有机化学5 脂环烃
有机化学课件-脂环烃

H3C CH3
H3C CH3
环烷烃的立体异构:顺反异构
表示方法1.
➢ 顺反异构用 “顺”或“反” 注明基团相对位 置。
➢英文用“cis” 和“trans”表示。
面镜
顺-1,2-二甲基环丙烷
表示方法2.
CH3
CH3
反-1,2-二甲基环丙烷
CH3
H
H
H
顺-1,4-二甲基环己烷
H
CH3
反-1,4-二甲基环己烷
2) 多取代环己烷:
CH3
H3C
H3C H3C
顺-1,2-二甲基环己烷
反-1,2-二甲基环己烷
H
CH 3
a键(直立键)
H
(H3C)3C
e键(平伏键) 体积大的取代基放在e键上的椅式构象最稳定
思考题
1. 指出下列构象异构体中哪一个是优势构象。
CH3
C(CH3)3
(CH3)3C
CH3
2. 写出顺-2-甲基环己醇的优势构象。
HNO3 HOOC
COOH
§2.2 环烯烃和环二烯烃
(1) 加成反应 (2) 氧化反应
+ Br2 CCl4 CH3 + HI
H Br Br H
环正离子中间体, 反式加成。
CH3 碳正离子中间体,
I
马氏规则。
KMnO4 CH3 CHCH2COOH CH2CH2COOH
O3 Zn, H2O CH2CH2CHO CH2CH2CHO
2.27Å
§5.4 环烷烃的结构
4. 环己烷的结构及构象
椅式构象
H
H
3
H
H
21Biblioteka H H456H H
有机化学课后习题答案5第五章脂环烃(第五轮)答案

7, 7-二甲基二环[2, 2, 1]庚烷
螺环化合物命名的固定格式为:螺[a.b]某烃(a≤b)。命名时先找螺原子,编号从与螺原子 相连的碳开始,沿小环编到大环。如:
螺[4.4]壬烷
3.环烷烃的结构与稳定性 环烷烃的成环碳原子均为 sp3 型杂化。除环丙烷的成环碳原子在同一个平面上以外,其
它环烷烃成环碳原子均不在同一个平面上。在环丙烷分子中由于成环碳原子间成键时 sp3 型 杂化轨道不能沿键轴方向重叠,而是以弯曲方向部分重叠成键,导致环丙烷张力较大,分子 能量较高,很不稳定,容易发生开环反应。所以在环烷烃中三元环最不稳定,四元环比三元 环稍稳定一点,五元环较稳定,六元环及六元以上的环都较稳定。注意桥头碳原子不稳定。 4. 环己烷以及取代环己烷的稳定构象 环己烷在空间上可以形成多种构象,其中椅式和船式构象为两种极限构象,前者比后者更加 稳定。一般说来,取代环己烷的取代基处于椅式构象的平伏键时较为稳定。因此多取代环己 烷的最稳定的构象为平伏键取代基最多的构象。如果环上有不同取代基,较大的取代基在平 伏键上的构象最稳定。 5. 环烷烃的化学性质
CH2
CH CH
CH2
CH CH + HCN OH CH2 CH CN + CH2 CH CH CH2 △
CN
一.用系统命名法命名下列化合物
习题 A
1.
2.
Br 3.
4.
二环[3.3.0]辛 烷
7-溴二环 [3.3.0]-2-辛烯
1,1-联环丁烷
螺[3.4]辛烷
5.
6.
7.
8.
反-1,2-二甲基 环丙烷
二环[4.1.0]庚烷
1,2-二环丙基 丁烷
Br
9.
