数学1假设检验的概念
概率论与数理统计-假设检验

14
若
取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
高中数学知识点精讲精析 假设检验

3.1 假设检验1.假设检验是统计推断的一个基本问题,在总体的分布函数完全未知或只知其形式但不知其参数的情况下,为了推断总体的某些性质,先对总体的分布类型或总体分布的参数做某种假设,然后根据样本提供的信息,对所作的假设作出是接受,还是拒绝的决策,这一过程就是假设检验。
2.定义1 对总体分布类型或未知参数值提出的假设称为待检假设或原假设,用表示。
对某问题提出待检假设的同时,也就给出了相对立的备择假设,用1H 表示。
3.假设检验的基本原理:首先提出原假设,其次在成立的条件下,考虑已经观测到的样本信息出现的概率。
如果这个概率很小,这就表明一个概率很小的事件在一次实验中发生了。
而小概率原理认为,概率很小的事件在一次实验中几乎是不发生的,也就是说在成立的条件下导出了一个违背小概率原理的结论,这表明假设是不正确的,因此拒绝,否则接受。
4.假设检验的两类错误假设检验中作出推断的基础是一个样本,是以部分来推断总体,因此不可避免地会犯错误。
第一类错误(弃真错误):0H 为真而拒绝,;第二类错误(取伪错误):0H 不真而接受0H 。
犯第一类错误的概率记为{}00P H H 当为真拒绝,犯第二类错误的概率记为{}00P H H 当不真接受。
我们当然希望犯两类错误的概率都很小,但是,进一步讨论可知,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往增大。
若要使犯两类错误的概率都减小,则须增加样本容量。
在给定样本容量的情况下,一般来说,我们总是控制犯第一类错误的概率,使它不大于α,即令{}00P H H α≤当为真拒绝,通常取0.1,0.05,0.01等。
这种只对犯第一类错误的概率加以控制。
而不考虑犯第二类错误的概率的检验,成为显著性检验。
α是一个事0H 0H 0H 0H 0H 0H 0H 0H 0H α先指定的小的正数,称为显著性水平或检验水平。
5.假设检验的步骤(1)提出原假设和备择假设1H(2)给定n α及(3)选取检验统计量及确定拒绝域的形式(4)令{}00P H H α≤当为真拒绝,求拒绝域(5)由样本值作出决策:拒绝0H 或接受0H 。
假设检验基础知识

6.检验方法 p值法:计算检验统计量以及p值 当p值≤α,拒绝H 当p值>α,不能拒绝H0 临界值法:计算检验统计量以及临界值 当检验统计量在临界阈中时,拒绝H 当检验统计量不在临界阈中时,不能拒绝H0
7.非技术用于的总结:使用非技术用语对原命题进行总结 第一类错误和第二类错误
第一类错误:当原假设为真时,拒绝原假设的错误 第二类错误:当原假设为假时,没有拒绝原假设的错误 统计功效 统计功效是当原假设为假时,正确拒绝原假设的概率,即1-β
总体均值的假设检验
t分布 正态性或者n>30的条件 大样本的样本均值的分布趋于正态分布 小样本的正态性条件 样本数据的分布应该接近于轴对称 样本数据的分布应该有一个众数 样本数据不应包括任何异常值 t分布重要性质 t分布随着样本量的不同而不同 与正态分布具有相同的钟形曲线,但因样本小而具有更大的变异性 t分布的均值为0 t分布的标准差随着样本量的变化而变化,但肯定大于1 随着样本量n的增大,t分布越来越接近于正态分布
总体标准差或方差的假设检验
卡方分布的性质 卡方分布为非负数,且分布不具有对称性 卡方分布随着自由度的不同而不同
