有机化学脂环烃

合集下载

有机化学- 脂环烃

有机化学- 脂环烃
单个CH2的燃烧热最高。 环越小,能量越高,越不稳定,六环以上
趋于稳定。
上页 下页 首页
环己烷
3
5 4
1 2 6
4
1
32
56
在(a)和(b)中,C2、C3 、C5 、C6都在一个平面内,但在(b) 中,C1和C4在平面的同一侧,这种构象叫船式构象;而在(a) 中,C1和C4在平面的上下两侧,这种构象叫椅式构象。
第三章 脂环烃
1
芳香族 脂环族
杂环
碳环有机 化合物
+
链状有机化合物
2
第一节 脂环烃的分类和命名
1、根据环的个数分类:单环烃、双环烃、多环烃。
2、按照 是否包 含重键 分类
饱和脂环烃 不饱和脂环烃
环烷烃 如
...
环烯烃 如 ... ...
环二烯烃 如
... ...
环炔烃 如
... ...
3
一、单环脂烃
10
8
1
7
2
5
3
6
4
二环[3,2,1]辛烷
5
4
67
8
3
21 9
CH 3
CH3 7
34 21
2-甲基双环[4,3,0]壬烷
5
4
67
8
3
21 9
CH 3
CH3 7 CH3
34
5
2
16
CH 3
321 4 13 11 5 12 10
6 9
78
5,7,7-三甲基双环[2,2,1]-2-庚烯
11
第二节 脂环烃的性质
19
环己烷(椅式构象)
分子中碳碳之间的键角能够保持或尽可能接近 109°28′。因此除了三、四元环为张力环以外,环 戊烷及其以上的环烷烃键角都是接近109°28′ 。

有机化学课件-脂环烃

有机化学课件-脂环烃

H3C CH3
H3C CH3
环烷烃的立体异构:顺反异构
表示方法1.
➢ 顺反异构用 “顺”或“反” 注明基团相对位 置。
➢英文用“cis” 和“trans”表示。
面镜
顺-1,2-二甲基环丙烷
表示方法2.
CH3
CH3
反-1,2-二甲基环丙烷
CH3
H
H
H
顺-1,4-二甲基环己烷
H
CH3
反-1,4-二甲基环己烷
2) 多取代环己烷:
CH3
H3C
H3C H3C
顺-1,2-二甲基环己烷
反-1,2-二甲基环己烷
H
CH 3
a键(直立键)
H
(H3C)3C
e键(平伏键) 体积大的取代基放在e键上的椅式构象最稳定
思考题
1. 指出下列构象异构体中哪一个是优势构象。
CH3
C(CH3)3
(CH3)3C
CH3
2. 写出顺-2-甲基环己醇的优势构象。
HNO3 HOOC
COOH
§2.2 环烯烃和环二烯烃
(1) 加成反应 (2) 氧化反应
+ Br2 CCl4 CH3 + HI
H Br Br H
环正离子中间体, 反式加成。
CH3 碳正离子中间体,
I
马氏规则。
KMnO4 CH3 CHCH2COOH CH2CH2COOH
O3 Zn, H2O CH2CH2CHO CH2CH2CHO
2.27Å
§5.4 环烷烃的结构
4. 环己烷的结构及构象
椅式构象
H
H
3
H
H
21Biblioteka H H456H H

