第二册)[M]. 上海:上海科学技术出版社,1979,43②项武义. 基础数学讲义丛书?基础几何学[M]. 北京:人民教育出版社,2004,82③同①,122~123④同②,82⑤同①,182⑥详见②,84~87。
用单位圆定义任意角三角函数的深层次领悟

用单位圆定义任意角三角函数的深层次领悟作者:李志敏来源:《师道·教研》2012年第05期以直角三角形为载体的锐角三角函数是解三角形的工具,而任意角的三角函数是研究现实中的周期现象而发展起来的,两者之间的研究对象不同,表现的性质不同,但结合直角三角形中锐角三角函数有助于任意角三角函数的研究.一、“单位圆定义法”有利于直观领悟角与实数之间的对应关系三角函数是建立在两个变量之间对应关系的基础上的.为了直观理解这种对应关系,我结合自制教具,如图1,用木头制作的圆盘,用一条彩带从圆上定点O开始缠绕于圆盘上,若将圆盘的半径看作一个单位长度,根据弧长公式:弧OP的长?謀=r·|?琢|=|?琢|,这样,角(弧度数)与弧长之间就建立了对应关系,两者之间单位一致;同时,若将缠绕于圆盘上的弧OP以O为起点拉直,对应数轴上的有向线段OQ,则弧长与数轴上的点建立了对应关系,而缠绕方向可以顺时针或逆时针方向,所以角(弧度数)与实数之间可以建立一对一关系.二“单位圆定义法”有利于后续内容学习“单位圆定义法”直接反映了三角函数定义中的数形关系,为后续研究三角函数线、三角函数的图像和性质、两角和与差的三角函数公式、和(差)化积公式等奠定了直观基础.1. 有利于诱导公式的学习“单位圆定义法”以单位圆为载体,点P(x,y)即P(cos?琢,sin?琢),根据单位圆上点旋转的周期性、点的对称性,能方便地得出:⑴点P(cos?琢,sin?琢)的位置相同:sin(?琢+k·2?仔)=sin?琢,cos(?琢+k·2?仔)=cos?琢,tan(?琢+k·2?仔)=tan?琢,(k∈z);⑵点P(cos?琢,sin?琢)关于原点对称:sin(?仔+?琢)=-sin?琢,cos(?仔+?琢)=-cos?琢,tan(?仔+?琢)=tan?琢;⑶点P(cos?琢,sin?琢)关于x轴对称:sin(-?琢)=-sin?琢,cos(-?琢)=cos?琢,tan(-?琢)=-tan?琢;⑷点P(cos?琢,sin?琢)关于y轴对称:sin(?仔-?琢)=sin?琢,cos(?仔-?琢)=-cos?琢,tan(?仔-?琢)=-tan?琢;⑸点P(cos?琢,sin?琢)关于直线y=x对称:sin(■-?琢)=cos?琢, cos(■-?琢)=sin?琢;⑹点P(cos?琢,sin?琢)关于直线y=-x对称:sin(■-?琢)=-cos?琢,cos(■-?琢)=-sin?琢.2. 有利于三角函数线的学习三角函数线是三角函数的几何表示,它直观地刻画了三角函数概念.如图2,单位圆中,根据三角函数定义:|OM|=|x|=|cos?琢|,而有向线段OM的方向与x轴的正方向一致,与cos?琢的符号一致,于是,有向线段OM可以表示角?琢的余弦值,叫做角?琢的余弦线;同理,MP,AT分别是角?琢的正弦线、正切线.3. 有利于两角和与差的三角函数的学习两角和与差公式实际上是“圆的旋转对称性”的解析表示,也是圆的反射对称性的解析表述.如图3,在平面直角坐标系xOy中,角?琢的终边与单位圆交于?琢(cos?琢,sin?琢)点,角?茁的终边与单位圆交于点B(cos?茁,sin?茁),设向量■与■的夹角为?兹,易知|?兹|=|?琢-?茁±k·2?仔|(k∈z),则cos?兹=cos(?琢-?茁±k·2?仔)=cos(?琢-?茁).∴■·■=■|·■|cos?兹=cos?兹=cos?琢cos?茁+sin?琢sin?茁.∴cos(?琢-?茁)=cos?琢cos?茁+sin?琢sin?茁.“单位圆定义法”与“终边定义法”本质上是一致的.“单位圆定义法”是任意角?琢的终边与单位圆的交点P(x,y),以单位长为半径;“终边定义法”是任意角?琢的终边上任意一点P(x,y),相当于以r=■为半径.因此,它们两者之间是一致的.但是单位圆定义法有利于完善学生的认知结构,更简单、清楚地突出三角函数的周期性且有利于三角函数的后续学习.。
三角函数单位圆的定义

