电工学少学时第五章ppt课件
合集下载
电工学导论 第五章_PPT课件

磁场强度是计算磁场所用的物理量,其大小为磁 感应强度和导磁率之比。
H B
H的单位:安/米
的单位:亨/米
矢量
安培环路定律(全电流定律):
磁场中任何闭合回路磁场强度的线积分,等于通 过这个闭合路径内电流的代数和.即
HdlI
I2 I1
电流方向和磁场强度的方向
符合右手定则,电流取正;
否则取负。
I3
H
在无分支的均匀磁路(磁 路的材料和截面积相同,各 处的磁场强度相等)中,如 环形线圈,安培环路定律可 写成:
x Hx
I
•一般材料的磁导率 和真空磁导率 0 的比值,称为 该物质的相对磁导率 r
r
0
或
r
H B 0H B0
r 1非磁性材料
r 1磁性材料
返回
5.1.2 磁性材料的磁性能
磁性材料的磁性能
高导磁性、磁饱和性、磁滞性、非线性
一、高导磁性
指磁性材料的磁导率很高, r>>1,使其具有 被强烈磁化的特性。
H1=500A/m H1 l1=195A
空气隙中的磁场强度为 H0=B0/ 0=0.9/(4 10-7)=7.2105A/m
H0=7.2 105 0.2 10-2=1440A 总磁通势为 NI=(H l)=H1 l1+H0
=195+1440=1635 线圈匝数为 N=NI/I=1635
结论
若要得到相等的磁感应强度,采用磁导率高的铁 心材料,可使线圈的用铜量大为降低。
目录
• 5.1 磁路的基本概念 • 5.2 变压器 • 5.3 电动机 • 5.4 继电接触控制系统
5.1.1 磁场的基本物理量
磁场的特性可用磁感应强度、磁通、磁场强度、磁 磁导率等几个物理量表示。
电工学chapter5

分别计算各线电流
IA IB
U A URAB RB
220 0 A 44 0A 5
220 120 A 22 120 10
A
中性线I电C 流 URCC
220
120 A 20
11
120 A
IN IA IB IC 44 0A 22 120 A 11 120 A
A
1) 中性线未断
B、C相灯仍承受220V N
电压, 正常工作。
2) 中性线断开
B
变为单相电路,如图(b) C 所示, 由图可求得
I UBC 380 12 .7 A RB RC 10 20
UB IR B 12 .710 127 V
UC IR C 12 .7 20 254 V
负载对称时,中性线无电流,
可省掉中性线。
UL 3UP
总目录 章目录 返回 上一页 下一页
例1:一星形联结的三相电路,电源电压对称。设电
源线电压 uAB 380 2 sin(314 t 30)V 。 负载为
电灯组,若RA=RB= RC = 5 ,求线电流及中性线电
流 IN ; 若RA=5 , RB=10 , RC=20 ,求线电流及
U1
W1
– + u3– – u2
中性点
–
U12
––
+
U2 +
–
V1
U +
3
+ U–
23
N 中性线(零线、地线)
U 31
L2
+
在低压系统,中 性点通常接地, 所以也称地线。
电工学课件第5章

思考:
衔铁吸合前后的电磁吸力有什么不同?
