2017-2018新授抛物线压轴题专题训练
2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3小问,共12分)上传校勘:柯老师【2013/24】如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C 的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A,k=;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.【2014/24】如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y 轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【2017/24】24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.参考答案:【2013/24】解:(1)∵点C的坐标为(t,0),直角边AC=4,∴点A的坐标是(t,4).又∵直线OA:y2=kx(k为常数,k>0),∴4=kt,则k=(k>0).(2)①当a=时,y1=x(x﹣t),其顶点坐标为(,﹣).对于y=来说,当x=时,y=×=﹣,即点(,﹣)在抛物线y=上.故当a=时,抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②如图1,过点E作EK⊥x轴于点K.∵AC⊥x轴,∴AC∥EK.∵点E是线段AB的中点,∴K为BC的中点,∴EK是△ACB的中位线,∴EK=AC=2,CK=BC=2,∴E(t+2,2).∵点E在抛物线y1=x(x﹣t)上,∴(t+2)(t+2﹣t)=2,解得t=2.(3)如图2,,则x=ax(x﹣t),解得x=+4,或x=0(不合题意,舍去)..故点D的横坐标是+t.当x=+t时,|y2﹣y1|=0,由题意得t+4=+t,解得a=(t>0).【2014/24】解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D(3,4),∴直线OD为:y=x.联立方程组,得,消去y,得ax2+(﹣﹣4a)x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】。
抛物线专题(附答案)

抛物线专题考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换1.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为32. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程题型:求抛物线的标准方程3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p =, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p = ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.4.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证6.设A 、B 为抛物线px y22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置 [解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kx y 22解出A 点坐标为)2,2(2k p k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
九年级数学 17抛物线中的压轴题 精选练习

抛物线中的压轴题拔高专题一、基本模型构建常见模型思考在边长为1的正方形格中有A, B, C三点,在射线BD上可以找出一点组成三角形,可得为其三个顶点的平行四边形画出以A,B,C△ABC、△BEC、ABCD。
△CBD为等腰三角形。
二、拔高精讲精练探究点一:因动点产生的平行四边形的问题例1: 在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。
2+bx+c(a≠0),解:(1)设此抛物线的函数解析式为:y=ax16a?4b?c=0??c=?4 2,C(,0)三点代入函数解析式得:),(,0-4A将(,)B0-4??4a?2b?c=0?1?=a?2?11=b2;x?x,所以此函数解析式为:解得y=4+?2?4c?=??12),+m,M在这条抛物线上,∴M点的坐标为:(m?4m(2)∵M点的横坐标为m,且点21111=+S-S22-2m+8-2m-8 4=-m-×4×-m+4)+×4×(-mm∴S=S×4×(-)AOB△△AOM△OBM222222+4,∵-4<m<0,当m=-2时,S有最大值为:S=-4+8=4=-m.答:-4m=-(m+2)m=-2时S有最大值S=4.12x+x-4).3)设P(x,(2当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,12又∵直线的解析式为y=-x,则Q(x,-x),x+x-4)|=4 .由PQ=OB,得|-x-(25.x=0不合题意,舍去.如图,当BO为对角线时,知A与P应该重合,解得x=0,-4,-2±2OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).5555)或(4,-4))或(-2-2.,2+2 -4由此可得Q(,4)或(-2+2 ,2-22+bx+c(a≠y=ax0)与x轴相交于-4【变式训练】(2015?贵阳)如图,经过点C(0,)的抛物线A(-2,0),B两点.2-4ac>0,b(填“>”或“<”);)(1a>0(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足的坐标;若不存在,请说明理由.E条件的点.2 6,0),Ax=2是对称轴,(-2,0),∴B()解:(1a>0,b>-4ac0;(2)∵直线412 y=ax,解得:+bx+cb=-,,a=c=-4,,C∵点(0,-4),将AB,C的坐标分别代入33412 y=∴抛物线的函数表达式为;x-x-433)存在,理由为:(3 ,C,E,F为顶点所组成的四边形是平行四边形,)假设存在点(iE使得以A 所示,,交x轴于点F,如图∥C作CEx轴,交抛物线于点E,过点E作EF1∥AC过点即为满足条件的平行四边形,则四边形ACEF412点的横坐标为4,x-4关于直线∵抛物线y=x=2对称,∴由抛物线的对称性可知,Ex-33;-4),∴存在点E(4,又∵OC=4,∴E的纵坐标为-4(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,142x-x-44,∴4=,′的纵坐标是′∴EG=CO=4,∴点E3377 =2-2=2+2解得:x,x,2177′的坐标为(∴点E2+2,,″的坐标为(E,同理可得点4)2-2)4。
