2017-2018新授抛物线压轴题专题训练

合集下载

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3小问,共12分)上传校勘:柯老师【2013/24】如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C 的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A,k=;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.【2014/24】如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y 轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【2017/24】24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.参考答案:【2013/24】解:(1)∵点C的坐标为(t,0),直角边AC=4,∴点A的坐标是(t,4).又∵直线OA:y2=kx(k为常数,k>0),∴4=kt,则k=(k>0).(2)①当a=时,y1=x(x﹣t),其顶点坐标为(,﹣).对于y=来说,当x=时,y=×=﹣,即点(,﹣)在抛物线y=上.故当a=时,抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②如图1,过点E作EK⊥x轴于点K.∵AC⊥x轴,∴AC∥EK.∵点E是线段AB的中点,∴K为BC的中点,∴EK是△ACB的中位线,∴EK=AC=2,CK=BC=2,∴E(t+2,2).∵点E在抛物线y1=x(x﹣t)上,∴(t+2)(t+2﹣t)=2,解得t=2.(3)如图2,,则x=ax(x﹣t),解得x=+4,或x=0(不合题意,舍去)..故点D的横坐标是+t.当x=+t时,|y2﹣y1|=0,由题意得t+4=+t,解得a=(t>0).【2014/24】解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D(3,4),∴直线OD为:y=x.联立方程组,得,消去y,得ax2+(﹣﹣4a)x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】。

抛物线专题(附答案)

抛物线专题(附答案)

抛物线专题考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换1.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为32. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程题型:求抛物线的标准方程3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p =, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p = ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.4.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证6.设A 、B 为抛物线px y22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置 [解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kx y 22解出A 点坐标为)2,2(2k p k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。

九年级数学 17抛物线中的压轴题 精选练习

九年级数学 17抛物线中的压轴题 精选练习

抛物线中的压轴题拔高专题一、基本模型构建常见模型思考在边长为1的正方形格中有A, B, C三点,在射线BD上可以找出一点组成三角形,可得为其三个顶点的平行四边形画出以A,B,C△ABC、△BEC、ABCD。

△CBD为等腰三角形。

二、拔高精讲精练探究点一:因动点产生的平行四边形的问题例1: 在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。

2+bx+c(a≠0),解:(1)设此抛物线的函数解析式为:y=ax16a?4b?c=0??c=?4 2,C(,0)三点代入函数解析式得:),(,0-4A将(,)B0-4??4a?2b?c=0?1?=a?2?11=b2;x?x,所以此函数解析式为:解得y=4+?2?4c?=??12),+m,M在这条抛物线上,∴M点的坐标为:(m?4m(2)∵M点的横坐标为m,且点21111=+S-S22-2m+8-2m-8 4=-m-×4×-m+4)+×4×(-mm∴S=S×4×(-)AOB△△AOM△OBM222222+4,∵-4<m<0,当m=-2时,S有最大值为:S=-4+8=4=-m.答:-4m=-(m+2)m=-2时S有最大值S=4.12x+x-4).3)设P(x,(2当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,12又∵直线的解析式为y=-x,则Q(x,-x),x+x-4)|=4 .由PQ=OB,得|-x-(25.x=0不合题意,舍去.如图,当BO为对角线时,知A与P应该重合,解得x=0,-4,-2±2OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).5555)或(4,-4))或(-2-2.,2+2 -4由此可得Q(,4)或(-2+2 ,2-22+bx+c(a≠y=ax0)与x轴相交于-4【变式训练】(2015?贵阳)如图,经过点C(0,)的抛物线A(-2,0),B两点.2-4ac>0,b(填“>”或“<”);)(1a>0(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足的坐标;若不存在,请说明理由.E条件的点.2 6,0),Ax=2是对称轴,(-2,0),∴B()解:(1a>0,b>-4ac0;(2)∵直线412 y=ax,解得:+bx+cb=-,,a=c=-4,,C∵点(0,-4),将AB,C的坐标分别代入33412 y=∴抛物线的函数表达式为;x-x-433)存在,理由为:(3 ,C,E,F为顶点所组成的四边形是平行四边形,)假设存在点(iE使得以A 所示,,交x轴于点F,如图∥C作CEx轴,交抛物线于点E,过点E作EF1∥AC过点即为满足条件的平行四边形,则四边形ACEF412点的横坐标为4,x-4关于直线∵抛物线y=x=2对称,∴由抛物线的对称性可知,Ex-33;-4),∴存在点E(4,又∵OC=4,∴E的纵坐标为-4(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,142x-x-44,∴4=,′的纵坐标是′∴EG=CO=4,∴点E3377 =2-2=2+2解得:x,x,2177′的坐标为(∴点E2+2,,″的坐标为(E,同理可得点4)2-2)4。