显著性水平α 总体参数的估计值,该值不能等于原假设中的总体参数值
总体比例的假设检验
正态近似法 等价法:使用p值法或临界值法来进行假设检验,而使置信区间来估计总体比例 样本为简单随机样本 满足二项分布的所有条件 有固定的实验次数 试验之间相互独立 结果有且仅有两种可能 每次试验概率不变
精确法 假设已知样本量n、成功次数x,以及原假设中的总体比例p 左侧检验:p值=P(在n次实验中,x或更少的成功次数) 右侧检验:p值=P(在n次实验中,x或更多的成功次数) 双侧检验:p值=2*min(左侧值,右侧值)
第六章假设检验基础PPT课件

❖假设检验的原理: 假设检验的基本思想是反证法和小
概率的思想
❖反证法思想:首先提出假设(由于未经检验是否成立,
所以称为无效假设),用适当的统计方法确定假设
成立的可能性大小,如果可能性小,则认为假设不
成立,拒绝它;如果可能性大,还不能认为它不成立
❖小概率思想:是指小概率事件在一次随机试验中认为
基本上不会发生
一、一组样本资料的t 检验(one sample/group t-test)
现有取自正态总体N(μ,σ2)的、容量为n 的一份 完全随机样本。 目的:推断该样本所代表的未知总体均数µ与已知总体 均数µ0是否相等已知总体均数µ0是指标准值,理论值 或经大量观察所得的稳定值。
n136135
3. 确定P值
指从H0规定的总体中随机抽得等于及 大于(或等于及小于)现有样本获得
的检验统计量值的概率。
4. P值的意义:如果总体状况和H0一致,统计量获 得现有数值以及更不利于H0的数值的可能性(概率) 有多大。
5.
t0 .2 (3 5 ) 50 .68 t 2 t0 .2 (3 5 ) 5得 P 0 .25
H0一般设为某两个或多个总体参数 相等,即认为他们之间的差别是由 于抽样误差引起的。H1的假设和H0 的假设相互对立,即认为他们之间 存在着本质的差异。H1的内容反映 出检验的单双侧。
单双侧的确定: 一是根据专业知识,已知东北某县囱
门月龄闭合值不会低于一般值; 二是研究者只关心东北某县值是否高
于一般人群值,应当用单侧检验。 一般认为双侧检验较为稳妥,故较为
目的要求选用不同的检验方法。
4、确定P值: P值是指由H0所规定的总体中做随机抽
样,获得等于及大于(或等于及小于)现 有统计量的概率。当求得检验统计量的值 后,一般可通过特制的统计用表直接查出P 值。
假设检验的定义和步骤

假设检验的定义和步骤
假设检验是统计学中一种常用的推断方法,用于判断样本数据
是否支持对总体参数的某个假设。
通过对样本数据进行分析,假设
检验可以帮助我们判断我们所做的假设是否合理,并据此对总体参
数进行推断。
假设检验的步骤通常包括以下几个步骤:
1. 提出假设,首先,我们需要明确提出一个关于总体参数的假设,通常包括原假设(H0)和备择假设(H1)两种。
2. 选择检验统计量,根据所提出的假设,选择适当的检验统计量,该统计量应能够在原假设成立时具有已知的概率分布。
3. 确定显著性水平,确定显著性水平(α),即拒绝原假设的
概率阈值。
通常选择0.05作为显著性水平。
4. 计算统计量的值,利用样本数据计算出所选检验统计量的值。
5. 做出决策,根据检验统计量的值和显著性水平,做出决策,
即是拒绝原假设还是不拒绝原假设。
6. 得出结论,根据做出的决策,得出对原假设的结论,判断样本数据是否支持原假设。
总的来说,假设检验是一种通过对样本数据进行统计分析,以判断对总体参数的假设是否成立的方法。
通过严格的步骤和逻辑推理,假设检验可以帮助我们做出合理的推断和决策。
什么是假设检验?