2017年中考数学抛物线压轴题

2017年中考数学抛物线压轴题2017年中考数学抛物线压轴题1. 如图1,点A为抛物线C 1:y= x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC 于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值;2. 将抛物线c1:233=x轴翻折,得到抛物线c2,如图所示;y x(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E;①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.3.如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0);(1)b =----------------,点B 的横坐标为----------------(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC ,设△PBC 的面积为S ,①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有------------------个;4.在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c(a≠0)经过点C.(1)如图1,若该抛物线经过原点O,且1a ,①求4点C的坐标及该抛物线的表达式;②在抛物线上是否存在点P,使得∠POB=∠BAO.,若存在,请求出所有满足条件的点P的坐标,不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点D(2,1),点Q 在抛物线上,且满足∠QOB=∠BAO. 若符合条件的Q点的个数是4个,请直接写出a的取值范围;5.如图1是二次函数y= x2 +b x + c的图象,其顶点坐标为M(1,- 4),与x轴的交于A、B两点;(1)求出A、B的坐标;(2)P是平面内一点,将△AOM 绕点P沿顺时针方向旋转90°后,得到△A1O1M1,点A、O、M 的对应点分别是点A1、O1、M1,若△A1O1M1的两个顶点恰好落在抛物线上,求出点A1的坐标;6.在直角坐标系中,抛物线y=-ax 2+2ax+b ,交x 轴于A (一1,0),B 两点,交y 轴的负半轴于点C ,且OC =3OA .(1)求抛物线的解析式.(2)若P 为抛物线对称轴上的点,且S △BCP =2S △ACP ,求P 点坐标;(3)若P 为抛物线上BC 下方一点,且S △BCP =2S △ACP ,求P 点坐标;(4)若Q 点为抛物线对称轴上的点,且∠QB C=∠ACO ,求Q 点坐标;x y CB A O x yC B A O x y C B A O x yC B A O7. 已知抛物线C1的顶点为P(1,0),且过点(0,1),将抛物轴的直线与两条抛物线交于A 、B 、C 、D 四点(如图),且点A 、C 关于y 轴对称,直线AB 与x 轴的距离是m 2(m >0); ⑴求抛物线C 1的解析式的一般形式;⑵当m=2时,求h 的值;⑶若抛物线C 1的对称轴与直线AB 交于点E ,与抛物线C 2交于点F ,求证:EC EPED EF -的值为定值,并求此定值;8.如图,已知抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x 轴于点H;⑴求A,B两点的坐标;⑵设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;⑶以OB为边在第四象限内作等边△OBM,设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的最小值;9.已知抛物线C1:y=ax2+bx+23(a≠0)经过点A(﹣1,0)和B(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F 的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:tan∠ENM的值如何变化?请说明理由;10. 如图,坐标系在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限,OA=3,AB= 4;⑴求直线AB的解析式;⑵将△AOB沿垂直于x轴的线段折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,设点C的坐标为(x,0),设△CDE 与△AOB重合部分的面积为S,直接写出S与C点的横坐标x 之间的函数关系式(包括自变量x的取值范围);。
中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。
二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。
3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。
例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。
【配套K12】2018年高考数学总复习9.7抛物线演练提升同步测评文新人教B版

9.7 抛物线A 组 专项基础训练(时间:40分钟)1.(2016·四川)抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0) D .(1,0)【解析】 由题意得2p =4,p =2,抛物线的焦点坐标为(1,0). 【答案】 D2.(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=15x 2【解析】 设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x . 【答案】 B3.(2017·广东广州3月模拟)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…x n =10,则|P 1F |+|P 2F |+…+|P n F |=( )A .n +10B .n +20C .2n +10D .2n +20【解析】 由抛物线的方程y 2=4x 可知其焦点为(1,0),准线为x =-1,由抛物线的定义可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,所以|P 1F |+|P 2F |+…+|P n F |=x 1+1+x 2+1+…+x n +1=(x 1+x 2+…+x n )+n =n +10.