《概率》古典概型的特征与概率计算公式

合集下载

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。

在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。

1.等可能性:在古典概型中,每个事件的发生概率都是相等的。

2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。

3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。

根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。

即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。

2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。

即:P(A∪B)=P(A)+P(B)。

3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。

即:P(A∩B)=P(A)*P(B)。

4.补事件:事件A的对立事件为A的补事件,记作A'。

补事件是指样本空间中不属于事件A的结果。

事件A的发生与A'的不发生是互斥的。

因此,P(A')=1-P(A)。

5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。

即:P(A∩B)=P(A)*P(B)。

通过以上公式,我们可以计算古典概型中事件的概率。

需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。

古典概型的特征和概率计算公式

古典概型的特征和概率计算公式

合作探究——培养创新思维品质探究1.基本事件:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。

话题2:什么是古典概型?它具有什么特点?对于古典概型,应怎样计算事件的概率?总结:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

古典概型计算任何事件的概率计算公式为:小组共性问题:展示提高——形成创新思维能力自我挑战一1.从字母中任意取出两个不同字母的试验中,有哪些基本事件?2.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?3.单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。

如果考生掌握了考差的内容,他可以选择唯一正确的答案。

假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?4.同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?自我挑战二思考:(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?规律方法总结:创新思维能力培养反思体验过程自我评价——激励创新思维意识1.你完成本节学习设计方案的情况为()A. 很好B. 较好C. 一般D. 较差2.你今天所学的重要数学知识是:3.你本节课感悟最深的数学思想(数学方法)是:反思体验——固化创新思维元素课后问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。

数学教案:古典概型的特征和概率计算公式

数学教案:古典概型的特征和概率计算公式

§2古典概型2.1 古典概型的特征和概率计算公式错误!教学分析本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=错误!的使用条件——古典概型,体现了化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.课时安排1课时错误!导入新课思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标有号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

古典概型的特征和计算公式

古典概型的特征和计算公式

抽象概括
(1).试验的所有可能结果只有有限个,且 每次试验只出现其中的一个结果; (2).每一个试验结果出现的可能性相同。
把具有上述两个特征的随机试验的数 学模型称为 古典概型(古典的概率模型)。
每个可能的结果称为基本事件。
思考交流
向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的, 你认为是古典概型吗?为什么?
(正,正,正),(正,正,反),(正,反,正), (反,正,正), (正,反,反),(反,正,反),(反,反,正), (反,反,反).
1. 例2.在一个健身房里用拉力器进行锻炼时,需要选取2个质量盘装在拉力器上.有2 个装质量盘的箱子,每个箱子中都装有4个不同的质量盘:2.5kg, 5kg,10kg,20kg, 每次都随机地从2个箱子中各取1个质量盘装在拉力器上,再拉动这个拉力器。
大量的重复试验
费时,费力。
对于一些特殊的 随机试验,我们 可以根据试验结 果的对称性来确 定随机事件发生 的概率。
探究:
一. 投掷一枚均匀的硬币,出现“正面朝上”和“反面朝上” 的机会相等吗? 二. 抛掷一枚均匀的骰子,出现数字 “1”、 “2”、“3”、“4”、“5”、
“6” 的机会均等吗? 三. 转动一个十等分(分别标上数字0、1、…、9)的转盘,箭头指向每个数字的
机会一样吗?
○ 这些试验有什么共同特点?
试验一、抛掷一枚均匀的硬币,试验的结果有_2_个,
其中“正面朝上”的概率0=.5___.出现“反面 朝上”的概率0=._5__.
试验二、掷一粒均匀的骰子,试验结果有__6_ 个, 其中出现“点数5”的概率1=/6___.
试验三、转10等份标记的转盘,试验结果有8___个, 出现“箭头指向4”的概率1=/8___.