分析:
衔铁吸合前后的电流不变,磁路的磁通势不变。
衔铁吸合前磁阻大于吸合后磁阻,
因而吸合前的磁通小于吸合后的磁通,
故吸合前的电磁吸力也小于吸合后的电磁吸力。
3. 结构特点
直流电磁铁的铁心一般用整块的钢铁制成,为加工方
便常做成圆柱形。
(二)交流电磁铁
1.交流铁心线圈电路
压
220V
器
器
▲ 输电距离、输电功率与输电电压的关系:
输电电压
110kV
220kV
500kV
输电功率
5×104 kW
(20 ~30)×104 kW
100×104 kW
输电距离
50 ~150km
200 ~ 400km
≥500km
上一页
下一页
2)在电子线路中,变压器除了用作电源变压器外,
还可以变换阻抗,用来耦合电路,传递信号,实现
下一页
铁心
Φ
+
+
u1
–
一次
绕组
绕组
变压器
–
N2
N1
单相变压器
一次绕组
二次绕组
由高导磁硅钢片叠成
铁心
Z
厚0.35mm 或 0.5mm
二次
绕组
变压器的电路
变压器的磁路
5.4 变压器的工作原理
Φ
+
+
u1
–
–
一次
绕组
Z
N2
N1
i1 ( i1 N1)
单相变压器
dΦ
e1 N 1
全套课件 电工学(少学时)--吴显金

uS
u 伏安特性
US
(1) 电压源两端电压与外接电路无关;
i
(2) 流过电压源的电流与外电路有关。
+ US -
+ -US
i
Ro
Ri
实际电压源模型
2.电压源的串联
us1
us 2
usn
us
us
n
us us1 us2 usn usk k 1 (外特性不变)
3.电压源一般不允许并联 注意:只有相同的电压源才能允许并联。
电工学(少学时)
课程内容
电工技术 :电路分析基础
绪
电工学
(少学时)
模拟电子技术
论
电子技术
数字电子技术
第1章 电路基本概念及元器件
第 一 章 电 路 基
本 本章主要内容
概 念 及
元 器 件
1.1 电路概述 1.2 电路的基本物理量 1.3 无源元件 1.4 有源元件 1.5 半导体器件 1.6 集成运算放大器 1.7 集成逻辑门电路
U2 _ +2
U4 _ +4
I1 +
I2 +
_ I3
U1 1 _
U3 3 _
U5 5 +
P2=U2I1=3×2=6w>0, 发出功率,电源
元件3:为关联参考方向,
P2=U3I2=4×(-1)=-4w, 发出功率,电源
解:元件4:为关联参考方向
U2 +2
_
U4 _ +4
P4=U4I3=8×(-1)=-8w<0
Gn
Geq
1.3.2 电容元件 ※ 电容图片
复合介质电容
钽电解电容
电工学第五章 (少学时)

具有较小的矫顽磁力和较大的剩磁,磁滞回线 接近矩形,稳定性良好。在计算机和控制系统中用 作记忆元件、开关元件和逻辑元件。常用的有镁锰 铁氧体等。
• 选择题答案: BBCCA ACBCC CCABB CAC
三、磁路欧姆定律
铁心中: Bc =
Sc
Hc =
Bc
c
=
c Sc
气隙中: B0 =
磁性材料主要指铁、镍、钴及其合金等。
1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性 能。
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
滞回线所包围的面积成正比。 磁滞损耗转化为热能,引起
OH铁心发热。来自减少磁滞损耗的措施: 选用磁滞回线狭小的磁性材料制作铁心。变压器和 电机中使用的硅钢等材料的磁滞损耗较低。
(2)涡流损耗(Pe)
涡流:交变磁通在铁心内产生感
应电动势和电流,称为涡流。涡流
电磁铁的常见结构形式
衔铁
铁心
铁心
励磁 线圈
铁心
励磁 线圈
衔铁
励磁 线圈
衔铁
电磁铁的种类: 直流电磁铁、交流电磁铁。
铁心
励磁 线圈
衔铁
5.2 电磁铁
1. 概述 电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。 当电源断开时电磁铁的磁性消失,衔铁或其它零 件即被释放。电磁铁吸引衔铁的动作可使其它机 械装置发生联动。
• 选择题答案: BBCCA ACBCC CCABB CAC
三、磁路欧姆定律
铁心中: Bc =
Sc
Hc =
Bc
c
=
c Sc
气隙中: B0 =
磁性材料主要指铁、镍、钴及其合金等。
1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性 能。
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
滞回线所包围的面积成正比。 磁滞损耗转化为热能,引起
OH铁心发热。来自减少磁滞损耗的措施: 选用磁滞回线狭小的磁性材料制作铁心。变压器和 电机中使用的硅钢等材料的磁滞损耗较低。