故选A.【答案】 A4.(2017·江西南昌一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若|FP |=3|FQ |,则|QF |=( )A.83B.52 C .3 D .2【解析】 设l 与x 轴的交点为M ,如图所示,过Q 作QN ⊥l ,垂足为N ,则△PQN ∽△PFM ,所以|NQ ||MF |=|PQ ||PF |=23,因为|MF |=4,所以|NQ |=83,故|QF |=|QN |=83,故选A.【答案】 A5.(2017·湖北七市4月联考)过抛物线y 2=2px (p >0)的焦点F 的直线与双曲线x 2-y 23=1的一条渐近线平行,并交抛物线于A 、B 两点,若|AF |>|BF |,且|AF |=2,则抛物线的方程为( )A .y 2=2x B .y 2=3x C .y 2=4x D .y 2=x【解析】 由双曲线方程x 2-y 23=1知其渐近线方程为y =±3x ,∴过抛物线焦点F 且与渐近线平行的直线AB 的斜率为±3,不妨取k AB =3,则其倾斜角为60°,即∠AFx =60°.过A 作AN ⊥x 轴,垂足为N .由|AF |=2,得|FN |=1.过A 作AM ⊥准线l ,垂足为M ,则|AM |=p +1.由抛物线的定义知,|AM |=|AF |.∴p +1=2,∴p =1,∴抛物线的方程为y 2=2x ,故选A.【答案】 A6.(2016·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.【解析】 易得双曲线y 2-x 2=1过点⎝⎛⎭⎪⎫-p 2,p 3,从而p 23-p 24=1,所以p =2 3.【答案】 2 37.(2016·山西四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,则弦长|AB |为________.【解析】 设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1,联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB |=x 1+x 2+p=6+2=8.【答案】 88.(2017·西安模拟)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A 、B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.【解析】 设直线l 的方程为y =k (x +1)(k ≠0),将其代入y 2=4x 得,k 2x 2+(2k 2-4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k 2-4k 2,所以x Q =-k 2-2k 2=2k2-1,y Q =k (x Q+1)=2k,又|FQ |=2,F (1,0),所以⎝ ⎛⎭⎪⎫2k2-22+4k2=4,解得k =±1.【答案】 ±19.(2016·浙江)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.【解析】 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy-4=0,故y 1y 2=-4,所以,B ⎝ ⎛⎭⎪⎫1t 2,-2t.又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t.从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得 2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t2t 2-1. 所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).10.(2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【解析】 方法一 (1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0), 所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.方法二 (1)同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0. 所以点F 到直线GB 的距离d =|22+22|8+9=4217=r . 这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.B 组 专项能力提升(时间:30分钟)11.(2015·四川)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)【解析】 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2,由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,∴-23<y 0<23,∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16,又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D. 【答案】 D12.(2016·全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2 【解析】 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.【答案】 D13.(2016·湖南岳阳二模)直线3x -4y +4=0与抛物线x 2=4y 、圆x 2+(y -1)2=1从左至右的交点依次为A ,B ,C ,D ,则|CD ||AB |的值为________.【解析】 如图所示,抛物线x 2=4y 的焦点为F (0,1),直线3x -4y +4=0过点(0,1),由⎩⎪⎨⎪⎧x 2=4y ,3x -4y +4=0得4y 2-17y +4=0,设A (x 1,y 1),D (x 2,y 2),则y 1+y 2=174,y 1y 2=1,解得y 1=14,y 2=4,则|CD ||AB |=|FD |-1|AF |-1=(y 2+1)-1(y 1+1)-1=16.【答案】 1614.(2016·安庆模拟)如图,A ,B 是焦点为F 的抛物线y 2=4x 上的两动点,线段AB 的中点M 在定直线x =t (t >0)上.(1)求|FA |+|FB |的值; (2)求|AB |的最大值.【解析】 (1)设A (x 1,y 1),B (x 2,y 2),M (t ,m ),则x 1+x 2=2t ,y 1+y 2=2m .