10
有机化学 脂环烃

扭船式
椅式
转 环 作 用 中 的 能 量 变 化
说明:当环己烷上有取代基时,取代基处于e键的 构象较稳定: ① 单取代环己烷
例
CH3 a CH3 e
(Δ E= 7.5 kJ/ mol) 95%
体积更大的特丁基 叔 100%
C(CH3)3
② 二取代环己烷
cis-1,4-二取代
CH3 H3C
(1e,1a) (1a,1e)
*环数:将桥环烃变为开链化合物所需断开 的C-C键的最小次数。
③ [ ]内标明环的碳原子数(不包括桥头碳), 并从大到小写,数字间用下角原点隔开。 ④ 编号从桥头碳开始,沿大桥、中桥、小桥依次 排号,有取代基时使取代基的位次最小。
2
3
4
1
8 7
6 5
8-甲基-2-乙基二环[4.2.0]辛烷
7
1 6 5 2
H H
H
H
How to draw cyclohexane
由三组平 行线组成
环己烷分子不是静止的
对称轴
H
H H H H
H
H
a键 e键
H
对称轴
H H
H
H H
a键 e键
H H
H H
H
H H
H H
H H
两个椅式构象的互相转变
Chair-chair Inversion in Cyclohexane
半椅式 船式
1、燃烧热(ΔHC) 定义:1mol有机物燃烧放出的能量
烷烃分子中每增加一个CH2,燃烧值的增值基本上 一定,平均为658.6kJ/mol。 环烷烃的燃烧热也随碳原子数的增加而增加,但 不象烷烃那样有规律。环烷烃的通式是CnH2n,即 (CH2)n。因此环烷烃分子中每个CH2的燃烧热是 ΔHC/n。见下表:
大学有机化学脂环烃

多样性来源
脂环烃广泛存在于自然界中,如 动植物体内的萜类、甾体等化合 物,以及石油、天然气等资源。
关键反应参与者
脂环烃在许多化学反应中扮演着 重要的角色,如烷基化、酰化、 氧化等,是实现有机合成转化的 关键物质。
对未来研究的展望
取代反应
总结词
脂环烃的取代反应通常涉及环上氢原子的替换,可以发生在环的侧链或母体碳原子上。
详细描述
脂环烃中的氢原子在一定条件下可以被其他基团取代,如卤素、醇、酸等。取代反应过 程中,一个基团被另一个基团替换,生成新的化合物。例如,环己烯与溴发生取代反应,
生成1-溴环己烯。
环的稳定性与反应活性
总结词
04 脂环烃的合成与转化
合成方法
01
烷基取代反应
通过烷基取代环状化合物的氢原子来合成脂环烃,常用的烷基取代剂有
卤代烃、醇和烯烃等。
02 03
环化反应
通过将两个带有特定官能团的烯烃或炔烃进行环化反应,合成脂环烃。 常见的环化反应有Diels-Alder反应、环加成反应和金属催化的环化反 应等。
氧化还原反应
应用
脂环烃在工业、医药和农业等领域有广泛的应用,如用作溶剂、 香料、染料、农药等。
03 脂环烃的化学反应
加成反应
总结词
脂环烃的加成反应通常涉及碳碳双键的打开,并伴随着新键 的形成。
详细描述
脂环烃中的碳碳双键在一定条件下可以与氢气、卤素、卤化 氢等发生加成反应。加成反应过程中,双键打开,形成新的 单键,从而生成新的化合物。例如,环戊烯与溴化氢发生加 成反应,生成溴代环戊烷。
03
决问题的能力。
02 脂环烃的基本概念
有机化学第五章 脂环烃

注意:A、HX的活性为HI>HBr>HCl。
B、脂环烃一般为环丙烷。
C、取代环丙烷与HX加成,遵循马氏规则, 即开环的位置为取代基最少与最多的两个碳原子之间 。例如
第二十四页,课件共48页
H Br H 2SO 4
C H 3C H 3
C H 3 C C HC H 3 Br
C H 3
之间可以保持109.5°。因此环己烷很稳定。环己烷 有两种极限构象。
第三十页,课件共48页
1.两种极限构象——椅式和船式
99.9%
画法:正确掌握椅式的画法。
0.1%
第三十一页,课件共48页
2. 椅式中两种C-H键:平伏键/e键与直立键/a键