2017年中考数学抛物线压轴题

2017年中考数学抛物线压轴题

2017年中考数学抛物线压轴题2017年中考数学抛物线压轴题1. 如图1,点A为抛物线C 1:y= x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC 于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值;2. 将抛物线c1:233=x轴翻折,得到抛物线c2,如图所示;y x(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E;①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.3.如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0);(1)b =----------------,点B 的横坐标为----------------(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC ,设△PBC 的面积为S ,①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有------------------个;4.在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c(a≠0)经过点C.(1)如图1,若该抛物线经过原点O,且1a ,①求4点C的坐标及该抛物线的表达式;②在抛物线上是否存在点P,使得∠POB=∠BAO.,若存在,请求出所有满足条件的点P的坐标,不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点D(2,1),点Q 在抛物线上,且满足∠QOB=∠BAO. 若符合条件的Q点的个数是4个,请直接写出a的取值范围;5.如图1是二次函数y= x2 +b x + c的图象,其顶点坐标为M(1,- 4),与x轴的交于A、B两点;(1)求出A、B的坐标;(2)P是平面内一点,将△AOM 绕点P沿顺时针方向旋转90°后,得到△A1O1M1,点A、O、M 的对应点分别是点A1、O1、M1,若△A1O1M1的两个顶点恰好落在抛物线上,求出点A1的坐标;6.在直角坐标系中,抛物线y=-ax 2+2ax+b ,交x 轴于A (一1,0),B 两点,交y 轴的负半轴于点C ,且OC =3OA .(1)求抛物线的解析式.(2)若P 为抛物线对称轴上的点,且S △BCP =2S △ACP ,求P 点坐标;(3)若P 为抛物线上BC 下方一点,且S △BCP =2S △ACP ,求P 点坐标;(4)若Q 点为抛物线对称轴上的点,且∠QB C=∠ACO ,求Q 点坐标;x y CB A O x yC B A O x y C B A O x yC B A O7. 已知抛物线C1的顶点为P(1,0),且过点(0,1),将抛物轴的直线与两条抛物线交于A 、B 、C 、D 四点(如图),且点A 、C 关于y 轴对称,直线AB 与x 轴的距离是m 2(m >0); ⑴求抛物线C 1的解析式的一般形式;⑵当m=2时,求h 的值;⑶若抛物线C 1的对称轴与直线AB 交于点E ,与抛物线C 2交于点F ,求证:EC EPED EF -的值为定值,并求此定值;8.如图,已知抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x 轴于点H;⑴求A,B两点的坐标;⑵设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;⑶以OB为边在第四象限内作等边△OBM,设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的最小值;9.已知抛物线C1:y=ax2+bx+23(a≠0)经过点A(﹣1,0)和B(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F 的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:tan∠ENM的值如何变化?请说明理由;10. 如图,坐标系在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限,OA=3,AB= 4;⑴求直线AB的解析式;⑵将△AOB沿垂直于x轴的线段折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,设点C的坐标为(x,0),设△CDE 与△AOB重合部分的面积为S,直接写出S与C点的横坐标x 之间的函数关系式(包括自变量x的取值范围);。

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。

二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。

3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。

例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。

【配套K12】2018年高考数学总复习9.7抛物线演练提升同步测评文新人教B版

【配套K12】2018年高考数学总复习9.7抛物线演练提升同步测评文新人教B版

9.7 抛物线A 组 专项基础训练(时间:40分钟)1.(2016·四川)抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0) D .(1,0)【解析】 由题意得2p =4,p =2,抛物线的焦点坐标为(1,0). 【答案】 D2.(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=15x 2【解析】 设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x . 【答案】 B3.(2017·广东广州3月模拟)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…x n =10,则|P 1F |+|P 2F |+…+|P n F |=( )A .n +10B .n +20C .2n +10D .2n +20【解析】 由抛物线的方程y 2=4x 可知其焦点为(1,0),准线为x =-1,由抛物线的定义可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,所以|P 1F |+|P 2F |+…+|P n F |=x 1+1+x 2+1+…+x n +1=(x 1+x 2+…+x n )+n =n +10.故选A.【答案】 A4.(2017·江西南昌一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若|FP |=3|FQ |,则|QF |=( )A.83B.52 C .3 D .2【解析】 设l 与x 轴的交点为M ,如图所示,过Q 作QN ⊥l ,垂足为N ,则△PQN ∽△PFM ,所以|NQ ||MF |=|PQ ||PF |=23,因为|MF |=4,所以|NQ |=83,故|QF |=|QN |=83,故选A.【答案】 A5.(2017·湖北七市4月联考)过抛物线y 2=2px (p >0)的焦点F 的直线与双曲线x 2-y 23=1的一条渐近线平行,并交抛物线于A 、B 两点,若|AF |>|BF |,且|AF |=2,则抛物线的方程为( )A .y 2=2x B .y 2=3x C .y 2=4x D .y 2=x【解析】 由双曲线方程x 2-y 23=1知其渐近线方程为y =±3x ,∴过抛物线焦点F 且与渐近线平行的直线AB 的斜率为±3,不妨取k AB =3,则其倾斜角为60°,即∠AFx =60°.过A 作AN ⊥x 轴,垂足为N .由|AF |=2,得|FN |=1.过A 作AM ⊥准线l ,垂足为M ,则|AM |=p +1.由抛物线的定义知,|AM |=|AF |.∴p +1=2,∴p =1,∴抛物线的方程为y 2=2x ,故选A.【答案】 A6.(2016·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.【解析】 易得双曲线y 2-x 2=1过点⎝⎛⎭⎪⎫-p 2,p 3,从而p 23-p 24=1,所以p =2 3.【答案】 2 37.(2016·山西四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,则弦长|AB |为________.【解析】 设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1,联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB |=x 1+x 2+p=6+2=8.【答案】 88.(2017·西安模拟)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A 、B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.【解析】 设直线l 的方程为y =k (x +1)(k ≠0),将其代入y 2=4x 得,k 2x 2+(2k 2-4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k 2-4k 2,所以x Q =-k 2-2k 2=2k2-1,y Q =k (x Q+1)=2k,又|FQ |=2,F (1,0),所以⎝ ⎛⎭⎪⎫2k2-22+4k2=4,解得k =±1.【答案】 ±19.(2016·浙江)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.【解析】 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy-4=0,故y 1y 2=-4,所以,B ⎝ ⎛⎭⎪⎫1t 2,-2t.又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t.从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得 2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t2t 2-1. 所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).10.(2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【解析】 方法一 (1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0), 所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.方法二 (1)同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0. 所以点F 到直线GB 的距离d =|22+22|8+9=4217=r . 这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.B 组 专项能力提升(时间:30分钟)11.(2015·四川)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)【解析】 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2,由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0,2=5-x 0,x 0=3,即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,∴-23<y 0<23,∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16,又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D. 【答案】 D12.(2016·全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2 【解析】 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.【答案】 D13.(2016·湖南岳阳二模)直线3x -4y +4=0与抛物线x 2=4y 、圆x 2+(y -1)2=1从左至右的交点依次为A ,B ,C ,D ,则|CD ||AB |的值为________.【解析】 如图所示,抛物线x 2=4y 的焦点为F (0,1),直线3x -4y +4=0过点(0,1),由⎩⎪⎨⎪⎧x 2=4y ,3x -4y +4=0得4y 2-17y +4=0,设A (x 1,y 1),D (x 2,y 2),则y 1+y 2=174,y 1y 2=1,解得y 1=14,y 2=4,则|CD ||AB |=|FD |-1|AF |-1=(y 2+1)-1(y 1+1)-1=16.【答案】 1614.(2016·安庆模拟)如图,A ,B 是焦点为F 的抛物线y 2=4x 上的两动点,线段AB 的中点M 在定直线x =t (t >0)上.(1)求|FA |+|FB |的值; (2)求|AB |的最大值.【解析】 (1)设A (x 1,y 1),B (x 2,y 2),M (t ,m ),则x 1+x 2=2t ,y 1+y 2=2m .由抛物线的定义知|FA |=x 1+1,|FB |=x 2+1. 所以|FA |+|FB |=x 1+x 2+2=2t +2.(2)由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以x 1-x 2y 1-y 2=m2. 故可设直线AB 的方程为m2(y -m )=x -t ,即x =m2y -m 22+t .联立⎩⎪⎨⎪⎧x =m 2y -m 22+t ,y 2=4x ,消去x ,得y 2-2my +2m 2-4t =0.则Δ=16t -4m 2>0,即0≤m 2<4t ,y 1+y 2=2m ,y 1y 2=2m 2-4t .所以|AB |=1+m 24|y 1-y 2|=(4t -m 2)(4+m 2)=-[m 2-2(t -1)]2+4(t +1)2,其中0≤m 2<4t .当t ≥1时,因为0≤2t -2<4t ,所以当m 2=2t -2时,|AB |取最大值,即|AB |max =2t +2.当0<t <1时,因为2t -2<0,所以当m 2=0时,|AB |取最大值,即|AB |max =4t .综上,|AB |max =⎩⎨⎧2t +2,t ≥1,4t ,0<t <1.15.(2016·江苏)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程. (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.【解析】 (1)抛物线C :y 2=2px (p >0)的焦点为⎝ ⎛⎭⎪⎫p2,0,由点⎝ ⎛⎭⎪⎫p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0). 因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明 由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x ,得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0. 方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b ,上,所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围是⎝ ⎛⎭⎪⎫0,43.。