由抛物线的定义知|FA |=x 1+1,|FB |=x 2+1. 所以|FA |+|FB |=x 1+x 2+2=2t +2.(2)由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以x 1-x 2y 1-y 2=m2. 故可设直线AB 的方程为m2(y -m )=x -t ,即x =m2y -m 22+t .联立⎩⎪⎨⎪⎧x =m 2y -m 22+t ,y 2=4x ,消去x ,得y 2-2my +2m 2-4t =0.则Δ=16t -4m 2>0,即0≤m 2<4t ,y 1+y 2=2m ,y 1y 2=2m 2-4t .所以|AB |=1+m 24|y 1-y 2|=(4t -m 2)(4+m 2)=-[m 2-2(t -1)]2+4(t +1)2,其中0≤m 2<4t .当t ≥1时,因为0≤2t -2<4t ,所以当m 2=2t -2时,|AB |取最大值,即|AB |max =2t +2.当0<t <1时,因为2t -2<0,所以当m 2=0时,|AB |取最大值,即|AB |max =4t .综上,|AB |max =⎩⎨⎧2t +2,t ≥1,4t ,0<t <1.15.(2016·江苏)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程. (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.【解析】 (1)抛物线C :y 2=2px (p >0)的焦点为⎝ ⎛⎭⎪⎫p2,0,由点⎝ ⎛⎭⎪⎫p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0). 因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明 由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x ,得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0. 方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b ,上,所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围是⎝ ⎛⎭⎪⎫0,43.。
抛物线压轴题专题

抛物线压轴题专题011、(09安徽芜湖)如图,在平面直角坐标系中放置一直角三角板,其顶点为(10)A -,,(0B ,(00)O ,,将此三角板绕原点O 顺时针旋转90°,得到A B O ''△. (1)如图,一抛物线经过点A B B '、、,求该抛物线解析式;(2)设点P 是在第一象限内抛物线上一动点,求使四边形PBAB '的面积达到最大时点P 的坐标及面积的最大值.6、(09广东深圳)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由。
x3、(09广东广州)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴上午垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。
4、(09广西贵港)如图,抛物线y =ax 2+bx +c 的交x 轴于点A 和点B (-2,0),与y 轴的负半轴交于点C ,且线段OC 的长度是线段OA 的2倍,抛物线的对称轴是直线x =1. (1)求抛物线的解析式;(2)若过点(0,-5)且平行于x 轴的直线与该抛物线交于M 、N 两点,以线段MN 为一边抛物线上与M 、N 不重合的任意一点P (x ,y )为顶点作平行四边形,若平行四边形的面积为S ,请你求出S 关于点P 的纵坐标y 的函数解析式; (3)当0<x ≤ 10 3时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.5、(09广西柳州)如图,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.6、(09湖北荆州)一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC . (1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.7、 (09湖北武汉) 如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.8、(09山东济南)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C 其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.。
人教版2018最新高中数学高考总复习抛物线习题及详解Word版

高中数学高考总复习抛物线习题 ( 附参照答案 ) 一、选择题1. (2010 湖·北黄冈 )若抛物线 2 x2 y2y = 2px 的焦点与椭圆+=1 的右焦点重合,则 p 的值6 2为()A.- 2 B . 2C.- 4 D .4[答案 ] D[分析 ] 椭圆中, a 2= 6,b2= 2,∴ c= a2- b2= 2,p∴右焦点 (2,0),由题意知2= 2,∴ p= 4.2.已知点 M 是抛物线 y2= 2px(p>0)上的一点, F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与 y 轴的关系是 ( )A .订交B .相切C.相离 D .以上三种情况都有可能[答案 ] B[分析 ] 如图,由 MF 的中点 A 作准线 l 的垂线 AE ,交直线 l 于点 E,交 y 轴于点 B;由点 M 作准线 l 的垂线 MD ,垂足为 D ,交 y 轴于点 C,则 MD=MF ,ON=OF,∴AB= OF + CM= ON+ CM2 2=DM= MF,22∴这个圆与 y 轴相切.3.(2010 山·东文 )已知抛物线 y 2=2px(p>0),过焦点且斜率为 1 的直线交抛物线于A、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为()A . x= 1B . x=- 1C.x= 2 D .x=- 2[答案 ] B[分析 ] 设 A(x1,y1) ,B(x2,y2),则线段 AB 的中点 ( x1+x2,y1+ y2 y1+ y2= 2,∵ A、2 2 ),∴ 2B 在抛物线 y 2= 2px 上,y 12= 2px 1 ①∴y 22= 2px 2 ②①-②得 y 12 -y 2 2= 2p( x 1-x 2 ),∴ k = y 1-y 2 = 2p = p= 1,∴, p =2,∵ k ABABx 1-x 2 y 1+y 2 2∴抛物线方程为 y 2=4x ,∴准线方程为: x =- 1,应选 B.x 2 - y 2= 1 的渐近线上一点 A 到双曲线的右焦点F 的距离等于 2,抛物线 y24.