减少主观臆断
假设检验基于客观数据和事实, 而非主观臆断,从而能够减少决 策过程中的主观性和不确定性。
提高决策科学性
假设检验能够提供一种相对可靠 的决策依据,提高决策的科学性 和准确性。
假设检验的未来发展
不断扩展应用领域
方法的改进和完善
随着科学技术的发展,假设检验的应 用领域将会越来越广泛,如人工智能 、生物技术、医学、社会科学等领域 。
随着数据的复杂性和规模的增加,假 设检验的方法也需要不断改进和完善 ,以适应不同场景和需求。
提高可解释性和透明 度
为了更好地理解和解释假设检验的结 果,需要提高其可解释性和透明度, 以便更多的人能够理解和应用。
正确理解和运用假设检验
01
理解基本概念
正确理解和运用假设检验需要深入理解其基本概念和方法,包括如何
社会学研究
社会调查
利用假设检验对社会现象进行调查研究,以揭示社会现象之间的内在联系和 规律。
行为研究
通过假设检验探讨人类行为和社会影响之间的相互作用,为政策制定和社会 干预提供依据。
06
结论
假设检验的意义
科学探究的基础
假设检验是科学探究中最为核心 的方法之一,它能够通过严谨的 逻辑和数学推理来验证或否定一 个特定的假设。
假设检验是统计分析的一部分,它是 一种方法论,用于根据样本数据推断 总体参数。
统计分析包括多种方法和技术,如描 述性统计、推断性统计和回归分析等 ,它们都是为了帮助我们更好地理解 和解释数据。
在进行假设检验时,需要使用统计分 析方法来对数据进行处理和分析,从 而得出结论。
02
假设检验的基本原理
假设的设定与分类
病因研究
通过对暴露因素与疾病之间关系的假设检验,探讨病因和预防策 略的有效性。
假设检验

假设检验1. 问题的提出假设检验的思想有点类似于数学中的“反证法”,它是对总体某一方面的情况作某种假设,然后根据所得样本,检验这个假设是否成立。
考虑这样一个问题:评价射击选手。
为了对每个射击选手进行分级,一个可行的办法是先让这些选手每人射击n 枪,然后根据其射击成绩判别。
这种情况下使用的统计方法就是参数估计。
然而,还可以有其他的办法。
我们可以先让每位选手自己为自己报一个级别,然后再射击m 枪,根据其射击成绩来判断其对自己的级别定位是否合理。
这样对某个问题进行判决回答的统计方法即为假设检验。
这样的问题模型在真实世界中广泛存在。
比如陪审团判决某犯罪嫌疑人是否有罪、工厂根据产品样本的检测数据判断某批次的产品是否合格等等。
实际上,参数估计和置信区间的问题往往可以在假设检验的框架下予以分析和解决。
2. 小概率原理假设检验的理论依据是小概率原理,即:一次试验中小概率事件发生的可能性极小。
从统计学的角度看,为了判断某项假设0H 是否合理,应该从实际观测数据中寻找证据。
如果在0H 假设成立的条件下,出现所观测到的数据(或基于这些数据的统计量)的可能性(概率)非常小,那么如果承认0H 假设成立,就必须接受在一次试验中发生了一个小概率事件。
这和小概率原理是相违背的。
因此,我们拒绝假设0H 的合理性,选择与之互斥的备择假设(见3)。
3. 拒绝域和接受域对于一个假设检验问题,根据问题的需要提出零假设0H 与对立假设1H ,这是第一步;假设检验的目的是根据样本去判断接受0H 还是拒绝0H 。
“假设”的概念是在参数的“范围”这个概念的基础上产生的。
假设是对真实参数范围的一种虚拟认定,是对总体参数归属的一个判断。
原假设0H 可以认为是假设0Θ∈θ,此处的θ代表分布参数的真值,0Θ表示参数空间Θ的一个真子空间。
0Θ∈θ就是对总体参数真值的一个判断,称之为零假设(或原假设)。
当然还有对立假设(或备择假设)。
对立假设是与零假设对立的判断0Θ∈θ。