(2)涡流损耗(Pe)
涡流:交变磁通在铁心内产生感
应电动势和电流,称为涡流。涡流
电磁铁的常见结构形式
衔铁
铁心
铁心
励磁 线圈
铁心
励磁 线圈
衔铁
励磁 线圈
衔铁
电磁铁的种类: 直流电磁铁、交流电磁铁。
铁心
励磁 线圈
衔铁
5.2 电磁铁
1. 概述 电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。 当电源断开时电磁铁的磁性消失,衔铁或其它零 件即被释放。电磁铁吸引衔铁的动作可使其它机 械装置发生联动。
电工技术-第5章讲稿.ppt

Ul U p
注:此种接法如一 相接反,将造成严 重后果。
UC + -
A
+ UA -
B + UB -
C
U BC
U CA
U AB
7
5.2 负载星形联接的三相电路
三相电路中负载的连接方法有2种----星形联接和
三角形联接。
A+
相电流:负载中的电流。 UC -
U A
-
IA
N
线电流:火线中的电流。+
C
Il I p
三个电压达最大值的先后次序叫相序,图示相序为ABC。
3
二、三相电源的联接
A
星形连接:3个末端X,Y,Z连接 在一起引出中性线或称零线; 由3个首端A,B,C引出3条相线 或称为火线。
UC - +
+
U A
-
- UB +
N B
相线与中性线之间的电压称为
C
相电压,UA,UB,UC,有效值用U p
表示。
两相线间电压称为线电压, UAB,UBC,UCA,有效值用Ul表示。
三相电源由三相交流发电机产生的。在三相交流发电机中有3 个相同的绕组。3个绕阻的首端分别用A、B、C表示,末端 分别用X、Y、Z表示。这3个绕组分别称为A相、B相、C相, 所产生的三相电压分别为:
uA 2U p sin t uB 2U p sin(t 120) uC 2U p sin(t 120)
第5章 三相电路
本章要求: 1.掌握三相电动势的特点; 2.重点掌握三相电源的星形连接,负载星 形连接和三角形连接的三相电路; 3.掌握三相功率的计算。
1
5.1 三相电压
一、 三相电源
注:此种接法如一 相接反,将造成严 重后果。
UC + -
A
+ UA -
B + UB -
C
U BC
U CA
U AB
7
5.2 负载星形联接的三相电路
三相电路中负载的连接方法有2种----星形联接和
三角形联接。
A+
相电流:负载中的电流。 UC -
U A
-
IA
N
线电流:火线中的电流。+
C
Il I p
三个电压达最大值的先后次序叫相序,图示相序为ABC。
3
二、三相电源的联接
A
星形连接:3个末端X,Y,Z连接 在一起引出中性线或称零线; 由3个首端A,B,C引出3条相线 或称为火线。
UC - +
+
U A
-
- UB +
N B
相线与中性线之间的电压称为
C
相电压,UA,UB,UC,有效值用U p
表示。
两相线间电压称为线电压, UAB,UBC,UCA,有效值用Ul表示。
三相电源由三相交流发电机产生的。在三相交流发电机中有3 个相同的绕组。3个绕阻的首端分别用A、B、C表示,末端 分别用X、Y、Z表示。这3个绕组分别称为A相、B相、C相, 所产生的三相电压分别为:
uA 2U p sin t uB 2U p sin(t 120) uC 2U p sin(t 120)
第5章 三相电路
本章要求: 1.掌握三相电动势的特点; 2.重点掌握三相电源的星形连接,负载星 形连接和三角形连接的三相电路; 3.掌握三相功率的计算。
1
5.1 三相电压
一、 三相电源
电子电工学第五章知识点PPT课件

IN I1 I2 I3 0 结论:负载对称时,中性线无电流,可省掉中性线。 例1:一星形联结的三相电路,电源电压对称。设电源线电压 u12 380 2sin(314 t 30)V
负载为电灯组,若R1=R2= R3 = 5 ,求线电流及中性线电流 IN ;
若R1=5 , R2=10 , R3=20 ,求线电流及中性线电流 IN 。
2. 负载三相不对称,必须采用三相四线制供电方式,且中性线上不允许接刀闸和熔断器。
习题:求例1电路的中性线断开时负载的相电压及相电流。
U1 1440 V I1 28.80A
U 2 2490 V
U 3 288131V
I2 24.94 139A I3 14.4131A
5.3 负载三角形联结的三相电路
(2) L1相断路
1) 中性线未断: L2、L3相灯仍承受220V电压, 正常工作。 2) 中性线断开: 变为单相电路,由图可求得
I U23 380 12 .7 A U2 IR 2 12 .7 10 127 V
R2 R3 10 20
U3 IR 3 12 .7 20 254 V