有机化学 脂环烃

有机化学 脂环烃

扭船式
椅式
转 环 作 用 中 的 能 量 变 化
说明:当环己烷上有取代基时,取代基处于e键的 构象较稳定: ① 单取代环己烷

CH3 a CH3 e
(Δ E= 7.5 kJ/ mol) 95%
体积更大的特丁基 叔 100%
C(CH3)3
② 二取代环己烷
cis-1,4-二取代
CH3 H3C
(1e,1a) (1a,1e)
*环数:将桥环烃变为开链化合物所需断开 的C-C键的最小次数。
③ [ ]内标明环的碳原子数(不包括桥头碳), 并从大到小写,数字间用下角原点隔开。 ④ 编号从桥头碳开始,沿大桥、中桥、小桥依次 排号,有取代基时使取代基的位次最小。
2
3
4
1
8 7
6 5
8-甲基-2-乙基二环[4.2.0]辛烷
7
1 6 5 2
H H
H
H
How to draw cyclohexane
由三组平 行线组成
环己烷分子不是静止的
对称轴
H
H H H H
H
H
a键 e键
H
对称轴
H H
H
H H
a键 e键
H H
H H
H
H H
H H
H H
两个椅式构象的互相转变
Chair-chair Inversion in Cyclohexane
半椅式 船式
1、燃烧热(ΔHC) 定义:1mol有机物燃烧放出的能量
烷烃分子中每增加一个CH2,燃烧值的增值基本上 一定,平均为658.6kJ/mol。 环烷烃的燃烧热也随碳原子数的增加而增加,但 不象烷烃那样有规律。环烷烃的通式是CnH2n,即 (CH2)n。因此环烷烃分子中每个CH2的燃烧热是 ΔHC/n。见下表:

大学有机化学脂环烃

大学有机化学脂环烃
脂环烃是有机化学中的基础性物 质,是构成复杂有机化合物的基 本单元之一。
多样性来源
脂环烃广泛存在于自然界中,如 动植物体内的萜类、甾体等化合 物,以及石油、天然气等资源。
关键反应参与者
脂环烃在许多化学反应中扮演着 重要的角色,如烷基化、酰化、 氧化等,是实现有机合成转化的 关键物质。
对未来研究的展望
取代反应
总结词
脂环烃的取代反应通常涉及环上氢原子的替换,可以发生在环的侧链或母体碳原子上。
详细描述
脂环烃中的氢原子在一定条件下可以被其他基团取代,如卤素、醇、酸等。取代反应过 程中,一个基团被另一个基团替换,生成新的化合物。例如,环己烯与溴发生取代反应,
生成1-溴环己烯。
环的稳定性与反应活性
总结词
04 脂环烃的合成与转化
合成方法
01
烷基取代反应
通过烷基取代环状化合物的氢原子来合成脂环烃,常用的烷基取代剂有
卤代烃、醇和烯烃等。
02 03
环化反应
通过将两个带有特定官能团的烯烃或炔烃进行环化反应,合成脂环烃。 常见的环化反应有Diels-Alder反应、环加成反应和金属催化的环化反 应等。
氧化还原反应
应用
脂环烃在工业、医药和农业等领域有广泛的应用,如用作溶剂、 香料、染料、农药等。
03 脂环烃的化学反应
加成反应
总结词
脂环烃的加成反应通常涉及碳碳双键的打开,并伴随着新键 的形成。
详细描述
脂环烃中的碳碳双键在一定条件下可以与氢气、卤素、卤化 氢等发生加成反应。加成反应过程中,双键打开,形成新的 单键,从而生成新的化合物。例如,环戊烯与溴化氢发生加 成反应,生成溴代环戊烷。
03
决问题的能力。
02 脂环烃的基本概念