A、直立键(a键):与分子的对称轴平行的C-H 键,其中3个方向朝上,3个方向朝下。
C H 3C H 3 C C HC H 3
H 2O C H 3
C H 3C H 3 C C HC H 3
O SO 3H
O H
四、环烷烃的鉴别:
对于环丙烷可使溴的四氯化碳褪色,其性质类 似于烯烃、炔烃,但它不被冷、稀的高锰酸钾氧化 ,可以与不饱和烃区别。
例如,用化学方法鉴别1,1-二甲基环丙烷、戊烷 、1-戊烯、1-戊炔四种化合物。
H
H 称为扭转张力)。
第二十九页,课件共48页
在环丙烷分子中,电子云的重叠不能沿着SP3
轨道轴对称重叠,只能偏离键轴一定的角度以弯曲键 侧面重叠,形成弯曲香蕉键。因键角要从109.5°压 缩到105.5°,产生一定的角张力。
二、环己烷的构象
下面讨论环己烷的构象。在环己烷中,碳原 子都按SP3杂化,6个碳原子不在一个平面。碳碳键
2)环烷烃的命名与烷烃相似,其命名原则为:
有机化学 理论篇 第五版 第5章 脂环烃

5.5.1 环烯烃的反应 5.5.2 共轭环二烯的反应
5.6 构象异构
5.6.1 烷烃的构象 5.6.2 环已烷及其衍生物的构象
5
第5章 脂环烃
有机化学(理论篇)
【学习目标】
➢ 掌握脂环烃的定义、同分异构及命名; ➢ 熟悉脂环烃的来源、物理性质及其变化规律; ➢ 掌握脂环烃的化学性质;小环烷烃的开环加成反应;能
2
第5章 脂环烃
有机化学(理论篇)
按照拜尔张力学说,应该五元环最稳定,六元环以上的化合 物,角张力大,应该是不稳定的,但后来合成的一些大环化合 物都是稳定的,这与张力学说不符。也就是说,该学说可以解 释环丙烷的不稳定性,但对于环戊烷、环己烷稳定性的解释与 实际存在偏差,也不能解释7个碳原子及以上环烷烃的稳定性。 直到1930年左右,科学家们用热力学方法研究张力,精确测量 了化合物的燃烧热,得出结论,五元环、六元环以及后来合成 的一些大环化合物都是稳定的,不存在角张力,这是与拜尔的 张力学说不符的。
拜耳张力学说的错误在第一个假设,即将环烷烃分子视为平 面型分子。事实上,除环丙烷外,其它环都不在一个平面上。 虽然该学说有错误,但在有机化学发展史上起过一定的作用。 由此可见,科学是在不断发展的,我们要善于提出质疑,科学 问题的解决需要批判精神和怀疑精神,批判才能创新。
3
第5章 脂环烃
有机化学(理论篇)
利用烷烃、小环烷烃化学性质上的差异鉴别两类物质。 ➢ 熟悉环烷烃分子结构与环的稳定性的关系; ➢ 了解乙烷、丁烷和环己烷的构象。
6
第5章 脂环烃
有机化学(理论篇)
脂环烃是指由碳、氢两种元素组成,分子中含有碳环结 构,性质与链状脂肪烃相似的一类有机化合物。脂环烃及其 衍生物广泛存在于自然界中,例如有些地区所产的石油中含 多量的环烷烃;一些植物中含有的挥发油(精油),其成分大多 是环烯烃及其含氧衍生物;在自然界广泛存在甾族化合物都 是脂环烃的衍生物,在人体中起重要作用。脂环烃及其衍生 物在生产和生活实践中具有重要应用。例如:
有机化学 第五章 脂环烃

折叠式构象 环丁烷中的键 环丁烷的构象
5.4.3 环戊烷的结构
• 不是平面结构.因C-H键的重叠,有较大扭转张力. • 实际构象:折叠环的形式--“信封式”构象.
•分子张力不大,因此环戊烷的化学性质比较稳定.
5.4.4 环己烷的结构
• 环己烷不是平面结构,较为稳定的构 象为折叠的椅型构象和船型构象. (1) 椅型构象 --稳定(99.9%以上) • C-C-C键角基本保持109.5°,任何两 个相邻的C-H键都是交叉式的.椅型构 象无张力环.
• 在加热,强氧化剂作用或催化剂存在时,可用空气 氧化成各种氧化产物: O 例: HNO3 CH2CH2COOH Ba(OH)2 Δ CH2CH2COOH
5.2.2 环烯烃和环二烯烃的反应 (1) 环烯烃的加成反应 • 易发生加氢,加卤素,加卤化氢和加硫酸等反应.