抛物线压轴题专题

抛物线压轴题专题011、(09安徽芜湖)如图,在平面直角坐标系中放置一直角三角板,其顶点为(10)A -,,(0B ,(00)O ,,将此三角板绕原点O 顺时针旋转90°,得到A B O ''△. (1)如图,一抛物线经过点A B B '、、,求该抛物线解析式;(2)设点P 是在第一象限内抛物线上一动点,求使四边形PBAB '的面积达到最大时点P 的坐标及面积的最大值.6、(09广东深圳)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由。

x3、(09广东广州)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴上午垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。

4、(09广西贵港)如图,抛物线y =ax 2+bx +c 的交x 轴于点A 和点B (-2,0),与y 轴的负半轴交于点C ,且线段OC 的长度是线段OA 的2倍,抛物线的对称轴是直线x =1. (1)求抛物线的解析式;(2)若过点(0,-5)且平行于x 轴的直线与该抛物线交于M 、N 两点,以线段MN 为一边抛物线上与M 、N 不重合的任意一点P (x ,y )为顶点作平行四边形,若平行四边形的面积为S ,请你求出S 关于点P 的纵坐标y 的函数解析式; (3)当0<x ≤ 10 3时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出来;若不存在,请说明理由.5、(09广西柳州)如图,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.6、(09湖北荆州)一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC . (1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.7、 (09湖北武汉) 如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.8、(09山东济南)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C 其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.。