有机化学—脂环烃

有机化学—脂环烃

❖ 故三元环的结构特殊。
❖ 现代物理方法测定,环丙烷分子中: 角 C-C-C = 105.5°; H-C-H =114°。
H

❖ 所以环丙烷分子中碳原子之间的sp3杂化轨道 是以弯曲键(香蕉键)相互交盖的。
❖ 由图可见,环丙烷分子中存在着较大的张力 (角张力和扭转张力),是一个有张力环,所
H
以易开环,所以易开环,发生加成反应
根据碳环数目
分类
是否含有重键
成环碳原子数目
1、按脂环烃中含碳环数目分类
脂环烃
单环脂环烃:小环(3-4);普通环(5-7); 中环(8-12)和大环(>12),其中五环、六 环最常见。
二环脂肪烃(螺环,桥环)
多环脂环烃
单环
螺环
桥环
多环
❖二环脂肪烃之螺环烃
共用一个碳原子的双环为螺环烃 螺原子:共用的碳 按碳原子总数称螺某烷
1-甲基-3-异丙基 环己烷
111-甲--1甲甲环-基环甲环基基己环-基己己3--33烷-己烷-烷异-3异异烷-丙异丙丙基丙基基基
二、环的张力及环己烷的构象
1、环的张力
❖ 环丙烷的结构
❖ 理论上:
❖ 饱和烃,C为sp3杂化,键角为109.5°
自相
H
❖ 三碳环,成环碳原子应共平面,内角为60° 矛盾
脂环烃是指碳干为环状而性质和开链烃相似的烃 类。脂环烃及其衍生物广泛存在于自然界,尤其是在
石油和植物中。由植物第的花四、章叶、茎脂、根环、烃果皮等提
取出来的香精油(挥发油),都含有大量的不饱和脂 环烃及其含氧的脂环化合物。它们大多具有生理活性。
第一节 脂环烃的分类
定义:链状烷烃碳链的首尾两个碳原子以单链 相连,形成具有环状结构的烷烃成为环烷烃。

有机化学考研复习资料-脂环烃

有机化学考研复习资料-脂环烃

第五章脂环烃一. 基本内容1.定义和分类脂环烃是碳架为环状的烃分子。

根据分子中所含碳环的数目及碳、氢比例的不同,可分为单环脂环烃(环烷烃、环烯烃、环炔烃)和多环脂环烃(螺环脂环烃、稠环脂环烃、桥环脂环烃)。

(1)环烷烃:分子中碳原子以单键互相连接成闭合碳环的脂环烃,单环脂环烷烃的通式为C n H2n,如:环丁烷、环戊烷等。

(2)环烯烃:分子中碳原子之间有以双键互相连接成闭合碳环的脂环烃。

如:环戊烯、环戊二烯等。

(3)螺环脂环烃:分子中两个碳环共用一个碳原子的脂环烃。

例如:5-甲基螺[3.4]辛烷(4)桥环脂环烃:`两个环共用两个或以上碳原子的多环烃。

例如:7,7-二甲基二环[2.2.1]庚烷(5)稠环脂环烃:两个碳环间共用两个碳原子的脂环烃,是桥环脂环烃的一种。

如:十氢化萘菲烷2.反应(1)环烷烃环烷烃的反应与非环烷烃的性质相似。

含三元环和四元环的小环化合物有一些特殊的性质,它们容易开环生成开链化合物。

(ⅰ)加氢:环丙烷在较低的温度和镍催化下加氢开环生成丙烷;环丁烷在较高温度下也可以加氢开环生成丁烷;环戊烷、环己烷等要用活性高的催化剂在更高温度下才能开环生成烷烃。

(ⅱ)加溴:溴在室温下即能使环丙烷开环,生成1,3-二溴丙烷,而环丁烷、环戊烷等与溴的反应与烷烃相似,即起取代反应。

(ⅲ)加溴化氢:溴化氢也能使环丙烷开环,产物为1-溴丙烷,取代环丙烷与溴化氢的反应符合马尔科夫尼科夫规则,环的断裂在取代基最多和取代基最少的碳碳键之间发生;环丁烷、环戊烷等不易与溴化氢反应。

(ⅳ)氧化反应:高锰酸钾溶液不能使环丙烷退色。

(2)环烯烃环烯烃与烯烃一样主要起加成反应和氧化反应:3.制备脂环烃的合成方法可分为两大类,一类是把链状化合物的两端连接成环;另一类是由环状化合物改变其官能团而得。

(1)分子内偶联α、ω-二卤化合物的武慈型环合法:此方法合成五元以上的环,产率很低。

可用格氏试剂合成四到七元环:(2)狄尔斯-阿德耳反应狄尔斯-阿德耳反应是顺式加成,加成产物仍保持共轭二烯和亲双烯体原来的构Br Br Na(Zn)THF3382%Br2BrBrO H2O/ZnCHOOBrHBrBr2Br Br2BrCH3CH2CH3型。