Br Br
例:
CH3
+ Br2
CCl4
CH3
1 6 5 4
1-甲基-1-环己烯
2 3
H3C 3
4
2 1 6 5
3-甲基-1-环己烯
带有侧链的环烯烃命名:
CH3
6
5 1 3
CH3 CH3
2
5 4 1 3
4
2
1,6-二甲基-1-环己烯
5-甲基-1,3-环戊二烯
(3) 双环化合物--分子中含有两个碳环.
• 其中两个碳环共用一个碳原子的叫螺化合物. • 共用两个或以上碳原子的叫桥环化合物.
(2) 开环反应--也叫加成反应. (A) 催化加氢
Ni 80℃ Ni
+ H2
+ H2
+ H2
有机化学考研复习资料-脂环烃

第五章脂环烃一. 基本内容1.定义和分类脂环烃是碳架为环状的烃分子。
根据分子中所含碳环的数目及碳、氢比例的不同,可分为单环脂环烃(环烷烃、环烯烃、环炔烃)和多环脂环烃(螺环脂环烃、稠环脂环烃、桥环脂环烃)。
(1)环烷烃:分子中碳原子以单键互相连接成闭合碳环的脂环烃,单环脂环烷烃的通式为C n H2n,如:环丁烷、环戊烷等。
(2)环烯烃:分子中碳原子之间有以双键互相连接成闭合碳环的脂环烃。
如:环戊烯、环戊二烯等。
(3)螺环脂环烃:分子中两个碳环共用一个碳原子的脂环烃。
例如:5-甲基螺[3.4]辛烷(4)桥环脂环烃:`两个环共用两个或以上碳原子的多环烃。
例如:7,7-二甲基二环[2.2.1]庚烷(5)稠环脂环烃:两个碳环间共用两个碳原子的脂环烃,是桥环脂环烃的一种。
如:十氢化萘菲烷2.反应(1)环烷烃环烷烃的反应与非环烷烃的性质相似。
含三元环和四元环的小环化合物有一些特殊的性质,它们容易开环生成开链化合物。
(ⅰ)加氢:环丙烷在较低的温度和镍催化下加氢开环生成丙烷;环丁烷在较高温度下也可以加氢开环生成丁烷;环戊烷、环己烷等要用活性高的催化剂在更高温度下才能开环生成烷烃。
(ⅱ)加溴:溴在室温下即能使环丙烷开环,生成1,3-二溴丙烷,而环丁烷、环戊烷等与溴的反应与烷烃相似,即起取代反应。
(ⅲ)加溴化氢:溴化氢也能使环丙烷开环,产物为1-溴丙烷,取代环丙烷与溴化氢的反应符合马尔科夫尼科夫规则,环的断裂在取代基最多和取代基最少的碳碳键之间发生;环丁烷、环戊烷等不易与溴化氢反应。
(ⅳ)氧化反应:高锰酸钾溶液不能使环丙烷退色。
(2)环烯烃环烯烃与烯烃一样主要起加成反应和氧化反应:3.制备脂环烃的合成方法可分为两大类,一类是把链状化合物的两端连接成环;另一类是由环状化合物改变其官能团而得。
(1)分子内偶联α、ω-二卤化合物的武慈型环合法:此方法合成五元以上的环,产率很低。
可用格氏试剂合成四到七元环:(2)狄尔斯-阿德耳反应狄尔斯-阿德耳反应是顺式加成,加成产物仍保持共轭二烯和亲双烯体原来的构Br Br Na(Zn)THF3382%Br2BrBrO H2O/ZnCHOOBrHBrBr2Br Br2BrCH3CH2CH3型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题库(习题)第五章 脂环烃一、命名下列化合物1.2.1-甲基-2-异丙基环戊烷 1,6-二甲基螺[4.5]癸烷3. CH 3C 2H 54.1-甲基-2-乙基环戊烷 螺[3.4]辛烷5.6. CH 3CH 3二环[2.2.1]庚烷 反-1,2-二甲基环丙烷7.CH(CH 3)28.Br异丙基环丙烷 5-溴螺[3.4]辛烷9.3)2310.