《二次函数》中考总复习PPT课件(大全)解析

合集下载

中考二次函数总复习-精品公开课获奖课件百校联赛一等奖课件

中考二次函数总复习-精品公开课获奖课件百校联赛一等奖课件
x
巩固一下吧!
下列函数中哪些是一次函数,哪些是二次函数?
(1) y 3 x 4
(3) y 1 2x
(5) y x2 x 1
(2) y x2 (4) y 2x2 1 3
x (6) y (x 1)2 (x 1)2
(7) y (x 2)2 3 (9) y x 2 1
x
(8) y 0.5x2 1 (10)x2 y2 5
y
(2)解:∵抛物线与x轴相交时
x2-2x-8=0
A
Bx
P
解方程得:x1=4, x2=-2
∴AB=4-(-2)=6 迈进
而P点坐标是(1,-9)
∴S△ABC=27
(二)根据函数性质鉴定函数图象之间 旳位置关系
例3:在同一直角坐标系中,一次函数 y=ax+c和二次函数y=ax2+c旳图象大致为
y
y
y
3、解答题:
已知二次函数旳图象旳顶点坐标为(-2,-3),且 图象过点(-3,-2)。 (1)求此二次函数旳解析式; (2)设此二次函数旳图象与x轴交于A,B两点,O为 坐标原点,求线段OA,OB旳长度之和。
能力训练
1、 二次函数旳图象如图所示,则在下列各不等式 中成立旳个数是____________
2.选择
(1) 抛物线y=x2-4x+3旳对称轴是___c__________.
A 直线x=1 B直线x= -1 C 直线x=2 D直线x= -2
(2)抛物线y=3x2-1旳______B__________ A 开口向上,有最高点 B 开口向上,有最低点 C 开口向下,有最高点 D 开口向下,有最低点
(3)顶点坐标是:(-2a ,
4ac-b2 4a

二次函数-2023年中考数学第一轮总复习课件(全国通用)

二次函数-2023年中考数学第一轮总复习课件(全国通用)

A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

2024年中考第一轮复习 二次函数的图象与性质 课件

2024年中考第一轮复习 二次函数的图象与性质 课件
∵顶点坐标为(m,-m+1),且顶点与 x 轴的两个交点构成等腰直角三角形,
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2

>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴

-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与

x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

《二次函数》中考总复习PPT课件

《二次函数》中考总复习PPT课件

y
o
x
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
01
x
02
y
03
o
04
快速回答:
03
y
02
x
01
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
04
o
快速回答:
典型例题1. 如图,是抛物线y=ax2+bx+c的图像,则①a 0;②b 0;c 0;a+b+c 0; a-b+c 0;b2-4ac 0;2a-b 0;
当 时,是二次函数;
当 时,是一次函数;
当 时,是正比例函数;
驶向胜利的彼岸
驶向胜利的彼岸
2,函数 当m取何值时,
A
4、无论m为任何实数,二次函数y=x2-(2-m)x+m 的图像总是过点 ( ) A.(1,3) B.(1,0) C.;b+c
当x=-1时,y=a-b+c
a <0,b <0,c>0
- 与-1比较
与x轴交点个数
令x=1,看纵坐标
令x=-1,看纵坐标
令x=2,看纵坐标
令x=-2,看纵坐标
A
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
B
x
C
o
D
y
快速回答:
A
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
B

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件
二次函数
1、什么叫做二次函数?它的图象是什么? 它的对称轴、顶点坐标各是什么?
答:y=ax2+bx+c(a,b,c是常数,a≠0),y叫做x的二次 函数。它的图象是一条抛物线。它的对称轴是直
线x=
b 2a
,顶点坐标是(
b 2a

4ac b 2 4a
)。
2、二次函数的解析式有哪几种?
有三种:⑴一般式:y = ax2+bx+c(a≠0) ⑵顶点式:y = a(x-h)2+k 顶点 为(h,k) ⑶交点式:y = a(x-x1)(x-x2) 与x轴两交 点:(x1,0),(x2,0)
b 4ac b 2 ⑷顶点坐标是( 2 a , 4a
)。
⑸△=b2-4ac决定抛物线与x轴交点情况: ① △>0<=>抛物线与x轴有两个交点; ② △=0<=>抛物线与x轴有唯一的公式点; ③ △<0<=>抛物线与x轴无交点。 ⑹二次函数的最大、最小值由a决定。
例 2 、已知函数 y = ax2 +bx +c 的图象如下图所示, x= 1 3 为该图象的对称轴,根据图象信息你能得到关于系数 a , b , c的一些什么结论? 【分析与参考答案】 y 首先观察到二次函数的图象为抛物 1 线,其对称轴为直线x= 3 ,抛物线 1 与x轴有两个交点,交点的横坐标其 3 -1 0 1 x 一大于1,另一个介于-1与0之间,抛 物线开口向上,顶点的纵坐标及抛 -1 物线与 y 轴的交点的纵坐标均介于 -1 与0之间,由此可得如下结论: b 1 ⑴a>0; ⑵-1<c<0; ⑶b2-4ac>0; ⑷∵ 2a 3 ,∴2a=-3b; ⑸由⑴,(4)得b<0; ⑹由⑴,⑵,⑸得abc>0; ⑺考虑x = 1时y<0,所以有a+b+c<0; ⑻又x = -1时y>0,所以有a-b+c>0; ⑼考虑顶点的纵坐标,有0<cb2 <-1。 4a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数的定义
定义:一般地,形如y=ax²+bx+c ( a 、 b 、 c 是常数, a ≠ 0 )的函数叫做______.
定义要点:①a ≠ 0 ②最高次数为2
③代数式一定是整式
练习:1、y=-x²,y=2x²-2/x,y=100-5x²,y=3x²2x³+5,其中是二次函数的有____个。
各种形式的特 征
(3)y=ax²+bx(a≠0,b≠0,c=0).
(4)y=a(x-h)2 (a≠0)
(5)y=a(x-h)2 +k(a≠ 0)
2.定义的实质是:ax²+bx+c是整式,自变量x的最 高次数是二次,自变量x的取值范围是全体实数.
二、二次函数的图象及性质
y
y
(0,c)
b 2a
,
4ac 4a
对称轴是____x_=—_12___画。二次函数的大致图象:先配成顶点式,
y x=—12
再按照以下步骤画: ①画对称轴
②确定顶点
③确定与y轴的交点
(-2,0) 0
④确定与x轴的交点 (3,0)x ⑤确定与y轴交点关于对称轴对称的点
⑥连线
(1,-6) (0,-6)(—12 ,-—245)
当然,细画抛物线应该按照:列表(在 自变量的取值范围内列)、描点(要 准)、连线(用平滑的曲线)三步骤来 画。
驶向胜利的彼 岸
当 a 0, b 0 时,是一次函数;
当 a 0,b 0, c 0 时,是正比例函数;
2,函数 y (m2 m 2)xm22 当m取何值时,
(1)它是二次函数? (2)它是反比例函数?
(1)若是二次函数,则 m2 2 2 且m2 m 2 0
∴当 m 2 时,是二次函数。
则△aA=BC的面积. 是