有机化学课件--第四章脂环烃

有机化学课件--第四章脂环烃
有机化学课件--第四章脂 环烃
欢迎来到有机化学的世界。今天我们将探索脂环烃这一组合物,了解其定义、 特点、结构、化学反应以及在实际生活中的应用。
什么是脂环烃?
定义
脂环烃是一类具有环状结构且含有脂肪基团的有机化合物。
特点
脂环烃的骨架为碳环,不含杂原子,烷基称为脂基,环状结构导致化学性质独特。
类脂环烃的结构与示例
3
卤代烷环化
通过卤代烷的环化反应得到,如环丙烷环化为环丙基甲苯。
脂环烃的化学性质与反应
• 烷基脂环烃在氧化条件下易发生环内氧化作用,生成含有羟基或羰基的环状化合物。 • 类脂环烃可通过环内位阻、立体特异性、芳香性质等发生不同的化学反应。 • 环硅烷和环硅氧烷等特殊的脂环烃具有独特的缩合反应、断裂反应和环硅氧烷积分反应。
被广泛应用
脂环烃在工业、医药、生物学 等领域有着不可替代的作用, 是当今社会发展的重要支撑。
环保意义重大
研究和发展低排放、环保型新 材料和新工艺,是未来脂环烃 的发展方向。
与人工智能技术结合
结合人工智能技术,不断探索 新型催化剂、反应机制。
பைடு நூலகம்
脂环烃在生活中的应用
食品加工
如脂环烷代表食品添加剂:植物脂环酸、硬 脂环酸等,用于增加食品的稠度、保持柔软 度。
化学品制造
如环己烷广泛用于工业合成甲基环己烷,也 用于人工味料制造。
医药领域
如肝素和阿司匹林等药物的成分中含有脂环 烷结构。
生物学研究
如脂环烷、类固醇在生物学研究中有一定的 作用。
脂环烃的重要性及未来发展
萜类化合物
包括环烷类萜、环烯类萜、环 戊基萜等,常见于天然植物与 动物中。
类固醇
具有四环骨架中的三个6元环 和一个5元环,包括胆固醇、 睾酮、雌激素等。