人教版2018最新高中数学高考总复习抛物线习题及详解Word版

高中数学高考总复习抛物线习题 ( 附参照答案 ) 一、选择题1. (2010 湖·北黄冈 )若抛物线 2 x2 y2y = 2px 的焦点与椭圆+=1 的右焦点重合,则 p 的值6 2为()A.- 2 B . 2C.- 4 D .4[答案 ] D[分析 ] 椭圆中, a 2= 6,b2= 2,∴ c= a2- b2= 2,p∴右焦点 (2,0),由题意知2= 2,∴ p= 4.2.已知点 M 是抛物线 y2= 2px(p>0)上的一点, F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与 y 轴的关系是 ( )A .订交B .相切C.相离 D .以上三种情况都有可能[答案 ] B[分析 ] 如图,由 MF 的中点 A 作准线 l 的垂线 AE ,交直线 l 于点 E,交 y 轴于点 B;由点 M 作准线 l 的垂线 MD ,垂足为 D ,交 y 轴于点 C,则 MD=MF ,ON=OF,∴AB= OF + CM= ON+ CM2 2=DM= MF,22∴这个圆与 y 轴相切.3.(2010 山·东文 )已知抛物线 y 2=2px(p>0),过焦点且斜率为 1 的直线交抛物线于A、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为()A . x= 1B . x=- 1C.x= 2 D .x=- 2[答案 ] B[分析 ] 设 A(x1,y1) ,B(x2,y2),则线段 AB 的中点 ( x1+x2,y1+ y2 y1+ y2= 2,∵ A、2 2 ),∴ 2B 在抛物线 y 2= 2px 上,y 12= 2px 1 ①∴y 22= 2px 2 ②①-②得 y 12 -y 2 2= 2p( x 1-x 2 ),∴ k = y 1-y 2 = 2p = p= 1,∴, p =2,∵ k ABABx 1-x 2 y 1+y 2 2∴抛物线方程为 y 2=4x ,∴准线方程为: x =- 1,应选 B.x 2 - y 2= 1 的渐近线上一点 A 到双曲线的右焦点F 的距离等于 2,抛物线 y24.双曲线 9 4=2px(p>0) 过点 A ,则该抛物线的方程为 ()A . y 2= 9xB . y 2=4xC .y 2=4 13xD .y 2=2 13x1313[答案 ]C[分析 ]∵双曲线 x 2 y 2的渐近线方程为2- = 1y = ± x ,F 点坐标为 ( 13,0),设 A 点坐标9 43 222 2= 2? x =9,y = ±62为( x ,y),则 y = ±13 +3x13 13 ,代入 y = 2px3x ,由 |AF|= 2?x -得 p = 2 13,所以抛物线方程为y 2= 4 131313 x ,所以选 C.5.已知点 P 是抛物线 2= 2x 上的一个动点, 则点 P 到点 (0,2)的距离与点 P 到该抛物线 y 准线的距离之和的最小值为()A. 17 B . 329 C. 5D.2[答案 ] A[分析 ]记抛物线 y 2= 2x 的焦点为 F1, 0 ,准线是 l ,由抛物线的定义知点 P 到焦点 F2的距离等于它到准线 l 的距离,所以要求点 P 到点 (0,2)的距离与点 P 到抛物线的准线的距离 之和的最小值,能够转变为求点P 到点 (0,2)的距离与点 P 到焦点 F 的距离之和的最小值,联合图形不难得悉相应的最小值就等于焦点 F 与点 (0,2)的距离,所以所求的最小值等于1 2+ 22=17,选 A.226.已知抛物线 C :y 2= 4x 的焦点为 F ,准线为 l ,过抛物线 C 上的点 A 作准线 l 的垂线, 垂足为 M ,若△ AMF 与△ AOF (此中 O 为坐标原点 ) 的面积之比为 3 1,则点 A 的坐标为 ()A . (2,2 2)B .(2,- 2 2)C .(2, ± 2)D .(2, ±2 2)[答案 ]D[分析 ]如图,由题意可得, |OF |=1,由抛物线定义得,|AF |= |AM|,∵△ AMF与△AOF (其中 O 为坐标原点)的面积之比为3∶ 1,1∴ S△AMF =2× |AF|× |AM|× sin ∠ MAF= 3,S △AOF12× |OF|× |AF|× sin π-∠ MAF22∴ |AM |= 3,设 A y0 , y 0,∴ y0 + 1= 3,4 4y 02解得 y 0= ±2 2,∴ 4 = 2,∴点 A 的坐标是 (2, ±22),应选 D.7. (2010 河·北许昌调研 )过点 P(- 3,1)且方向向量为 a = (2,- 5)的光芒经直线 y =- 2反射后经过抛物线 y 2= mx , (m ≠ 0)的焦点,则抛物线的方程为()A . y 2=- 2xB . y 2=- 3x2C .y 2= 4xD .y 2=- 4x[答案 ] D[分析 ]→设过 P(- 3,1),方向向量为 a = (2,- 5)的直线上任一点 Q(x , y),则 PQ ∥ a ,x + 3 y -1∴ 2 =-5 ,∴ 5x + 2y + 13= 0,此直线对于直线 y =- 2 对称的直线方程为 5x + 2(- 4- y)+ 13= 0,即 5x - 2y + 5= 0,此直线过抛物线y 2= mx 的焦点 Fm,0 ,∴ m =- 4,应选4D.8.已知 mn ≠ 0,则方程是 mx 2+ ny 2=1 与 mx + ny 2=0 在同一坐标系内的图形可能是( )[答案 ] A[分析 ]22=1 2=- mC 、D ;∴若 mn>0,则 mx + ny 应为椭圆, y n x 应张口向左,故清除mn<0,此时抛物线2m B ,选 A.y =-x 应张口向右,清除n9. (2010 山·东聊城模考 )已知 A 、 B 为抛物线 C :y 2=4x 上的不一样两点, F 为抛物线 C 的焦点,若 → →) FA =- 4FB ,则直线 AB 的斜率为 (23 A . ±B . ±3234 C .±D .±43[答案 ] D[分析 ]→ → →→∵FA =- 4FB ,∴ |FA|=4|FB|,设 |BF|= t ,则 |AF |= 4t ,∴ |BM|= |AA 1|- |BB 1|= |AF|- |BF|=3t ,又 |AB|= |AF|+ |BF|= 5t ,∴ |AM |= 4t ,4 4∴ tan ∠ ABM = ,由对称性可知,这样的直线AB 有两条,其斜率为 ± .3310.已知抛物线 C 的方程为 x 2=1y ,过点 A(0,- 4)和点 B(t,0)的直线与抛物线 C 没有2公共点,则实数 t 的取值范围是 ()A . (-∞,- 1)∪(1,+∞ )B. -∞,- 2 ∪222 ,+∞C .( -∞,- 2 2)∪ (2 2,+∞ )D . (-∞,- 2 2)∪ ( 2,+∞ )[答案 ]B21 ①x = y[分析 ]由题意知方程组2无实数解x + y=1 ②t - 4由②得 y =4x- 4,代入①整理得,t24x = 16,2x - + 4=0,∴2- 32<0tt∴ t> 2或 t<- 2,应选 B.22[评论 ]可用数形联合法求解,设过点A(0,- 4)与抛物线21 x= y 相切的直线与抛物线2切点为 M(x 0, y 0),则切线方程为 y -y 0=4x 0(x - x 0), ∵过 A 点,∴- 4- 2x 02= 4x 0(0- x 0),∴ x 0= ± 2,∴ y 0=4,∴切线方程为 y -4= ±4 2x -8,令 y = 0 得 x = ± 2,即 t =± 2,2222由图形易知直线与抛物线无公共点时,t<-2 或 t> 2 .