三角函数单位圆的定义§1.2.1 任意角的三角函数第一课时任意角的三角函数的定义三角函数的定义域和函数值【学习目标、细解考纲】1、借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;2、从任意角三角函数的定义认识其定义域、函数值的符号。
【知识梳理、双基再现】1、在直角坐标系中,叫做单位圆。
2、设α是一个任意角, 它的终边与单位圆交于点P(x,y),那么: ⑴ 叫做α的正弦, 记作 ,即. ⑵ 叫做α的余弦, 记作 ,即. ⑶ 叫做α的正切, 记作 ,即 .当α= 时, α的终边在y 轴上, 这时点P 的横坐标等于 ,所以无意义. 除此之外, 对于确定的角α, 上面三个值都是 . 所以, 正弦、余弦、正切都是以为自变量, 以为函数值的函数, 我们将它们统称为 . 由于与之间可以建立一一对应关系, 三角函数可以看成是自变量为的函数.3、根据任意角的三角函数定义,先将正弦余弦正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符号填入括号。
y =sin α y = cos αy =tan α【小试身手、轻松过关】4、已知角α的终边过点P (-1,2),cos α的值为() A .-5 B 5 C .25 D .25、α是第四象限角,则下列数值中一定是正值的是() A .sin α B .cosαC .tan α D .1tan α6、已知角α的终边过点P (4a , -3a )(aA .25B 25 C .0 D .与α的取值有关7、α是第二象限角,P (x , 5 )为其终边上一点,且cos α= 24x ,则sin α的值为(A .4 B .24 C .4 D .-4【基础训练、锋芒初显】8、函数y =x +-cos x 的定义域是()A .(2k π, (2k +1) π) ,k ∈ZB .[2k π+π2, (2k +1) π],k ∈Z)C .[k π+π2, (k +1) π],k ∈ZD .[2kπ,(2k+1)π],k ∈Z()9、若θ是第三象限角,且cosθ2θ是 2A .第一象限角B .第二象限角C .第三象限角 10、已知点P (tan α, cos α)在第三象限,则角α在A .第一象限B .第二象限C .第三象限D .第四象限角() D .第四象限11、已知sin αtan α≥0,则α的取值集合为 12、角α的终边上有一点P (m ,5),且cos α=m, (m ≠0) ,则sin α+cosα=______. 1313、已知角θ的终边在直线y =x 上,则sin θtan θ 314、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 15、函数y =A .{1}sin x |cos x |tan x++的值域是|sin x |cos x |tan x |B .{1,3}()C .{-1}D .{-1,3}【举一反三、能力拓展】17、(1) 已知角α的终边经过点P(4,-3) ,求2sin α+cosα的值;【名师小结、感悟反思】当角α的终边上点的坐标以参数形式给出时, 要根据问题的实际及解题的需要对参数进行分类讨论.§1.2.1 任意角的三角函数第二课时诱导公式一三角函数线【学习目标、细解考纲】灵活利用利用公式一;掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
任意角的三角函数及基本公式

任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。
任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。
1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。
正弦函数将给定角度的正弦值映射到数轴上。
其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。
2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。
其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。
3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。
其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。
4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。
其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。
5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。
其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。
6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。
其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。
这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。
同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。
1.2 任意角的三角函数

b
a
高中同步新课标²数学
创新方案系列丛书
1 2.已知角 α 的终边与单位圆交于 P(x, ),则 cos α = 2 ________. 1 3 3 2 解析:由 x +4=1,得 x=± 2 ,故 cos α=x=± 2 . 3 答案:± 2
高中同步新课标²数学
创新方案系列丛书 考点3 三角函数值的符号问题
角函数值.
高中同步新课标²数学
创新方案系列丛书
1.求下列三角函数值. 17π 47π 17π (1)sin- ; (2)cos ; (3)tan- . 6 3 4
47π π π 1 解:(1)sin- 6 =sin-8π+6=sin = ; 6 2 π 17π π 2 (2)cos =cos4π+4=cos = ; 4 4 2 17π π (3)tan- 3 =tan-6π+3 =tan
1 解析:由三角函数定义知,sin α=-2. 1 答案:-2
高中同步新课标²数学
创新方案系列丛书
5.cos 6²tan 6的符号为________(填“正”、“负”或“不确
定”).
3π 解析:∵ <6<2π,∴6 是第四象限角. 2 ∴cos 6>0,tan 6<0,则 cos 6· tan 6<0. 答案:负
解析:②③④均错,①正确.
答案:A
高中同步新课标²数学
创新方案系列丛书
2.已知tan x>0,且sin x+cos x>0,那么角x是( A.第一象限角 B.第二象限角 C.第三象限角 )
D.第四象限角
解析:由tan x>0,得α为第一、三象限角.而α为第三象限角时,
任意角的三角函数及诱导公式

——任意角的三角函数及诱导公式1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。
旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。
3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。
角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ、1°=180π≈0.01745(rad )。
弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==。
4.三角函数定义利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=;(2)x 叫做α的余弦,记做cos α,即cos x α=; (3)yx 叫做α的正切,记做tan α,即tan (0)y x xα=≠。
三角函数任意角的三角函数