有机化学 第五章 脂环烃讲解

有机化学  第五章  脂环烃讲解

CH2CH3
CH3 CH2CH3

乙基环己烷
H3C
1,4-二甲基-2-乙基环己烷
2.单环烯烃的命名

单环烯烃的命名是根据组成环的碳原子数目称为环某烯。编号时,
把1、2号位次留给双键的碳原子。若有取代基时,取代基的位置数则
以双键为准依次排列。
CH3
3-甲基-1-环己烯
CH3
5-甲 基 -1,3-环 戊 二 烯5—甲基—3—异丙基环己烯
1-溴-5-甲基螺[3,4]辛烷 三环[3,3,1,13,7]癸烷(金刚烷)
第二节 环烷烃的性质
一、环烷烃的物理性质 1.物态 温常压下,环丙烷、环丁烷为气体,环戊烷
至环十一烷是液体,其它高级环烷烃为固体。 2.熔点、沸点 环烷烃的熔点、沸点比相应的烷烃高一些。 3.相对密 相对密度仍小于1。 4.溶解性 常不溶于水,易溶于有机溶剂。
0.745 0.779 0.779 0.769 0.810 0.836
二、环烷烃的化学性质
从化学键的角度来分析,环烷烃与烷烃相似; 但是,由于脂环烃具有环状构造,小环烃会出现 一些特殊的化学性质,主要表现在环的稳定性上, 小环较不稳定,大环则较稳定。
1.取代反应
环戊烷、环己烷和氯气在光照下反应,生 成一氯环烷烃。
与环丙烷相似,环丁烷分子中存在着张力,但比环丙烷的小, 因在环丁烷分子中四个碳原子不在同一平面上,见下图:
环丁烷
环戊烷
环丁烷比环丙烷要稳定些。环戊烷分子(见上图)中, C-C-C夹角为108°,接近sp3杂化轨道间夹角109.5°,环张 力甚微,是比较稳定的环。环戊烷分子中几乎没有什么角张 力,故五元环比较稳定,不易开环,环戊烷的性质与开链烷 烃相似。 在环己烷分子中,六个碳原子不在同一平面内,碳 碳键之间的夹角可以保持109.5°,因此环很稳定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CH3
1
1-甲基-1-环己烯
H3C 3 2 1
6
2
4
6
5
3
4
5
3-甲基-1-环己烯
单环烯烃的命名 从双键碳原子开始编号 使取代基位次尽可能小
环烷烃分子中由于环的大小,侧链的长短和位置 的不同,而产生构造异构体,例如五个碳原子的 环烷烃有五种异构体
CH3
H3C
CH3
环戊烷
CH3
甲基环丁烷 1,1-二甲基环丙烷
Br Br
3.加卤化氢
卤化氢在室温下也能使环丙烷开环
+ HI
CH3CH2CH2 I
取代环丙烷与卤代氢的加成,卤素原子加在含氢较少的碳
原子上。
CH3 + HBr
CH3CH2CHCH3
Br
环戊烷和环已烷等像烷烃等像烷烃,化学性质稳定,而环丙 烷和环丁烷像烯烃,容易起加成反应。但值得注意的是,环 丙烷和环丁烷对氧化剂是稳定的。
CH3
CH3
CH C
CH3 CH3
KMnO4 H+
CH3
CH3
COOH
环烷烃的结构和稳定性
通过化学反应和热力学测得的燃烧热数据可以 说明,三元环烷烃最不稳定,其次是四元环, 而五元环六元环和大环烃都是较稳定的。
燃烧热是1mol化合物燃烧成二氧化碳和水放出 的热热 为6量5,8.6直kJ链m烷ol烃-1。分子中每个CH2的平均燃烧
764
5
3
8
8 7
12
2 9 10 1
6
5
3 4
螺[4.5]-1,6-癸二烯 1,8-二甲基-2-乙基二环[3.2.1]辛烷
十氢萘有顺反异构体