二、填空题11.已知点 A(2,0) 、B(4,0) ,动点 P 在抛物线 2→ →y =- 4x 上运动,则 AP ·BP 获得最小值时的点 P 的坐标是 ______.[答案 ] (0,0)[分析 ]设 P- y 2→y 2→y 2→ →y 24 ,y ,则 AP = -- 2,y , BP = -- 4, y , AP ·BP = -- 24 4424 5 2 - y2y + 8≥ 8,当且仅当 y =0 时取等号,此时点 P 的坐标为 (0,0).-4 + y = 16 + y4212. (文 )(2010 泰·安市模拟 )如图,过抛物线 y 2= 2px(p>0) 的焦点 F 作倾斜角为 60°的直线 l ,交抛物线于A 、B 两点,且 |FA|= 3,则抛物线的方程是 ________.[答案 ]y 2= 3x[分析 ] 设抛物线准线为 l ,作 AA 1⊥ l ,BB 1⊥ l ,FQ ⊥ l ,垂足分别为 A 1 、B 1、Q ,作 BM⊥AA 1 垂足为 M ,BM 交 FQ 于 N ,则由条件易知∠ ABM = 30°,设 |BF |= t ,则 |NF|= t, |MA|2=t + 3,∵ |AM |= |QN|,∴ 3- t + 3= p - t,∴ p = 3,∴抛物线方程为 y 2= 3x. 22 2 2(理 )(2010 泰·安质检 ) 如图,过抛物线 y 2= 2px(p>0)的焦点的直线 l 挨次交抛物线及其准线于点 A 、 B 、 C ,若 |BC|= 2|BF|,且 |AF|= 3,则抛物线的方程是 ________.[答案 ]y 2= 3x[分析 ] 解法 1:过 A 、 B 作准线垂线,垂足分别为A 1 ,B 1,则 |AA 1|= 3, |BB 1|= |BF|,∵ |BC|= 2|BF |,∴ |BC |=2|BB 1|,∴ |AC|= 2|AA 1|= 2|AF |=6,∴ |CF |= 3,∴ p =1 |CF |=3,∴抛物线方程为y 2=3x.22解法 2:由抛物线定义, |BF|等于 B 到准线的距离, 由|BC|= 2|BF|得∠ BCB 1=30°,又 |AF| =3,进而 A p + 3,3 3 在抛物线上,代入抛物线方程 3y 2= 2px ,解得 p = .2 2 22评论:还能够由 |BC|= 2|BF|得出∠ BCB 1=30°,进而求得 A 点的横坐标为1 p|OF|+ |AF |=223 或 p ,∴ p3 p 3+ 3- 2 + =3-,∴ p = .2 222213.已知 F 为抛物线 C :y 2= 4x 的焦点,过 F 且斜率为 1 的直线交 C 于 A 、B 两点.设|FA|>|FB|,则 |FA|与 |FB|的比值等于 ________.[答案 ] 3+ 2 2[分析 ] 分别由 A 和 B 向准线作垂线,垂足分别为 A 1, B 1,则由条件知,|AA 1|+ |BB 1|= |AB|,12+ 2|AA |=4|AB|2 ,解得,|AA 1|- |BB 1|=2 |AB||BB 1|= 2- 24 |AB|∴|AA 1 |=3+ 2 2,即|FA|= 3+ 2 2.|BB 1 ||FB |14. (文 )若点 (3,1) 是抛物线 y 2= 2px 的一条弦的中点,且这条弦所在直线的斜率为2,则 p = ________.[答案 ] 2[分析 ]设弦两头点 P 1(x 1, y 1), P 2(x 2, y 2) ,y 12= 2px 1 y 1- y2=2p= 2,则,两式相减得, y 22= 2px 2x 1- x 2 y 1+ y 2∵ y 1+ y 2= 2,∴ p = 2.(理 )(2010 衡·水市模考 )设抛物线 x 2= 12y 的焦点为 F ,经过点 P(2,1) 的直线 l 与抛物线相交于 A 、B 两点,又知点 P 恰为 AB 的中点,则 |AF |+ |BF|= ________.[答案 ] 8[分析 ]过 A 、 B 、 P 作准线的垂线 AA 1、 BB 1 与 PP 1,垂足 A 1、 B 1、 P 1,则 |AF|+ |BF|= |AA 1|+ |BB 1 |= 2|PP 1|= 2[1 - (- 3)] = 8.三、解答题2 23,抛物线15. (文 )若椭圆 C 1: x +y2= 1(0<b<2) 的离心率等于C 2: x 2= 2py(p>0)的焦4 b2点在椭圆 C 1 的极点上.(1)求抛物线 C 2 的方程;(2)若过 M(- 1,0)的直线 l 与抛物线 C 2 交于 E 、 F 两点,又过 E 、 F 作抛物线 C 2 的切线l 1、 l 2,当 l 1⊥l 2 时,求直线 l 的方程.[分析 ](1)已知椭圆的长半轴长为a = 2,半焦距 c = 4-b 2,由离心率 e = c=24-b= 3得, b 2=1.a 2 2∴椭圆的上极点为 (0,1),即抛物线的焦点为(0,1),∴ p = 2,抛物线的方程为 x 2= 4y.(2)由题知直线 l 的斜率存在且不为零,则可设直线l 的方程为 y = k(x + 1),E(x 1, y 1),F(x 2, y 2),1 2 1 x ,∵ y = x,∴ y ′ =4211∴切线 l 1, l 2 的斜率分别为 2x 1, 2x 2,1 1当 l 1⊥ l 2 时, x 1·x 2=- 1,即 x 1 ·x 2=- 4,2 2y =k x +1 由得: x 2- 4kx - 4k = 0,x 2= 4y由 = (- 4k)2- 4×( - 4k)>0,解得 k<- 1 或 k>0.又 x 1·x 2=- 4k =- 4,得 k = 1.∴直线 l 的方程为 x -y + 1= 0.→→ →→→→(理 )在△ ABC 中, CA ⊥ CB, OA= (0,- 2),点 M 在 y 轴上且 AM =1 + CD ),点 C( AB2在 x 轴上挪动.(1)求 B 点的轨迹 E 的方程;(2)过点 F 0,-1的直线 l 交轨迹 E→→4于 H、E 两点, (H 在 F、G 之间 ),若 FH=1 HG ,2求直线 l 的方程.[分析 ] (1)设 B(x, y), C(x0,0), M(0, y0),x0≠0,→→π∵ CA⊥ CB,∴∠ ACB=,2∴2 y0=- 2x0·1,于是 x0 = 2y0①- x0→→→M 在 y 轴上且 AM=1(AB+ AC),2所以 M 是 BC 的中点,可得x0+ xx0=- x ②= 02 ,∴y0=yy+ 0 ③= y0 22把②③代入①,得y= x2(x≠ 0),所以,点 B 的轨迹 E 的方程为 y= x2(x≠0).(2)点 F 0,-1 ,设知足条件的直线l 方程为:41y= kx-4,H (x1, y1), G(x2, y2),1由 y= kx-4 消去 y 得, x2- kx+1= 0.y= x2 4 =k2- 1>0? k2>1,→ 1 → 1 1∵FH=2HG,即 x1,y1+4 =2(x2 - x1, y2- y1),1 1∴x1=2x2-2x1? 3x1= x2.1 2 3,∵ x1+ x2= k, x1x2=,∴ k=±34故知足条件的直线有两条,方程为: 8x + 4 3y + 3= 0 和 8x - 4 3y - 3= 0.16. (文 )已知 P(x , y)为平面上的动点且 x ≥0,若 P 到 y 轴的距离比到点 (1,0)的距离小1.