双曲线 9 4=2px(p>0) 过点 A ,则该抛物线的方程为 ()A . y 2= 9xB . y 2=4xC .y 2=4 13xD .y 2=2 13x1313[答案 ]C[分析 ]∵双曲线 x 2 y 2的渐近线方程为2- = 1y = ± x ,F 点坐标为 ( 13,0),设 A 点坐标9 43 222 2= 2? x =9,y = ±62为( x ,y),则 y = ±13 +3x13 13 ,代入 y = 2px3x ,由 |AF|= 2?x -得 p = 2 13,所以抛物线方程为y 2= 4 131313 x ,所以选 C.5.已知点 P 是抛物线 2= 2x 上的一个动点, 则点 P 到点 (0,2)的距离与点 P 到该抛物线 y 准线的距离之和的最小值为()A. 17 B . 329 C. 5D.2[答案 ] A[分析 ]记抛物线 y 2= 2x 的焦点为 F1, 0 ,准线是 l ,由抛物线的定义知点 P 到焦点 F2的距离等于它到准线 l 的距离,所以要求点 P 到点 (0,2)的距离与点 P 到抛物线的准线的距离 之和的最小值,能够转变为求点P 到点 (0,2)的距离与点 P 到焦点 F 的距离之和的最小值,联合图形不难得悉相应的最小值就等于焦点 F 与点 (0,2)的距离,所以所求的最小值等于1 2+ 22=17,选 A.226.已知抛物线 C :y 2= 4x 的焦点为 F ,准线为 l ,过抛物线 C 上的点 A 作准线 l 的垂线, 垂足为 M ,若△ AMF 与△ AOF (此中 O 为坐标原点 ) 的面积之比为 3 1,则点 A 的坐标为 ()A . (2,2 2)B .(2,- 2 2)C .(2, ± 2)D .(2, ±2 2)[答案 ]D[分析 ]如图,由题意可得, |OF |=1,由抛物线定义得,|AF |= |AM|,∵△ AMF与△AOF (其中 O 为坐标原点)的面积之比为3∶ 1,1∴ S△AMF =2× |AF|× |AM|× sin ∠ MAF= 3,S △AOF12× |OF|× |AF|× sin π-∠ MAF22∴ |AM |= 3,设 A y0 , y 0,∴ y0 + 1= 3,4 4y 02解得 y 0= ±2 2,∴ 4 = 2,∴点 A 的坐标是 (2, ±22),应选 D.7. (2010 河·北许昌调研 )过点 P(- 3,1)且方向向量为 a = (2,- 5)的光芒经直线 y =- 2反射后经过抛物线 y 2= mx , (m ≠ 0)的焦点,则抛物线的方程为()A . y 2=- 2xB . y 2=- 3x2C .y 2= 4xD .y 2=- 4x[答案 ] D[分析 ]→设过 P(- 3,1),方向向量为 a = (2,- 5)的直线上任一点 Q(x , y),则 PQ ∥ a ,x + 3 y -1∴ 2 =-5 ,∴ 5x + 2y + 13= 0,此直线对于直线 y =- 2 对称的直线方程为 5x + 2(- 4- y)+ 13= 0,即 5x - 2y + 5= 0,此直线过抛物线y 2= mx 的焦点 Fm,0 ,∴ m =- 4,应选4D.8.已知 mn ≠ 0,则方程是 mx 2+ ny 2=1 与 mx + ny 2=0 在同一坐标系内的图形可能是( )[答案 ] A[分析 ]22=1 2=- mC 、D ;∴若 mn>0,则 mx + ny 应为椭圆, y n x 应张口向左,故清除mn<0,此时抛物线2m B ,选 A.y =-x 应张口向右,清除n9. (2010 山·东聊城模考 )已知 A 、 B 为抛物线 C :y 2=4x 上的不一样两点, F 为抛物线 C 的焦点,若 → →) FA =- 4FB ,则直线 AB 的斜率为 (23 A . ±B . ±3234 C .±D .±43[答案 ] D[分析 ]→ → →→∵FA =- 4FB ,∴ |FA|=4|FB|,设 |BF|= t ,则 |AF |= 4t ,∴ |BM|= |AA 1|- |BB 1|= |AF|- |BF|=3t ,又 |AB|= |AF|+ |BF|= 5t ,∴ |AM |= 4t ,4 4∴ tan ∠ ABM = ,由对称性可知,这样的直线AB 有两条,其斜率为 ± .3310.已知抛物线 C 的方程为 x 2=1y ,过点 A(0,- 4)和点 B(t,0)的直线与抛物线 C 没有2公共点,则实数 t 的取值范围是 ()A . (-∞,- 1)∪(1,+∞ )B. -∞,- 2 ∪222 ,+∞C .( -∞,- 2 2)∪ (2 2,+∞ )D . (-∞,- 2 2)∪ ( 2,+∞ )[答案 ]B21 ①x = y[分析 ]由题意知方程组2无实数解x + y=1 ②t - 4由②得 y =4x- 4,代入①整理得,t24x = 16,2x - + 4=0,∴2- 32<0tt∴ t> 2或 t<- 2,应选 B.22[评论 ]可用数形联合法求解,设过点A(0,- 4)与抛物线21 x= y 相切的直线与抛物线2切点为 M(x 0, y 0),则切线方程为 y -y 0=4x 0(x - x 0), ∵过 A 点,∴- 4- 2x 02= 4x 0(0- x 0),∴ x 0= ± 2,∴ y 0=4,∴切线方程为 y -4= ±4 2x -8,令 y = 0 得 x = ± 2,即 t =± 2,2222由图形易知直线与抛物线无公共点时,t<-2 或 t> 2 .二、填空题11.已知点 A(2,0) 、B(4,0) ,动点 P 在抛物线 2→ →y =- 4x 上运动,则 AP ·BP 获得最小值时的点 P 的坐标是 ______.[答案 ] (0,0)[分析 ]设 P- y 2→y 2→y 2→ →y 24 ,y ,则 AP = -- 2,y , BP = -- 4, y , AP ·BP = -- 24 4424 5 2 - y2y + 8≥ 8,当且仅当 y =0 时取等号,此时点 P 的坐标为 (0,0).-4 + y = 16 + y4212. (文 )(2010 泰·安市模拟 )如图,过抛物线 y 2= 2px(p>0) 的焦点 F 作倾斜角为 60°的直线 l ,交抛物线于A 、B 两点,且 |FA|= 3,则抛物线的方程是 ________.[答案 ]y 2= 3x[分析 ] 设抛物线准线为 l ,作 AA 1⊥ l ,BB 1⊥ l ,FQ ⊥ l ,垂足分别为 A 1 、B 1、Q ,作 BM⊥AA 1 垂足为 M ,BM 交 FQ 于 N ,则由条件易知∠ ABM = 30°,设 |BF |= t ,则 |NF|= t, |MA|2=t + 3,∵ |AM |= |QN|,∴ 3- t + 3= p - t,∴ p = 3,∴抛物线方程为 y 2= 3x. 22 2 2(理 )(2010 泰·安质检 ) 如图,过抛物线 y 2= 2px(p>0)的焦点的直线 l 挨次交抛物线及其准线于点 A 、 B 、 C ,若 |BC|= 2|BF|,且 |AF|= 3,则抛物线的方程是 ________.