顺-1-甲基-2-异丙基环己烷 2,7,7-三甲基二环[2.2.1]庚烷11.CH 312.Cl Cl6-甲基螺[2.5]辛烷 7,7-二氯二环[4.1.0]庚烷二、写出下列化合物的结构式1、环戊基甲酸2、4-甲基环己烯COOHCH 33、二环[4.1.0]庚烷4、反-1-甲基-4-叔丁基环己烷(CH 3)3CH 35、3-甲基环戊烯6、5,6-二甲基二环[2.2.1]庚-2-烯CH 3CH 3CH 37、7-溴双环[2.2.1]庚-2-烯 8、2,3-二甲基-8-溴螺[4.5]癸烷HBrCH 3CH 3Br9、4-氯螺[2.4]庚烷 10、反-3-甲基环己醇ClCH11、8-氯二环[3.2.1]辛烷 12、1,2-二甲基-7-溴双环[2.2.1]庚烷ClCH 3H CH 3Br二、完成下列反应式1.+CH 3O 2.+ CH 2CHClC OCH 33.CH 3CHCH 2CH 2+ HBr4.+COOEtCOOEtCH CH 2CH 3CH 3BrCOOEtCOOEt5.CH 3CH CH 2CH 2+ HCl6.CH 3+COOCH 3COOCH 3Cl CH CH 2CH 3CH 3COOCH 3CH 3COOCH 37.CH 3+CH 3COOCH 3COOCH 38. H 3CH 3CCH 2CH 3Cl 2+COOCH 3CH 3CH 3COOCH 3C 2H 5Cl C CH 2CH CH 3ClCH 39.+OCH 310. HBrH 3CH 3CCH 2CH 3+C OCH 3CH 3CH 3CH C CH CH 3Br11.CH OHCH CH 3KMnO 4 12.CH C +CH 3CH3KMnO 4CH 3CH OH OHCH H 3CC CH 3OCH 3+COOH13.H 2SO 4H 2O+CH 314.+COOCH 3CH 3OOCOH CH CH 2CH 3CH 33315.+CO 2CH 316. CHO+COOCH 3CHO17.+18. C O C O+OC O C OO19. +CH 320.+COOCH 3COOCH333COOCH 3COOCH321. NO 2CH 2+22. hvNO 2CH 2三、回答下列问题1.请写出顺-1-甲基-4-叔丁基环己烷的稳定构象。
C(CH 3)3HCH 3H2.请写出反-1-甲基-3-异丙基环己烷的稳定构象。
CH(CH 3)2HCH 3H3.请写出反-1-甲基-4-异丙基环己烷的稳定构象。
CH(CH 3)2CH 34. 画出反-1-叔丁基-4-氯环己烷的优势构象。
C(CH3)3Cl5.请写出顺-1-甲基-2-异丙基环己烷的稳定构象。
CH(CH 3)2CH 3H6.写出异丙基环己烷的稳定构象。
CH(CH 3)2H7.画出反-1,4-二乙基环己烷的最稳定构象。
C 2H 5HC 2H 58.请写出顺-1-甲基-3-异丙基环己烷的稳定构象。
CH(CH 3)2CH 39.画出顺-1-氯-2-溴环己烷的优势构象。
H ClBr H10.画出反-1,3-二羟基环己烷的最稳定构象。
H OHOHH四、用化学方法鉴别下列化合物1.苯乙炔 环己烯 环己烷加溴水使溴水不褪色的为环己烷,余者加Ag(NH 3)2+有白色沉淀为苯乙炔。
2. 1-戊烯 1,2-二甲基环丙烷加KMnO 4不褪色的为1,2-二甲基环丙烷。
3.2-丁烯 1-丁炔 乙基环丙烷加KMnO 4不褪色的为乙基环丙烷,余者加Ag(NH 3)2+有白色沉淀为1-丁炔。
4. 环丙烷与环丙烷 5.1,2-二甲基环丙烷与环戊烷加溴水使溴水褪色的为环丙烷。
加溴水褪色的为1,2-二甲基环丙烷。
6.乙基环丙烷和环戊烷 7.乙基环丙烷和乙烯基环丙烷加溴水使溴水褪色的为乙基环丙烷。
加KMnO 4褪色的为乙烯基环丙烷。
8.环己烯与异丙基环丙烷 9.丁烷和甲基环丙烷加KMnO 4褪色的为环己烯。