H
H


H
H
萘 沸点187.3℃

H


H
萘 沸点195.7℃
氢可以省略, 用一个圆点 表示向上的

5.2 脂环烃的物理性质和化学反应
物理性质
与脂链烃相似,脂环烃的沸点和熔点比相应的 脂链烃高。脂环烃比水轻,不溶于水。
一、单环脂环烃
❖ 脂环烃的命名与脂链烃相似,只需在化合物类名前加 “环”即可
H2 C H2C CH2
环丙烷
CH3
H2C
H2 C
CH2
H2C
CH2
环戊烷
CH3 CH3
CH3
CH3
1,2,4-三甲基环已烷
1,6-二甲基环已烯 环戊二烯 环壬炔
若只有一个不饱和碳上有侧链,该不饱和碳编号为1;
若两个不饱和碳都有侧链或都没有侧链,则碳原子 编号顺序除双键所在位置号码最小外,还要同时以 侧链位置号码的加和数为最小.
CH3
H
CH3
由于几何原因,较小的环中不可能有反式碳碳双键存在 ,已知的最小的反环烯烃是反环辛烯,在炔烃中,由于 C C C C 必须在一条直线上,只有较大的环才能容纳 这一结构,因此已知的最小的环炔烃为环壬炔。环炔烃 的数目很少。
二、螺环和桥环烃
螺环化合物 两个环共用一个碳原子 公共的碳原子为螺原子 按碳的个数命名为螺某烷
燃烧热的大小反映分子的内能的高低,燃烧热 越大,分子的内能就越高,分子也就越不稳定。
环烷烃亚甲基平均燃烧热表
环烷烃(n)
环丙烷(3) 环丁烷(4) 环戊烷(5) 环已烷(6) 环庚烷(7) 环辛烷(8) 环十一烷(11)
(kJmol-1)
ΔH/n 与直链烷烃的差值
697.1
38.5
686.2
27.4
脂环烃
碳原子互相连接成环,性质与脂肪烃相似的烃类。 脂肪烃广泛存在于自然界,如石油及植物油中都含有脂环烃。 5.1 脂环烃的分类、异构和命名
按 分 子脂 内环 环烃 的 数 目
单环 双环 多环
小环(C3-C4) 普通环(C5-C7) 中环( C8-C12)
大环(>C12)
与脂链烃类似,饱和的脂环烃称为环烷烃,含双键和三键的分别 称为环烯烃和环炔烃
CH2CH3
CH3
1,2-二甲基环丙烷
乙基环丙烷
在1,2-二甲基环丙烷分子中,由于环的存在阻止 了σ键的自由旋转,因而两个甲基可以在环的同 一边,也可以各在一边,它们是具有不同性质的 顺反异构体。
CH3
CH3 H3C
CH3 CH3
H
H3C
H
H
H
H
CH3
H
H
H
CH3
顺-1,2-二甲基环丙烷 沸点37℃
664.0
5.4
658.6
0.0
662.4
3.8
663.6
5.0
664.5
5.9
环十二烷(12)
659.9
1.3
环十四烷(14)
658.6
0.0
环十七烷(17)
658.7
0.1
由上表可以看出,小环的内能高,不稳定,从环戊烷开 始,差值较小或完全相等,说明五元环以上的环烷烃都 比较稳定。 环丙烷分子中C-C-C键角为105.5°,因而使分子具有一 种恢复正常键角的角张力。角张力的存在是环丙烷分子 不稳定的主要因素。由于键角偏离正常值,环丙烷分子 中相邻碳的sp3杂化轨道互相重叠的程度比一般烷烃要小, 实际上环丙烷的碳碳σ键呈香蕉形的弯曲键,因而键能比 直链烷烃的碳碳σ键的键能小得多。
反-1,2-二甲基环丙烷 沸点29℃
环状化合物的顺反异构体书写法
一般将环的一半用粗线写出,表示环平面与纸面垂直,粗线表示 在纸面的前面
另一种方法是用平面投影式表示,从环平面的上方往下看,朝上 的取代基团用楔形线与环相连,向下的取代基用虚线与环相连。 楔形的一端表示离观察着较近
CH3
H
H3C
H
H
化学反应
环烯烃含碳碳双键,与烯烃有相同的化学性质 环烷烃的反应与烷烃相似,但含三元环和四元 环的小环环烷烃有一些特殊的化学性质,易开 环生成开链化合物。
1.氢解
在较低的温度下环丙烷就可以开环,而环戊烷必须在 相当高的温度和活性高的催化剂作用下才能加氢开环 变成烷烃
+ H2
Ni 40℃
CH3CH2CH3
方括号中记入除螺原子外各环的碳原 子数,小的在前,大的在后
桥环化合物 两个环共有两个以上碳原子 碳桥交会处的两个碳原子称为桥头 按碳的个数命名为二环某烷
方括号中记入除桥头碳外各桥身的碳 原子数,大的在前,小的在后
数字间用圆点隔开
数字间用圆点隔开
编号从小环相邻螺原子的碳原子开始 从桥头碳开始沿最长桥到另一头碳原
+ H2
Ni 100℃
CH3CH2CH2CH3
Pt + H2 300℃ CH3CH2CH2CH2CH3
2. 加溴
环丙烷在室温下可与溴加成开环,而环丁烷要在加热时 才与溴加成开环,多环脂环烃中的三元环也容易开环。
室温
+ Br2
BrCH2CH2CH2Br
+ Br2
BrCH2CH2CH2CH2Br
+ Br2 室温
经螺原子到较大的环
子,再沿次长桥回到第一个桥头碳原
子,最短的桥上的碳最后编号
78
1
2 4
6
5
3
螺[3.4]辛烷
7
1
6
2
5
4
3
二环[2.2.1]庚烷102来自193
8
6
4
7
5
二环[4.4.0]癸烷 十氢萘
命名含有取代基或不饱和键的螺环或桥环烃时,必须按照前面 的规则编号,同时使不饱和键和取代基的位次最小,
相关文档
最新文档