[答案 ]y 2= 3x[分析 ] 解法 1:过 A 、 B 作准线垂线,垂足分别为A 1 ,B 1,则 |AA 1|= 3, |BB 1|= |BF|,∵ |BC|= 2|BF |,∴ |BC |=2|BB 1|,∴ |AC|= 2|AA 1|= 2|AF |=6,∴ |CF |= 3,∴ p =1 |CF |=3,∴抛物线方程为y 2=3x.22解法 2:由抛物线定义, |BF|等于 B 到准线的距离, 由|BC|= 2|BF|得∠ BCB 1=30°,又 |AF| =3,进而 A p + 3,3 3 在抛物线上,代入抛物线方程 3y 2= 2px ,解得 p = .2 2 22评论:还能够由 |BC|= 2|BF|得出∠ BCB 1=30°,进而求得 A 点的横坐标为1 p|OF|+ |AF |=223 或 p ,∴ p3 p 3+ 3- 2 + =3-,∴ p = .2 222213.已知 F 为抛物线 C :y 2= 4x 的焦点,过 F 且斜率为 1 的直线交 C 于 A 、B 两点.设|FA|>|FB|,则 |FA|与 |FB|的比值等于 ________.[答案 ] 3+ 2 2[分析 ] 分别由 A 和 B 向准线作垂线,垂足分别为 A 1, B 1,则由条件知,|AA 1|+ |BB 1|= |AB|,12+ 2|AA |=4|AB|2 ,解得,|AA 1|- |BB 1|=2 |AB||BB 1|= 2- 24 |AB|∴|AA 1 |=3+ 2 2,即|FA|= 3+ 2 2.|BB 1 ||FB |14. (文 )若点 (3,1) 是抛物线 y 2= 2px 的一条弦的中点,且这条弦所在直线的斜率为2,则 p = ________.[答案 ] 2[分析 ]设弦两头点 P 1(x 1, y 1), P 2(x 2, y 2) ,y 12= 2px 1 y 1- y2=2p= 2,则,两式相减得, y 22= 2px 2x 1- x 2 y 1+ y 2∵ y 1+ y 2= 2,∴ p = 2.(理 )(2010 衡·水市模考 )设抛物线 x 2= 12y 的焦点为 F ,经过点 P(2,1) 的直线 l 与抛物线相交于 A 、B 两点,又知点 P 恰为 AB 的中点,则 |AF |+ |BF|= ________.[答案 ] 8[分析 ]过 A 、 B 、 P 作准线的垂线 AA 1、 BB 1 与 PP 1,垂足 A 1、 B 1、 P 1,则 |AF|+ |BF|= |AA 1|+ |BB 1 |= 2|PP 1|= 2[1 - (- 3)] = 8.三、解答题2 23,抛物线15. (文 )若椭圆 C 1: x +y2= 1(0<b<2) 的离心率等于C 2: x 2= 2py(p>0)的焦4 b2点在椭圆 C 1 的极点上.(1)求抛物线 C 2 的方程;(2)若过 M(- 1,0)的直线 l 与抛物线 C 2 交于 E 、 F 两点,又过 E 、 F 作抛物线 C 2 的切线l 1、 l 2,当 l 1⊥l 2 时,求直线 l 的方程.[分析 ](1)已知椭圆的长半轴长为a = 2,半焦距 c = 4-b 2,由离心率 e = c=24-b= 3得, b 2=1.a 2 2∴椭圆的上极点为 (0,1),即抛物线的焦点为(0,1),∴ p = 2,抛物线的方程为 x 2= 4y.(2)由题知直线 l 的斜率存在且不为零,则可设直线l 的方程为 y = k(x + 1),E(x 1, y 1),F(x 2, y 2),1 2 1 x ,∵ y = x,∴ y ′ =4211∴切线 l 1, l 2 的斜率分别为 2x 1, 2x 2,1 1当 l 1⊥ l 2 时, x 1·x 2=- 1,即 x 1 ·x 2=- 4,2 2y =k x +1 由得: x 2- 4kx - 4k = 0,x 2= 4y由 = (- 4k)2- 4×( - 4k)>0,解得 k<- 1 或 k>0.又 x 1·x 2=- 4k =- 4,得 k = 1.∴直线 l 的方程为 x -y + 1= 0.→→ →→→→(理 )在△ ABC 中, CA ⊥ CB, OA= (0,- 2),点 M 在 y 轴上且 AM =1 + CD ),点 C( AB2在 x 轴上挪动.(1)求 B 点的轨迹 E 的方程;(2)过点 F 0,-1的直线 l 交轨迹 E→→4于 H、E 两点, (H 在 F、G 之间 ),若 FH=1 HG ,2求直线 l 的方程.[分析 ] (1)设 B(x, y), C(x0,0), M(0, y0),x0≠0,→→π∵ CA⊥ CB,∴∠ ACB=,2∴2 y0=- 2x0·1,于是 x0 = 2y0①- x0→→→M 在 y 轴上且 AM=1(AB+ AC),2所以 M 是 BC 的中点,可得x0+ xx0=- x ②= 02 ,∴y0=yy+ 0 ③= y0 22把②③代入①,得y= x2(x≠ 0),所以,点 B 的轨迹 E 的方程为 y= x2(x≠0).(2)点 F 0,-1 ,设知足条件的直线l 方程为:41y= kx-4,H (x1, y1), G(x2, y2),1由 y= kx-4 消去 y 得, x2- kx+1= 0.y= x2 4 =k2- 1>0? k2>1,→ 1 → 1 1∵FH=2HG,即 x1,y1+4 =2(x2 - x1, y2- y1),1 1∴x1=2x2-2x1? 3x1= x2.1 2 3,∵ x1+ x2= k, x1x2=,∴ k=±34故知足条件的直线有两条,方程为: 8x + 4 3y + 3= 0 和 8x - 4 3y - 3= 0.16. (文 )已知 P(x , y)为平面上的动点且 x ≥0,若 P 到 y 轴的距离比到点 (1,0)的距离小1.(1)求点 P 的轨迹 C 的方程;(2)设过点 M(m,0)的直线交曲线 C 于 A 、 B 两点,问能否存在这样的实数m ,使得以线段 AB 为直径的圆恒过原点.[分析 ](1)由题意得:x - 12+ y 2- x = 1,化简得: y 2= 4x (x ≥ 0).∴点 P 的轨迹方程为 y 2= 4x( x ≥0) .(2)设直线 AB 为 y =k(x -m), A(x 1, y 1), B(x 2, y 2), y =k x -m由,得 ky 2- 4y - 4km = 0,y 2= 4x∴ y 1+ y 2=4k , y 1·y 2=- 4m.∴ x 1·x 2= m 2,∵以线段 AB 为直径的圆恒过原点,∴ OA ⊥ OB ,∴ x 1·x 2+ y 1·y 2= 0.即 m 2- 4m = 0? m = 0 或 4.当 k 不存在时, m = 0 或 4.∴存在 m = 0 或 4,使得以线段AB 为直径的圆恒过原点.