加溴水使溴水褪色的为乙基环丙烷。
10. 1,3-环已二烯与环己烯加顺丁烯二酸酐产生白色沉淀的为1,3-环己二烯。
11.甲基环丁烷和环己烷加溴水使溴水褪色的为乙基环丙烷。
12.环丁烯与1,3-丁二烯加顺丁烯二酸酐产生白色沉淀的为1,3-丁二烯。
五、合成题1.以乙炔为原料合成 CNCH 2H 22催化剂CH2CH 2CH CH CH 2CHCH CLindlarCH 2CN△CN +OHCH 2CH CH CH 2+CH CHHCN2.以乙炔和丙烯为原料合成CH 2ClCH 2H 22催化剂CH2CH 2CH CH CHNH CHCH CLindlarCH2CH 2CH 2 △Cl ℃+CH 2CH CH CH CH 2ClCl +CH 3500CH CH 23.以环己醇为原料合成(已二醛) OHC-(CH 2)4-CHOCHO(1)(2)O 3(CH 2)4OHC Zn/H 2O4.以必要的烯烃为原料合成CNCH 2Na Br CH 2CN CNNBSCH CH 2+CH3CH CH 2Br CH 2CH 2CNCN2+CH 2CH CH 25.以烯烃为原料合成 ClCH2ClClCH 2Cl ℃+2CH CH 2ClCl +CH 3500CH CH 2Cl+CH 2Cl Cl 2Cl CH 2Cl6.从1-甲基环己烷出发合成反-2-甲基环己醇。
Br 2H 3CCH 3+hv Br3六、推测结构1.某烃C 3H 6(A)在低温时与氯作用生成C 3H 6Cl 2(B),在高温时则生成C 3H 5Cl(C)。
使(C)与碘化乙基镁作用得C 5H 10(D),后者与NBS 作用生成C 5H 9Br(E)。
使(E)与氢氧化钾的酒精溶液共热,主要生成C 5H 8(F),后者又可与丁烯二酸酐发生双烯合成得(G)。
试推测由(A)到(G)的结构式。
(A )CH 3CH CH 2; (C )CH CH 2CH 2Cl ; (D )CH 2CH 3CH CH 2CH 2(B )CH CH 3CH 2;(E )CH CH 2CH 3CH CH 2Br ;(G )C OC O CH 3O(F )CH CH 3CH CH CH 2;2.有(A),(B),(C),(D)四种化合物分子式均为C 6H 12,(A)与臭氧氧化水解后得到丙醛和丙酮,(D )用臭氧氧化水解后只得到一种产物。
(B )和(C )与臭氧或催化氢化都不反应,(C )分子中所有的氢原子均为等价,而(B )分子中含有一个CH 3—CH < 结构单元。
问(A ),(B ),(C ),(D )可能的结构式? (A ) ;(B )CH C 2H 5CH 3;(C )CH CH 3CH 3CH 或 C 2H 5CH CH 23.化合物(A )分子式为C 4H 8,它能使溴水褪色,但不能使稀的高锰酸钾溶液褪色。
1mol (A )与1molHBr 作用生成(B ),(B )也可以从(A )的同分异构体(C )与HBr 作用得到,化合物(C )分子式也是C 4H 8,能使溴水褪色,也能使稀的高锰酸钾溶液褪色,试推测化合物(A ),(B ),(C )的构造式。
(A )CH 3C 2H 5CH 3C CH ; (B )CH 3; (C )(D )C 2H 5CH 3CH 2CHCH 或 H 3C CH 3C H 3C CH 3C4.化合物(A )分子式为C 7H 14,具有旋光性。
它与HBr 作用生成的主要产物(B ),(B )的构造式为:(A)H 3C C 2H5H 3C* ; (B) (CH 3)2CH 3CH CH 2CH 3C Br。