结论: 1. 不对称三相负载做星形联结且无中性线时, 三相负载的相电压不对称。
L1
+–
U12
–
U 31
L2
UU+2B3C
–
+
5.2 负载星形联结的三相电路
1. 三相负载
负载
三相负载:需三相电源同时供电 (三相电动机等) 单相负载:只需一相电源供电 (照明负载、家用电器等)
三相负载
对称三相负载:Z1 = Z2 = Z3 (如三相电动机) 不对称三相负载: 不满足 Z1 = Z2 = Z3 (如由单相负载组成的三相负载)
电工学第5章-课件

20~25
迅速麻痹,不能摆脱电源,剧痛, 呼吸困难
痉挛
50~80
呼吸器官麻痹,心脏开始振颤
肌痛感觉强烈,触电部位肌肉痉挛,呼吸困 难
90~100
呼吸困难,持续3秒左右心脏停跳 呼吸器官麻痹
第五章 供电及用电
2、安全电压
作用于人体的电压低于一定数值时,在短时间内,电压对人体 不会造成严重的伤害事故,称这种电压为安全电压。
适用于1000V以 下中性点不接地电网 和1000V以上任何形 式的电网。
在1000V以下的中性 点直接接地系统中 , 不采取接地作为保护 措施。
图5-8 保护接地原理 第五章 供电及用电
2、保护接零
将电气设备的外壳与系统的零线相接。
保护接零后电气设备的一相 因绝缘损坏而碰壳时,电流通过 零线构成回路,由于零线阻抗很 小,致使短路电流I k很大, 立 即将熔丝熔断,或使其他保护电 器动作,迅速切断电源,排除触 电危险。
跨步电压触电
接触电压触电: 人体与电气设备的带电外壳接触而引起的触电。
静电触电:人体带有静电后,再接触其他金属体,很容易形成 静电放电(电击)。虽然电压很高,但放电电流不大,且放电 持续时间极短,所以一般不会给人带来太大的危险。
第五章 供电及用电
二、防止触电的技术措施
1、保护接地
将电气设备的金 属外壳与大地可靠连 接。
电工学第5章
精品jing
本 习 ➢ 了解电能的产生、传输与分 配,熟悉电力系统的结构
章 要 ➢ 掌握安全用电的意义和方法 学 点 ➢ 了解节约用电的意义和措施
➢ 了解电能转换技术及应用
第五章 供电及用电
5-1 电能的产生、传输与分配
第五章 供电及用电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 4π107H/m
相对磁导率 r:
任一种物质的磁导率 和真空的磁导率0的比值。Leabharlann r 0H 0H
B B0
.
5. 2 物质的磁性能
1. 非磁性物质
非磁性物质分子电流的磁场方向杂乱无章,几乎
不受外磁场的影响而互相抵消,不具有磁化特性。
非磁性材料的磁导率都是常数,有:
0 r1 当磁场媒质是非磁性材料时,有: B( )
磁感应强度B的方向: 与电流的方向之间符合右手螺旋定则。
磁感应强度B的大小:
B F lI
磁感应强度B的单位: 特斯拉(T) 均匀磁场: 各点磁感应强度大小相等,方向相同的
磁场,也称匀.强磁场。
2、磁通
磁通 :穿过垂直于B方向的面积S中的磁力线总数。
在均匀磁场中 = B S 或 B= /S
说明: 如果不是均匀磁场,则取B的平均值。 磁感应强度B在数值上可以看成为与磁场方向垂直
磁性物质的高导磁性被广泛地应用于电工设备 中,如电机、变压器及各种铁磁元件的线圈中都 放有铁心。在这种具有铁心的线圈中通入不太大 的励磁电流,便可以产生较大的磁通和磁感应强 度。
.
在电机、变压器及各种铁磁元件中常用磁性材料做 成一定形状的铁心。铁心的磁导率比周围空气或其它 物质的磁导率高的多,磁通的绝大部分经过铁心形成 闭合通路,磁通的闭合路径称为磁路。
N
If + –
S
S
N
直流电机的磁路
.
交流接触器的磁路
2 磁饱和性
磁性物质由于磁化所产生的磁化磁场不会随着 外磁场的增强而无限的增强。当外磁场增大到一定 程度时,磁性物质的全部磁畴的磁场方向都转向与 外部磁场方向一致,磁化磁场的磁感应强度将趋向 某一定值。如图。
B
O
H
初始磁化曲线
.
B-H 磁化曲线的特征:
的单位面积所通过的磁通,故又称磁通密度。
磁通 的单位:韦[伯](Wb)
3、磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。
B
H
磁场强度H的单位 :安培/米(A/m)
.
4、磁导率
磁导率 :表示磁场媒质磁性的物理量,衡量物质
的导磁能力。
磁导率 的单位:亨/米(H/m)
真空的磁导率为常数,用 0表示,有:
B
Oa段:B 与H几乎成正比地增加;
b •B
ab段: B 的增加缓慢下来;
a •
b点以后:B增加很少,达到饱和。
有磁性物质存在时,B 与 H不成 O
正比,磁性物质的磁导率不是常
磁化曲线 H
数,随H而变。
有磁性物质存在时,与 I 不成正比。
.