(1)求点 P 的轨迹 C 的方程;(2)设过点 M(m,0)的直线交曲线 C 于 A 、 B 两点,问能否存在这样的实数m ,使得以线段 AB 为直径的圆恒过原点.[分析 ](1)由题意得:x - 12+ y 2- x = 1,化简得: y 2= 4x (x ≥ 0).∴点 P 的轨迹方程为 y 2= 4x( x ≥0) .(2)设直线 AB 为 y =k(x -m), A(x 1, y 1), B(x 2, y 2), y =k x -m由,得 ky 2- 4y - 4km = 0,y 2= 4x∴ y 1+ y 2=4k , y 1·y 2=- 4m.∴ x 1·x 2= m 2,∵以线段 AB 为直径的圆恒过原点,∴ OA ⊥ OB ,∴ x 1·x 2+ y 1·y 2= 0.即 m 2- 4m = 0? m = 0 或 4.当 k 不存在时, m = 0 或 4.∴存在 m = 0 或 4,使得以线段AB 为直径的圆恒过原点.[评论 ](1)点 P 到定点F(1,0)的距离比到y 轴的距离大1,即点P 到定点F(1,0)的距离与到定直线 l :x =- 1 的距离相等.∴ P 点轨迹是以 F 为焦点, l 为准线的抛物线,∴ p = 2,∴方程为 y 2= 4x.(理 )已知抛物线 y 2= 4x ,过点 (0,- 2)的直线交抛物线于 A 、 B 两点, O 为坐标原点.→ →的方程. (1)若 OA ·OB =4,求直线 AB(2)若线段 AB 的垂直均分线交x 轴于点 (n,0),求 n 的取值范围.[分析 ] (1)设直线 AB 的方程为 y =kx - 222 2(k ≠ 0),代入 y = 4x 中得, k x - (4k + 4)x +4= 0①4k +4 4设 A(x 1, y 1), B(x 2, y 2),则 x 1+ x 2= k 2 , x 1x 2= k 2.y 1y 2=( kx 1- 2) ·(kx 2 -2)= k 2x 1x 2- 2k(x 1+ x 2)+ 4=-8k .→ → 4 82∵ OA ·OB = (x 1 ,y 1) ·(x 2, y 2)= x 1x 2+y 1y 2= k 2- k =4,∴ k + 2k - 1= 0,解得 k =- 1± 2. 又由方程①的鉴别式= (4k + 4)2- 16k 2=32k + 16>0 得 k>- 1,∴ k =- 1+ 2,2∴直线 AB 的方程为 ( 2- 1)x - y - 2= 0.(2)设线段 AB 的中点的坐标为 ( x 0, y 0),则由 (1) 知 x 0= x 1+x 2 = 2k + 22 k 2 , y 0= kx 0- 2=2,k∴线段 AB 的垂直均分线的方程是2 =- 1 x - 2k + 2 y - k 2.k k2k + 2 2 2令 y = 0,得 n = 2+ k 2=k 2+ k + 21 12 3= 2 k + 2 + 2.又由 k>-1且 k ≠ 0 得1<- 2,或 1 >0,2k k∴ n>2 0+12 2+ 32= 2.∴ n 的取值范围为 (2,+ ∞ ).2的焦点为 F ,过点 K(- 1,0) 的直线 l 与 C 17. (文 )(2010 全·国Ⅰ )已知抛物线 C : y = 4x 订交于 A 、 B 两点,点 A 对于 x 轴的对称点为 D .(1)证明:点 F 在直线 BD 上;→ → 8,求△ BDK 的内切圆 M 的方程.(2)设 FA ·FB =9[分析 ] 设 A(x 1,y 1), B( x 2, y 2), D(x 1,- y 1), l 的方程为 x =my - 1(m ≠ 0) (1)将 x = my - 1(m ≠0)代入 y 2= 4x 并整理得y 2- 4my + 4= 0,进而 y 1+ y 2= 4m , y 1y 2= 4① 直线 BD 的方程为 y - y 2=y 2+ y 1( x -x 2)x 2- x 1即 y - y 2= 4 x -y 2 2-y 1 4y 2令 y = 0,得 x = y 14y 2= 1,所以点 F(1,0)在直线 BD 上.(2)由 (1) 知,x 1+ x 2= (my 1- 1)+ (my 2- 1)= 4m 2-2, x 1x 2=( my 1- 1)(my 2- 1)= 1→→→ →因为 FA = (x 1- 1,y 1),FB = (x 2- 1,y 2),FA ·FB = (x 1- 1,y 1) ·(x 2- 1,y 2)= x 1x 2- (x 1+ x 2)+ 1+ 4= 8- 4m 2,故 8-4m 28 4= ,解得 m = ± ,93直线 l 的方程为 3x + 4y + 3= 0,3x - 4y + 3=0. 进而 y - y = ±24 4m - 4×4= ±7,21343故 y 2- y 1= ±7因此直线 BD 的方程为 3x + 7y - 3= 0,3x - 7y - 3=0.因为 KF 为∠ BKD 的角均分线,故可设圆心M (t,0),(- 1<t<1) ,M(t,0)到直线 l 及 BD 的距离分别为 3|t+ 1|, 3|t- 1|,5 4由3|t+1|=3|t-1|得 t=1或 t=9( 舍去 ),故圆 M 的半径为 r=3|t+1|=2,5 4 9 5 3所以圆 M 的方程为x-12+ y2=4.9 9(理 )(20102 2= 9上随意两个不一样的点,揭·阳市模考 )已知点 C(1,0),点 A、B 是⊙ O:x + y→ →且知足 AC·BC= 0,设 P 为弦 AB 的中点.(1)求点 P 的轨迹 T 的方程;(2)尝试究在轨迹 T 上能否存在这样的点:它到直线 x=- 1 的距离恰巧等于到点 C 的距离?若存在,求出这样的点的坐标;若不存在,说明原因.[分析 ]→ → 1|AB|,(1)法一:连接 CP,由 AC·BC= 0 知, AC⊥ BC,∴ |CP |= |AP|= |BP |=2由垂径定理知|OP|2+ |AP|2= |OA|2,即 |OP|2+ |CP |2=9,222 2设点 P(x, y),有 (x + y ) +[( x- 1) + y ]= 9,法二:设 A(x1, y1) ,B(x2, y2), P(x, y),依据题意知,x12+ y12= 9, x22+ y22=9,2x= x1+ x2,2y= y1+ y2,∴4x2= x12+ 2x1x2+ x22,4y2= y12+2y1y2+y22故 4x2+ 4y2= (x12+ y12)+ (2x1x2+ 2y1y2)+ (x22+ y22)=18+ 2(x1x2+ y1y2)①→→又∵ AC·BC= 0,∴ (1 -x1,- y1) ·(1- x2,- y2)= 0∴(1- x1)× (1- x2)+ y1y2=0,故 x1x2+ y1y2= (x1+x2)- 1= 2x- 1,代入①式得,4x2+ 4y2=18+ 2(2x- 1),化简得, x2- x+ y2= 4.(2)依据抛物线的定义,到直线x=- 1 的距离等于到点C(1,0)的距离的点都在抛物线 y2=2px 上,此中p= 1,∴ p= 2,故抛物线方程为 y2= 4x,2y2= 4x得, x2+ 3x-4= 0,由方程组x2- x+ y2= 4解得 x1= 1, x2=- 4,因为 x≥0,故取 x= 1,此时 y=±2,故知足条件的点存在,其坐标为(1,- 2) 和(1,2).。