两角差余弦公式
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
两角和与差的正弦公式
两角和正弦公式
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
两角差正弦公式
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
两角和与差的正切公式
对于任意角α,有以下基本 公式
sin²α+cos²α=1, 1+tan²α=sec²α, 1+cot²α=csc²α
04
05
两角和与差的 倍角和半角公 三角函数公式 式
sin(α+β)=sinαcosβ+cos αsinβ。 cos(α+β)=cosαcosβsinαsinβ
sin(2α)=2sinαcosα, cos(2α)=cos²α-sin²α, tan(2α)=(2tanα)/(1tan²α)
三角函数的图象与性质
01
三角函数的图象是在单位圆上点的轨迹,具有周期nx的图象是一条波形曲线,具有周期性,最小正周期为2π;余弦 函数y=cosx的图象也是一条波形曲线,也具有周期性,最小正周期为2π;正切 函数y=tanx的图象是一条直线,没有周期性。
交流电
交流电的电压和电流是时间的周期函数,可以用三角函数来 表示。
控制工程
在控制工程中,系统的传递函数和稳定性分析需要用到三角 函数的知识。
THANK YOU.
在解三角形中,三角函数可以用于求角度、长度 等,例如利用余弦定理求三角形面积: S=1/2bcsinA。
在微积分中,三角函数可以用于求函数的积分和 导数等,例如求圆的面积:A=πr²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角的三角函数(第一课时)教学设计
一、学情分析
教学对象是高一的学生(按照1、4、5、2、3的顺序讲解),他们在初中学学习过锐角三角函数.因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅.学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢
二、教学目标
1. 知识与技能目标
理解任意角的三角函数的单位圆定义法;了解终边定义法.
理解三角函数是以实数为自变量的函数.
2. 过程与方法目标
通过三角函数的几何表示,进一步加深对数形结合思想的理解.
3. 情感与态度价值观
激发学生探求新知欲望;
体会数学数学概念的严谨性和科学性.
三、教学重、难点
重点:任意角的三角函数的定义.
难点:①由初中锐角三角函数的定义过渡到任意角三角函数的定义;
②在直角坐标系中用角的终边上的点的坐标来刻画三角函数;
③三角函数定义的应用.
四、教学设计思路
(一)创设情境,提出问题(三角函数的产生背景)
由匀速直线运动引出一次函数;
由自由落体和抛物运动引出二次函数;
客观世界中还存在着大量循环往复、周而复始的现象,比如,地球自转引起的昼夜交替变化和公转引起的四季交替变化等,其中圆周运动就是一种具有这种现象的最简单的周期性运动。
它的变化规律该用什么函数模型来描述呢——三角函数.
(二)新课讲解
1.复习初中学过的锐角三角函数的定义
(1)初中学过的锐角三角函数的定义
(2)把角放在直角坐标系中研究引出坐标表示
提出问题:三角函数能否用终边上的点的坐标来表示
①在α的终边上任选一点P (a ,b ),||0OP r =
=>
②sin α、cos α、tan α的值与P 点的位置无关(相似)
为了研究的方便,取r =1(圆心在原点,r =1的圆称为单位圆).则sin b α=、cos a α=、tan b a α=. 2.任意角
(1)理论基础
任意角αα−−−−→唯一对应的终边的位置−−−−→唯一对应终边与单位圆的交点坐标
即任意角α
−−−−→唯一对应终边与单位圆的交点坐标 (2)沿用初中的三角函数的名称
设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:
①
正弦sin y α=; ②
余弦cos x α=; ③ 正弦tan (0)y x x
α=≠. 即:正弦、余弦、正切都是以角(实数)为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们称它们为三角函数.(单位圆定义法) ①正弦函数sin y x =,定义域为R ,值域[-1,1];
sin α=斜边对边,con α=斜边邻边
,tan α=对边
邻边
(图1)
sin α=斜边对边=MP OP =b r ,con α=斜边邻边=OM OP =a r , tan α=
邻边对边=MP OM =b a
②余弦函数cos y x =,定义域为R ,值域[-1,1];
③正切函数tan y x =,定义域为|,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
,值域R . 3.应用
例1.求
53π的正弦、余弦和正切值.
解:53
π与单位圆的交点坐标为1(,2,
则5sin 32π=-,51cos 32π=,5tan 3
π= 例2.已知角α的终边经过点0(3,4)P --,求角α的正弦、余弦和正切值. 分析:
解法一:用单位圆定义法,先利用相似三角形求出角α的终边与单位圆的交点坐标.
解法二:补充终边定义法.
4.课堂小结
重要知识点:三角函数的终边定义法与单位圆定义法
方法及思想:数形结合思想
5.分层作业
必做题:课本P15 练习1、2
选做题:课本P20 2。