3 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于
外磁场变化的性质。
磁
外
畴
磁
场
在外磁场作用下,磁畴方向发生变化,使之与外 磁场方向趋于一致,物质整体显示出磁性来,称为 磁化。即磁性物质能被磁化。
.
5.2.1磁性材料的磁性能
磁性材料主要指铁、镍、钴及其合金等。
1 高导磁性
磁性材料的磁导率通常都很高,即 r 1 (如坡 莫合金,其 r 可达 2105 ) 。
磁性材料能被强烈的磁化,具有很高的导磁性能。
1. 直流铁心线圈电路
U → I → NI →
(1) 电压与电流的关系
I=
U R
(2) 线圈的功率: P = R I 2
+U- I
第5章 变压器
.
第5章 变压器
5.1 磁路 5.2 电磁铁 5.3 变压器的工作原理 5.4 变压器的基本结构 5.5 三相变压器 5.6 仪用互感器 5.7 自耦变压器 5.8 三绕组变压器 5.9 绕组的极性
.
5.1 磁路
5.1 磁场的基本物理量
1、磁感应强度B : 表示磁场内某点磁场强弱和方向的物理量。
.
三. 磁路的欧姆定律
即有: Φ
NI l
F
Rm
S
式中:F=NI 为磁通势,由其产生磁通; Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度; S 为磁路的截面积。
若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
F
Rm
此即磁路的欧姆定律。
.
1. 磁路分析的特点 (1)在处理电路时不涉及电场问题,在处理磁路时离不 开磁场的概念; (2)在处理电路时一般可以不考虑漏电流,在处理磁路 时一般都要考虑漏磁通; (3)磁路欧姆定律和电路欧姆定律只是在形式上相似。
按磁性物质的磁性能,磁性材料分为三种类型: (1)软磁材料
具有较小的矫顽磁力,磁滞回线较窄。一般用 来制造电机、电器及变压器等的铁心。常用的有铸 铁、硅钢、坡莫合金即铁氧体等。 (2)永磁材料
具有较大的矫顽磁力,磁滞回线较宽。一般用 来制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 (3)矩磁材料
具有较小的矫顽磁力和较大的剩磁,磁滞回线 接近矩形,稳定性良好。在计算机和控制系统中用 作记忆元件、开关元件和逻辑元件。常用的有镁锰 铁氧体等。
磁性材料在交变磁场中反复磁化,其B-H关系曲线
是一条回形闭合曲线,称为磁滞回线。 B
剩磁感应强度Br (剩磁) : 当线圈中电流减小到零(H=0)
Br•
时,铁心中的磁感应强度。
矫顽磁力Hc: 使 B = 0 所需的 H 值。
磁性物质不同,其磁滞回线 和磁化曲线也不同。
• O •Hc H •
磁滞回线
.
B=0H
即 B与 H 成正比,呈线性关系。
Φ
由于 B ,
H NI
O
S
l
H( I )
所以磁通 与产生此磁通的电流 I 成正比,呈
线性关系。
.
2. 磁性物质 磁性物质内部形成许多小区域,其分子间存在的一
种特殊的作用力使每一区域内的分子磁场排列整齐, 显示磁性,称这些小区域为磁畴。
在没有外磁场作用的普通磁性物质中,各个磁畴排 列杂乱无章,磁场互相抵消,整体对外不显磁性。
由于 不是常数,其随励磁电流而变,磁路欧姆定律
不能直接用来计算,只能用于定性分析; (4)在电路中,当 E=0时,I=0;但在磁路中,由于有
剩磁,当 F=0 时, 不为零;
.
1. 概述
5.2 电磁铁
电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。
当电源断开时电磁铁的磁性消失,衔铁或其它零
件即被释放。电磁铁衔铁的动作可使其它机械装
置发生联动。
根据使用电源类型分为: 直流电磁铁:用直流电源励磁;
交流电磁铁:用交流电源励磁。
.
5.2 电 磁 铁
电磁铁的常见结构形式
衔铁
铁心
铁心
励磁 线圈
铁心
励磁 线圈
衔铁
励磁 线圈
衔铁
电磁铁的种类:
直流电磁铁、交流电磁铁。
铁心
励磁 线圈
衔铁
.
一、直流电磁铁