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

(完整版)抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线 x+ 2y= 3 距离相等的点的轨迹是 ()A .直线B.抛物线C.圆D.双曲线2.抛物线 y2= x 上一点 P 到焦点的距离是 2,则 P 点坐标为 ()3,± 67,± 79,± 35,± 10A. 22B. 42C. 42D. 223.抛物线 y= ax2的准线方程是y= 2,则 a 的值为 ()11A. 8 B .-8C. 8D.- 84.设抛物线 y2= 8x 上一点 P 到 y 轴的距离是4,则点 P 到该抛物线焦点的距离是 ()A .4B . 6C. 8D. 125.设过抛物线的焦点 F 的弦为 AB,则以 AB 为直径的圆与抛物线的准线的地址关系是()A .订交B .相切C.相离D.以上答案都有可能6.过点 F(0,3)且和直线 y+ 3=0 相切的动圆圆心的轨迹方程为 ()A .y2= 12xB .y2=- 12x C. x2= 12y D .x2=- 12y7.抛物线 y2= 8x 上一点 P 到 x 轴距离为12,则点 P 到抛物线焦点 F 的距离为 ()A .20B .8C. 22D. 248.抛物线的极点在坐标原点,焦点是椭圆4x2+ y2= 1 的一个焦点,则此抛物线的焦点到准线的距离为 ()11A. 2 3 B. 3 C.2 3 D.4 39.设抛物线的极点在原点,其焦点F 在 y 轴上,又抛物线上的点(k,- 2)与 F 点的距离为4,则 k 的值是 ()A. 4 B . 4 或- 4C.- 2 D .2 或- 212的焦点坐标是 ()10.抛物线 y=m x (m<0)A.0,mB. 0,-mC. 0,1D. 0,-1 444m4m11.抛物线的极点在原点,对称轴是x 轴,抛物线上的点(-5,2 5) 到焦点的距离是6,则抛物线的方程为 ()A. y2=- 2x B .y2=- 4x C. y2= 2x D. y2=- 4x 或 y2=- 36x12.已知抛物线y2=2px(p>0) 的准线与圆 (x- 3)2+ y2= 16 相切,则p 的值为 () 1A. 2 B . 1C.2 D .4二、填空题13.过抛物线焦点 F 的直线与抛物线订交于A 、B 两点,若A 、B 在抛物线准线上的射影是A 1、B 1,则∠ A 1FB 1=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线与几何图形的结合是各地中考考察的重点,下面分层次将各知识点的结合归纳为下列专题: 一.抛物线中线段最值求法1.如图抛物线y=ax2+bx(a>0)经过A(3,3)和B(2,0)其顶点为c,AC 与Y 轴交于点D (1) 求a ,b 的值。

(2) 点P 是线段OA 上的动点,过P 作y 轴的平行线交抛物线于H,当线段PH 最长时,求P的坐标和PH 的最大值。

2.直线BC 交X 轴,y 轴于B (3,0)C (0,3)且抛物线于另一点A。

(1) 求直线BC 和抛物线的的解析式(2) 设P (x ,y )是(1)中抛物线上的一动点,过P 作直线L ⊥ x 轴于M 交直线BC于N ,若点P 在第一象限了内,线段PN 的长度为h.试求出h 与x 的函数关系式,h 是否存在最大值?若存在,求出最大值,若不存在,请说明理由。