数学中的假设检验

数学中的假设检验假设检验是统计学中一种重要的方法,用于对统计样本数据进行推断与判断。
它可以帮助我们判断某个假设是否成立,从而为决策提供依据。
本文将通过介绍假设检验的基本概念、步骤和应用案例,深入探讨数学中的假设检验方法。
一、假设检验的基本概念假设检验是根据样本数据对总体进行统计推断的方法。
它基于两个互为对立的假设:原假设(H0)和备择假设(H1)。
原假设通常是我们认为成立的假设,而备择假设则是我们希望验证的假设。
在进行假设检验时,我们首先假设原假设成立,然后利用统计方法计算出样本数据的观察值,根据观察值与预期值之间的偏差,判断原假设的合理性。
如果观察值与预期值之间的差异显著大于正常情况下的偏差范围,我们就可以拒绝原假设,接受备择假设。
二、假设检验的步骤假设检验包括以下几个基本步骤:1. 确定假设:根据问题的背景和研究目的,明确原假设和备择假设。
2. 选择显著性水平:显著性水平(α)是假设检验中一个重要的参数,用于确定拒绝原假设的标准。
一般情况下,α取0.05或0.01。
3. 计算统计量:根据样本数据,选择合适的统计量进行计算。
常用的统计量有t值、F值和卡方值等。
4. 判断拒绝域:根据显著性水平和统计量的分布特性,确定拒绝原假设的临界值。
5. 比较统计量和临界值:将计算得到的统计量与拒绝域的临界值进行比较,判断是否拒绝原假设。
6. 得出结论:根据比较结果,给出对原假设的结论,并解释其统计意义和实际意义。
三、假设检验的应用案例1. 以某医院为例,研究员想要验证该医院使用的一种新型药物是否比常规药物更有效。
设定原假设为“新型药物不比常规药物更有效”,备择假设为“新型药物比常规药物更有效”。
收集一组患者的数据,比较两组患者接受新型药物和常规药物后的治疗效果,通过假设检验确定是否接受备择假设。
2. 在金融领域,分析师经常使用假设检验来验证股票市场的有效性。
他们可以将原假设设定为“股票市场不存在明显的投资机会”,备择假设设定为“股票市场存在明显的投资机会”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装糖重总体 X 的均值和标准差,
由长期实践可知, 标准差较稳定, 设 0.015,
则 X ~ N (, 0.0152 ), 其中 未知.
问题: 根据样本值判断 0.5 还是 0.5 . 提出两个对立假设H0 : 0 0.5 和 H1 : 0 .
为 的显著性检验的概念。
显著性检验:控制第一类错误,让它不大于 ;而
不考虑第二类错误概率。
数 称之为显著性水平。
四、给出拒绝域
确定显著性水平后,可以定出检验的拒绝域W。
在上例,若取=0.05,
若令 u x 110 4/5
则拒绝域有一种表示: W {u u0.05} {u 1.645}
三、选择显著性水平
由于检验法则是根据样本做出的,所以检验可 能犯以下两类错误:
➢ 其一是 H0为真但样本观测值落在拒绝域中, 从而拒绝原假设 H0,这种错误称为第一类错 误,其发生的概率称为犯第一类错误的概率, 或称拒真概率,通常记为 .
➢ 其二是 H0不真(即 H1为真)但样本观测值落 在接受域中,从而接受原假设 H,0 这种错误称 为第二类错误,其发生的概率称为犯第二类错 误的概率,或称采伪概率,通常记为 。
当H0为真时,
X 0 ~ N (0,1), / n
衡量
|
x
0
| 的大小可归结为衡量|
x
/
0
n
| 的大小,
于是可以选定一个适当的正数k,
当观察值 x 满足 x 0 / n
k时,
拒绝假设H0 ,
反之,当观察值 x 满足 x 0 / n
k时,
接受假设H0 .