2与、下y 列各a(图a 中 0可, c能是0函)数的图象y 的是ax( 2
c
)
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
图象
3、画二次函数y=x2-x-6的图象,顶点坐标是_(_—_12_,__-—2_45_)__
a>0 a<0
坐标
y=ax 2
开 开 y轴(直线 ( 0,0 )
y=ax2 +k 口 向
y=a(x- h) 2 上 y=a(x-h)2+k
口 x=0) ( 0,k )
向 直线 ( h,0 ) 下 x=h ( h,k )
当 | a | 的值越大时,抛物线开口越小,函数值 y 变化越快。
当 | a | 的值越小时,抛物线开口越大,函数值 y 变化越慢。
(2)若是反比例函数,则 m2 2 1 且m2 m 2 0
∴当 m 1 时,是反比例函数。
驶向胜利的彼 岸
小结:
1. 二次函数y=ax²+bx+c(a,b,c是常数,a≠0)的几 种不同表示形式:
(1)y=ax²(a≠0,b=0,c=0,). (2)y=ax²+c(a≠0,b=0,c≠0).
2.当m_______时,函数y=(m+1)χ m2 m- 2χ+1 是二次函数?
巩固一下吧!
3、下列函数中哪些是一次函数,哪些是二次
函数?
(1) y
3
x
4
(3)y 1 2x
(2) y x2 (4) y 2x2 1 3
x
(5)y x2 x 1
(6)y (x 1)2 (x 1)2
b2
0
(0,c)
抛物线 顶点坐标
对称轴 位置
x
b 2a
,
4ac 4a
b2
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
0
x
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
开口方向 增减性 最值
a>0,开口向上
时,y<0
4、二次函数y=ax2+bx+c(a≠0)与 一次函数y=ax+c在同一坐标系内 的大致图象是C ( )
特别注意:在实际问题中画函数的图像时要注意自变量的取值范围,若图像是直线, 则画图像时只取两个界点坐标来画(包括该点用实心点,不包括该点用空心圈);若是二 次函数的图像,则除了要体现两个界点坐标外,还要取上能体现图像特征的其它一些 点来画
3、二次函数y=x2-x-6的图象顶点坐标是_(_—_12_,_-_—2_45)___ 对称轴是__x_=_—12_____。
y x=—12 (-2,0) 0
增减性:
当 x1
2
时,y随x的增大而减小

x1 2
时,y随x的增大而增大
(3,0)x 最值:

x
1 2
时,y有最 小值,是 25
4
(1,-6) (0,-6)(—12 ,-—245)
函数值y的正负性: 当 x<-2或x>3 时,y>0
当 x=-2或x=3 时,y=0
当 -2<x<3
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x b 时, y最小值为 4ac b2
2a
4a
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
4a
小结:
抛物线 开口方向 对称轴 顶点
(7)y (x 2)2 3 (9) y x 2 1
x
(8)y 0.5x2 1 (10)x2 y2 5
1,函数 y ax2 bx c (其中a、b、c为常
数),当a、b、c满足什么条件时,
(1)它是二次函数;
(2)它是一次函数;
(3)它是正比例函数;
当 a 0 时,是二次函数;
基础演练
1. 如图,抛物线 y=ax2+bx+c,请判断下列 各式的符号:
①a 0; ②c 0; ③b2 - 4ac 0; ④ b 0;
y
C
O A Bx
小结:a 决定开口方向,c决定与y轴交点位置,b2 - 4ac 决定与x轴交点个数,a,b结合决定对称轴;
变变式式12::若若抛抛物物线线yyaxx22 43xx3a的2 图1的象图如象图如,图小和开口方向)就相同。
点评:二次函数的几种表现形式及图像
①、 y ax2(a 0)
②、 y ax2 c(a 0)
③、 y a(x h)2(a 0) ④、 y a(x h)2 k(a 0)
⑤、y ax2 bx c(a 0)
y
o
x
(顶点式) (一般式)
相关文档
最新文档