[评论 ](1)点 P 到定点F(1,0)的距离比到y 轴的距离大1,即点P 到定点F(1,0)的距离与到定直线 l :x =- 1 的距离相等.∴ P 点轨迹是以 F 为焦点, l 为准线的抛物线,∴ p = 2,∴方程为 y 2= 4x.(理 )已知抛物线 y 2= 4x ,过点 (0,- 2)的直线交抛物线于 A 、 B 两点, O 为坐标原点.→ →的方程. (1)若 OA ·OB =4,求直线 AB(2)若线段 AB 的垂直均分线交x 轴于点 (n,0),求 n 的取值范围.[分析 ] (1)设直线 AB 的方程为 y =kx - 222 2(k ≠ 0),代入 y = 4x 中得, k x - (4k + 4)x +4= 0①4k +4 4设 A(x 1, y 1), B(x 2, y 2),则 x 1+ x 2= k 2 , x 1x 2= k 2.y 1y 2=( kx 1- 2) ·(kx 2 -2)= k 2x 1x 2- 2k(x 1+ x 2)+ 4=-8k .→ → 4 82∵ OA ·OB = (x 1 ,y 1) ·(x 2, y 2)= x 1x 2+y 1y 2= k 2- k =4,∴ k + 2k - 1= 0,解得 k =- 1± 2. 又由方程①的鉴别式= (4k + 4)2- 16k 2=32k + 16>0 得 k>- 1,∴ k =- 1+ 2,2∴直线 AB 的方程为 ( 2- 1)x - y - 2= 0.(2)设线段 AB 的中点的坐标为 ( x 0, y 0),则由 (1) 知 x 0= x 1+x 2 = 2k + 22 k 2 , y 0= kx 0- 2=2,k∴线段 AB 的垂直均分线的方程是2 =- 1 x - 2k + 2 y - k 2.k k2k + 2 2 2令 y = 0,得 n = 2+ k 2=k 2+ k + 21 12 3= 2 k + 2 + 2.又由 k>-1且 k ≠ 0 得1<- 2,或 1 >0,2k k∴ n>2 0+12 2+ 32= 2.∴ n 的取值范围为 (2,+ ∞ ).2的焦点为 F ,过点 K(- 1,0) 的直线 l 与 C 17. (文 )(2010 全·国Ⅰ )已知抛物线 C : y = 4x 订交于 A 、 B 两点,点 A 对于 x 轴的对称点为 D .(1)证明:点 F 在直线 BD 上;→ → 8,求△ BDK 的内切圆 M 的方程.(2)设 FA ·FB =9[分析 ] 设 A(x 1,y 1), B( x 2, y 2), D(x 1,- y 1), l 的方程为 x =my - 1(m ≠ 0) (1)将 x = my - 1(m ≠0)代入 y 2= 4x 并整理得y 2- 4my + 4= 0,进而 y 1+ y 2= 4m , y 1y 2= 4① 直线 BD 的方程为 y - y 2=y 2+ y 1( x -x 2)x 2- x 1即 y - y 2= 4 x -y 2 2-y 1 4y 2令 y = 0,得 x = y 14y 2= 1,所以点 F(1,0)在直线 BD 上.(2)由 (1) 知,x 1+ x 2= (my 1- 1)+ (my 2- 1)= 4m 2-2, x 1x 2=( my 1- 1)(my 2- 1)= 1→→→ →因为 FA = (x 1- 1,y 1),FB = (x 2- 1,y 2),FA ·FB = (x 1- 1,y 1) ·(x 2- 1,y 2)= x 1x 2- (x 1+ x 2)+ 1+ 4= 8- 4m 2,故 8-4m 28 4= ,解得 m = ± ,93直线 l 的方程为 3x + 4y + 3= 0,3x - 4y + 3=0. 进而 y - y = ±24 4m - 4×4= ±7,21343故 y 2- y 1= ±7因此直线 BD 的方程为 3x + 7y - 3= 0,3x - 7y - 3=0.因为 KF 为∠ BKD 的角均分线,故可设圆心M (t,0),(- 1<t<1) ,M(t,0)到直线 l 及 BD 的距离分别为 3|t+ 1|, 3|t- 1|,5 4由3|t+1|=3|t-1|得 t=1或 t=9( 舍去 ),故圆 M 的半径为 r=3|t+1|=2,5 4 9 5 3所以圆 M 的方程为x-12+ y2=4.9 9(理 )(20102 2= 9上随意两个不一样的点,揭·阳市模考 )已知点 C(1,0),点 A、B 是⊙ O:x + y→ →且知足 AC·BC= 0,设 P 为弦 AB 的中点.(1)求点 P 的轨迹 T 的方程;(2)尝试究在轨迹 T 上能否存在这样的点:它到直线 x=- 1 的距离恰巧等于到点 C 的距离?若存在,求出这样的点的坐标;若不存在,说明原因.[分析 ]→ → 1|AB|,(1)法一:连接 CP,由 AC·BC= 0 知, AC⊥ BC,∴ |CP |= |AP|= |BP |=2由垂径定理知|OP|2+ |AP|2= |OA|2,即 |OP|2+ |CP |2=9,222 2设点 P(x, y),有 (x + y ) +[( x- 1) + y ]= 9,法二:设 A(x1, y1) ,B(x2, y2), P(x, y),依据题意知,x12+ y12= 9, x22+ y22=9,2x= x1+ x2,2y= y1+ y2,∴4x2= x12+ 2x1x2+ x22,4y2= y12+2y1y2+y22故 4x2+ 4y2= (x12+ y12)+ (2x1x2+ 2y1y2)+ (x22+ y22)=18+ 2(x1x2+ y1y2)①→→又∵ AC·BC= 0,∴ (1 -x1,- y1) ·(1- x2,- y2)= 0∴(1- x1)× (1- x2)+ y1y2=0,故 x1x2+ y1y2= (x1+x2)- 1= 2x- 1,代入①式得,4x2+ 4y2=18+ 2(2x- 1),化简得, x2- x+ y2= 4.(2)依据抛物线的定义,到直线x=- 1 的距离等于到点C(1,0)的距离的点都在抛物线 y2=2px 上,此中p= 1,∴ p= 2,故抛物线方程为 y2= 4x,2y2= 4x得, x2+ 3x-4= 0,由方程组x2- x+ y2= 4解得 x1= 1, x2=- 4,因为 x≥0,故取 x= 1,此时 y=±2,故知足条件的点存在,其坐标为(1,- 2) 和(1,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线与几何图形的结合是各地中考考察的重点,下面分层次将各知识点的结合归纳为下列专题: 一.抛物线中线段最值求法1.如图抛物线y=ax2+bx(a>0)经过A(3,3)和B(2,0)其顶点为c,AC 与Y 轴交于点D (1) 求a ,b 的值。
(2) 点P 是线段OA 上的动点,过P 作y 轴的平行线交抛物线于H,当线段PH 最长时,求P的坐标和PH 的最大值。
2.直线BC 交X 轴,y 轴于B (3,0)C (0,3)且抛物线于另一点A。