3. 已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD ∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.4.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.二.二次函数图形中面积求法1.如图,直线AB :y=kx+3过点(-2,4)与抛物线y= 21x2交于A 、B 两点; (1)直接写出点A 、点B 的坐标;(2)在直线AB 的下方的抛物线上求点P ,使△ABP 的面积等于52.如图,二次函数y=ax2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),抛物线顶点P 的纵坐标为-4,经过B 点的一次函数y=x-1的图象交抛物线于点D .(1)求抛物线的解析式;(2)求当二次函数值小于一次函数值时,x 的取值范围;(3)求△BPD 的面积.3.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.4.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.三.抛物线与勾股定理1.如图抛物线y=x2-2x-3的顶点为A,与y轴交于点B,与x轴交于C ,D(C在D的左侧)2.如图抛物线y=-x2+2x+3交x轴于A,B。

交y轴于C其对称轴为x=1,di点P为直线x=1上一点当PA=PC时,求点P的坐标3.如图,抛物线y=-x2+3x+4于x轴交于A,B两点,与y轴交于点C。

点P为抛物线上一点,是否存在点P,使得△ACP是已AC为直角边的直角三角形?若存在,求出所有符合条4.如图抛物线y=-x2-2x+3交x轴于点B(-3,0 )交y轴于C(0,3)P是对称轴X=-1上一个动的,若△BPC为直角三角形,求点P的坐标。

四.抛物线与等腰三角形1.如图,二次函数y=x 2-x-2的图象交x 轴于A ( -1, 0),B 两点,交y 轴于C (0 ,-2)点P 在x 轴正半轴上,且PA=PC 。

2.如图,抛物线y= -21x 2-x+4与X 轴交于点A 和B ,与Y轴交于点C,平行于X轴的动直线L与该抛物线交于点P,与直线AC交于点F,点D坐标(-2, 0),问是否有直线L使得△ODF是等腰直角三角形?若存在,请求出P的坐标。

若不存在,请说明理由。

3.如图,抛物线y=-83x2+43x+3与x轴交于A,B两点,与y轴交于点C,在y轴上是否存在点M使得△ACM为等腰三角形,若存在,求出符合条件的M坐标,若不存在,请说明理由。

4.如图,二次函数y=ax2+bx-4的图象与x轴交于A(-2 ,0)C(8,0)两点与y轴交于点B,其对称轴与x轴交于点点D (1)求二次函数解析式(2)连接BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出符合条件的E的坐标,若不存在,请说明理由。

五.抛物线中两点之间线段最短的运用1.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、C (0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;2.已知抛物线y=82(x+2)(x-4)与x 轴交于点A ,B (点A 位于B 的左则),与y 轴交于点C 。

CD ∥x 轴交抛物线于点D 。

M 为抛物线的顶点。

(1)求点A ,B ,C 的坐标(2)设动的N (-2,n )求使MN+BN 的值最小时n 的值。

3.如图。

抛物线y= -x 2+2x+3交x 轴于A ,B ,与y 轴交于点C 。

抛物线的顶点为D ,点C 关于抛物线对称轴的对称点为E ,在x 轴,y 轴上是否存在点G,F使得四边形EDFG周长最小,若存在,求出点G,F的坐标,若不存在,请说明理由。

AMDCBxyO AD C BxyO六.抛物线与全等1.如图,抛物线L:y=ax2+bx+c与x轴交于A,B(3,0)两点(A 在B的左侧),与y轴交于C(0,3),已知对称轴x=1.(1)求抛物线的解析式:(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的定点落在△OBC内(包括△OBC的边界),求h的范围;(3)设点P是抛物线L上任意点,点Q在直线l:x= -3上△PBQ能否成为以点P为直角顶点的等要直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由七.抛物线解析式中含有一个参数的问题1.(2017孝感)在平面直角坐标系xOy 中,规定:抛物线y=a (x ﹣h )2+k 的伴随直线为y=a (x ﹣h )+k .例如:抛物线y=2(x +1)2﹣3的伴随直线为y=2(x +1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x +1)2﹣4的顶点坐标为 (﹣1,﹣4) ,伴随直线为 y=x ﹣3 ,抛物线y=(x +1)2﹣4与其伴随直线的交点坐标为 (0,﹣3) 和 (﹣1,﹣4) ;(2)如图,顶点在第一象限的抛物线y=m (x ﹣1)2﹣4m 与其伴随直线相交于点A ,B (点A 在点B 的右侧),与x 轴交于点C ,D . ①若∠CAB=90°,求m 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值时,求m 的值.2.如图:关于x 的二次函数y=x 2-2mx+m 2+m 的图象与直线y=x+2交于两点A ,B 。

(1) 求A 。

B 两点坐标(用 m 的代数式表示) (2) 求线段AB 的长(3) 设P 为线段AB 下方抛物线上的动的。

过P 作PH ∥y 轴交AB 于H 。

当点P 的横坐标X=1时,线段PH 长度存在最大值,求m 的值。

A B XY H OP3.已知。

抛物线y=21x 2+mx-2m-2(m ≧0)与x 轴交于A ,B 两点。

点A 在点B 的左边与y 轴交于点C 。

(1) 求点A,B,C 的坐标(用m 的代数式表示)(2) 抛物线上有点D (-1,n ),若△ACD 的面积为5,求m 的值4.如图,已知二次函数y=m 2x 2﹣2mx ﹣3(m 是常数,m >0)的图象与x 轴分别相交于点A 、B (点A 位于点B 的左侧),与y 轴交于点C ,对称轴为直线l .点C 关于l 的对称点为D ,连接AD .点E 为该函数图象上一点,AB 平分∠DAE .(1)①线段AB 的长为 .②求点E 的坐标;(①、②中的结论均用含m 的代数式表示)(2)设M 是该函数图象上一点,点N 在l 上.探索:是否存在点M .使得以A 、E 、M 、N 为顶点的四边形是矩形?如果存在,求出点M 坐标;如果不存在,说明理由.A B O x y5.如图,抛物线y=a (x-1)(x-3)与x 轴交于A ,B 两点,与y 轴的正半轴交于点C ,其顶点为D .(1)写出C ,D 两点的坐标(用含a 的式子表示); (2)设S△BCD:S△ABD=k ,求k 的值;(3)当△BCD 是直角三角形时,求对应抛物线的解析式.。

相关文档
最新文档