因为当H
为真时
0
Z
X
/
0
n
~
N (0,1),
观测数 据情况
总体情况
H 0为真
H1为真
(x1,L , xn ) W
犯第一类 错误
正确
(x1,L , xn ) c 正确
犯第二类 错误
➢ 当 减小时,必导致的增大;
➢ 当 减小时,必导致 的增大;
说明:在样本量一定的条件下不可能找到一
个使 和 都小的检验。
英国统计学家 Neyman 和 Pearson 提出水平
这两个非空参数集合都称作统计假设, 简称假设。
(4) 我们的任务是利用样本去判断假设(命题) “ H0 ”是否成立。这里的“判断”在统
计学中 称为检验或检验法则。
假设检验的基本步骤
一、建立假设
在假设检验中,常把一个被检验的假设称为 原假设,用 H0 表示,通常将不应轻易加以否 定的假设作为原假设。当 H0被拒绝时而接收 的假设称为备择假设,用 H1 表示,它们常常 成对出现。
总体均值, 均值差的检验
总体方差, 方差比的检验 分布拟合检验 符号检验 秩和检验
假设检验的理论依据
假设检验所以可行,其理论背景为实际
推断原理,即“小概率原理”
通常借助于直观分析和理 论分析相结合的做法,其基本原 理就是人们在实际问题中经常 采用的所谓实际推断原理:“一 个小概率事件在一次试验中几 乎是不可能发生的”.
再利用已知样本作出判断是接受假设 H0 ( 拒绝 假设 H1 ) , 还是拒绝假设 H0 (接受假设 H1 ).
如果作出的判断是接受 H0, 则 0 ,
即认为机器工作是正常的, 否则, 认为是不正常的.
由于要检验的假设设计总体均值, 故可借助于样本 均值来判断.
因为 X 是 的无偏估计量,
所以若 H0 为真, 则 | x 0 |不应太大,
110(Pa)。某天从生产中随机抽取25块合金,
测得强度值为x1, x2 , …, x25,其均值为 x 108 (Pa),问当日生产是否正常?
(1) 是参数估计问题吗?
(2) 回答“是”还是“否” ,假设检验问题。
(3) 命题“合金平均强度不低于110Pa”正确 与
否仅H涉0 及{如:下 1两10个} 参数H集1 合 {: : 110}
实例 某车间用一台包装机包装葡萄糖, 包得的 袋装糖重是一个随机变量, 它服从正态分布.当 机器正常时, 其均值为0.5千克, 标准差为0.015 千克.某日开工后为检验包装机是否正常, 随机 地抽取它所包装的糖9袋, 称得净重为(千克): 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
如 W {(x1,L , xn ) : x c} {x c}
正如在数学上我们不能用一个例子去证明一个 结论一样,用一个样本(例子)不能证明一个 命题(假设)是成立的,但可以用一个例子 (样本)推翻一个命题。因此,从逻辑上看, 注重拒绝域是适当的。事实上,在“拒绝原假 设”和“拒绝备择假设(从而接收原假设)” 之间还有一个模糊域,如今我们把它并入接收 域,所以接收域是复杂的,将之称为保留域也 许更恰当,但习惯上已把它称为接收域,没有 必要再进行改变,只是应注意它的含义。
第八章
假设检验的基本概念
若对参数 一无所知
用参数估计 的方法处理
若对 参数 有所 了解
但有怀 疑猜测 需要证 实之时
用假设 检验的 方法来 处理
§8.1 假设检验的基本思想与概念
假设检验问题
引例 某厂生产的合金强度服从 N( ,,16)其中
的设计值 为不低于110(Pa)。为保证质量,该
厂每天都要对生产情况做例行检查,以判断生 产是否正常进行,即该合金的平均强度不低于
在上例中,我们可建立如下两个假设:
H0 : 110 vs H1 : 110
二、选择检验统计量,给出拒绝域形式
由样本对原假设进行判断总是通过一个统计量 完成的,该统计量称为检验统计量。使原假设 被拒绝的样本观测值所在区域称为拒绝域,一
般用W 表示,在上例中,样本均值 x愈大,意
味着总体均值 也大,因此,合理的拒绝域形
五、作出判断
在有了明确的拒绝域后,根据样本观测值 我们可以做出判断:
➢ 当u 1.645 时,则拒绝 H0
即接收 H1 ;
➢ 当 u 1.645时,则接收 H0
在上例中,由于 x 108代人u中,使得u 1.645. 因此拒绝原假设,即认为该日生产不正常。
假设检验的内容
参数检验 非参数检验
由标准正态分布分位点的定义得 k z / 2 ,
当 x 0 / n
z / 2时,拒绝H0 ,
x 0 / n