(1) 求直线BC 和抛物线的的解析式(2) 设P (x ,y )是(1)中抛物线上的一动点,过P 作直线L ⊥ x 轴于M 交直线BC于N ,若点P 在第一象限了内,线段PN 的长度为h.试求出h 与x 的函数关系式,h 是否存在最大值?若存在,求出最大值,若不存在,请说明理由。
3. 已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD ∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.4.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.二.二次函数图形中面积求法1.如图,直线AB :y=kx+3过点(-2,4)与抛物线y= 21x2交于A 、B 两点; (1)直接写出点A 、点B 的坐标;(2)在直线AB 的下方的抛物线上求点P ,使△ABP 的面积等于52.如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),抛物线顶点P 的纵坐标为-4,经过B 点的一次函数y=x-1的图象交抛物线于点D .(1)求抛物线的解析式;(2)求当二次函数值小于一次函数值时,x 的取值范围;(3)求△BPD 的面积.3.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.4.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.三.抛物线与勾股定理1.如图抛物线y=x2-2x-3的顶点为A,与y轴交于点B,与x轴交于C ,D(C在D的左侧)2.如图抛物线y=-x2+2x+3交x轴于A,B。
交y轴于C其对称轴为x=1,di点P为直线x=1上一点当PA=PC时,求点P的坐标3.如图,抛物线y=-x2+3x+4于x轴交于A,B两点,与y轴交于点C。
点P为抛物线上一点,是否存在点P,使得△ACP是已AC为直角边的直角三角形?若存在,求出所有符合条4.如图抛物线y=-x2-2x+3交x轴于点B(-3,0 )交y轴于C(0,3)P是对称轴X=-1上一个动的,若△BPC为直角三角形,求点P的坐标。
四.抛物线与等腰三角形1.如图,二次函数y=x 2-x-2的图象交x 轴于A ( -1, 0),B 两点,交y 轴于C (0 ,-2)点P 在x 轴正半轴上,且PA=PC 。
2.如图,抛物线y= -21x 2-x+4与X 轴交于点A 和B ,与Y轴交于点C,平行于X轴的动直线L与该抛物线交于点P,与直线AC交于点F,点D坐标(-2, 0),问是否有直线L使得△ODF是等腰直角三角形?若存在,请求出P的坐标。
若不存在,请说明理由。
3.如图,抛物线y=-83x2+43x+3与x轴交于A,B两点,与y轴交于点C,在y轴上是否存在点M使得△ACM为等腰三角形,若存在,求出符合条件的M坐标,若不存在,请说明理由。
4.如图,二次函数y=ax2+bx-4的图象与x轴交于A(-2 ,0)C(8,0)两点与y轴交于点B,其对称轴与x轴交于点点D (1)求二次函数解析式(2)连接BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出符合条件的E的坐标,若不存在,请说明理由。
五.抛物线中两点之间线段最短的运用1.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;2.已知抛物线y=82(x+2)(x-4)与x 轴交于点A ,B (点A 位于B 的左则),与y 轴交于点C 。
CD ∥x 轴交抛物线于点D 。
M 为抛物线的顶点。
(1)求点A ,B ,C 的坐标(2)设动的N (-2,n )求使MN+BN 的值最小时n 的值。
3.如图。
抛物线y= -x 2+2x+3交x 轴于A ,B ,与y 轴交于点C 。
抛物线的顶点为D ,点C 关于抛物线对称轴的对称点为E ,在x 轴,y 轴上是否存在点G,F使得四边形EDFG周长最小,若存在,求出点G,F的坐标,若不存在,请说明理由。
AMDCBxyO AD C BxyO六.抛物线与全等1.如图,抛物线L:y=ax2+bx+c与x轴交于A,B(3,0)两点(A 在B的左侧),与y轴交于C(0,3),已知对称轴x=1.(1)求抛物线的解析式:(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的定点落在△OBC内(包括△OBC的边界),求h的范围;(3)设点P是抛物线L上任意点,点Q在直线l:x= -3上△PBQ能否成为以点P为直角顶点的等要直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由七.抛物线解析式中含有一个参数的问题1.(2017孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3) 和 (﹣1,﹣4) ;(2)如图,顶点在第一象限的抛物线y=m (x ﹣1)2﹣4m 与其伴随直线相交于点A ,B (点A 在点B 的右侧),与x 轴交于点C ,D . ①若∠CAB=90°,求m 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值时,求m 的值.2.如图:关于x 的二次函数y=x 2-2mx+m 2+m 的图象与直线y=x+2交于两点A ,B 。
(1) 求A 。
B 两点坐标(用 m 的代数式表示) (2) 求线段AB 的长(3) 设P 为线段AB 下方抛物线上的动的。
过P 作PH ∥y 轴交AB 于H 。
当点P 的横坐标X=1时,线段PH 长度存在最大值,求m 的值。
A B XY H OP3.已知。
抛物线y=21x 2+mx-2m-2(m ≧0)与x 轴交于A ,B 两点。
点A 在点B 的左边与y 轴交于点C 。
(1) 求点A,B,C 的坐标(用m 的代数式表示)(2) 抛物线上有点D (-1,n ),若△ACD 的面积为5,求m 的值4.如图,已知二次函数y=m 2x 2﹣2mx ﹣3(m 是常数,m >0)的图象与x 轴分别相交于点A 、B (点A 位于点B 的左侧),与y 轴交于点C ,对称轴为直线l .点C 关于l 的对称点为D ,连接AD .点E 为该函数图象上一点,AB 平分∠DAE .(1)①线段AB 的长为 .②求点E 的坐标;(①、②中的结论均用含m 的代数式表示)(2)设M 是该函数图象上一点,点N 在l 上.探索:是否存在点M .使得以A 、E 、M 、N 为顶点的四边形是矩形?如果存在,求出点M 坐标;如果不存在,说明理由.A B O x y5.如图,抛物线y=a (x-1)(x-3)与x 轴交于A ,B 两点,与y 轴的正半轴交于点C ,其顶点为D .(1)写出C ,D 两点的坐标(用含a 的式子表示); (2)设S△BCD:S△ABD=k ,求k 的值;(3)当△BCD 是直角三角形时,求对应抛物线的解析式.。