3.2.1古典概型的特征和概率计算公式课件ppt

3.2.1古典概型的特征和概率计算公式课件ppt

课前探究学习
课堂讲练互动

画出树形图如图所示.
则基本事件的总数为n=27个. (1)记事件A=“三次颜色各不相同”,则m=6,
课前探究学习
课堂讲练互动
m 6 2 所以 P(A)= n = = . 27 9 (2)记事件 B=“三次颜色不全相同”, m=27-3=24, 24 8 所以 P(B)= = . 27 9 (3)记事件 C=“三次取出的球无红色或无黄色,”则 15 5 m=15,所以 P(C)= = . 27 9 方法点评 利用树形图(表格)寻找基本事件的个数形象而
课前探究学习 课堂讲练互动
古典概型的概率计算公式 3. 如果试验的所有可能结果(基本事件)数为 n, 随机事件 A 包含 的基本事件数为 m,那么事件 A 的概率规定为:
事件A包含的可能结果数 m P(A)= = 试验的所有可能结果数 n ——————————————————. 想一想:古典概型概率的计算公式与频率计算公式有什么
C.向一个圆面内随机地投一个点,该点落在圆内任意一
点都是等可能的 D.射击运动员向一靶心进行射击,试验结果为命中10 环,命中9环,…,命中0环 [思路探索]用古典概型的两个特征去判断即可.
课前探究学习
课堂讲练互动
解析 选项 分析 结果
A
B C
发芽与不发芽的概率不同
1 摸到白球与黑球的概率都是 2
不是
是 不是
基本事件有无限个
D
命中10环,9环,„,0环的概率不等 不是
答案 B 规律方法 (1)本题关键是通过分析得出公式中的m、n,即 某事件所含基本事件数和基本事件的总数,然后代入公式 求解; (2)含有“至多”、“至少”等类型的问题,从正面突破比较 困.

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现偶数点”)=“出现偶数点”所包含的基本领件的个数÷基本领件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…

高中数学 第3章 概率 2 第1课时 古典概型的特征和概率计算公式教学案 北师大版必修3-北师大版高

高中数学 第3章 概率 2 第1课时 古典概型的特征和概率计算公式教学案 北师大版必修3-北师大版高

第1课时 古典概型的特征和概率计算公式[核心必知]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)等可能性:即每一个试验结果出现的可能性相同.2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [问题思考]1.掷一枚骰子共有多少种不同的结果?提示:6种.2.以下试验中,是古典概型的有( )A .放飞一只信鸽观察其能否飞回B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C 具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.讲一讲1.以下试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[尝试解答][答案] B判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.练一练1.以下概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优〞或“差〞.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优〞与评为“差〞的概率不一定相同,不满足等可能性.答案:③讲一讲2.先后抛掷两枚大小相同的骰子,求点数之和能被3整除的概率.[尝试解答] 先后抛掷两枚大小相同的骰子,结果如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种不同的结果.记“点数之和能被3整除〞为事件A ,那么事件A 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=m n. 运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的. 练一练2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求以下事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25; (2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815. [解题高手][易错题]有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,假设4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12. [错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率.[正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( )A.16B.13C.12D .1 解析:选B 掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13. 2.有100X 卡片(从1号到100号),从中任取一X 卡片,那么取得的卡片是7的倍数的概率是( )A.320B.750C.13100D.325解析:选B ∵n =100,m =14,∴P =m n =14100=750. 3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 解析:选 A 列举出所有基本事件,找出“只有一次正面〞包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 4.以下试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小②同时掷两颗骰子,点数和为7的概率③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.答案:①②④5.(某某高考)假设甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种排法,其中甲、乙相邻有4种排法,所以甲、乙两人相邻而站的概率为46=23. 答案:236.设有关于x 的一元二次方程x 2+2ax +b 2=0,假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b .基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2.以下对古典概型的说法中正确的选项是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 假设包含k 个基本事件,那么P (A )=k n.A .②④B .①③④C .①④D .③④解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3.在5X 卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,那么得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除〞这一事件中含有基本事件2,4,5,概率为35=0.6. 4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,那么这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5.4X 卡片上分别写有数字1,2,3,4,从这4X 卡片中随机抽取2X ,那么取出的2X 卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C 从4X 卡片中随机抽取2X ,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2X 卡片上的数字之和为奇数〞,那么A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23. 二、填空题6.三X 卡片上分别写上字母E ,E ,B ,将三X 卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三X 卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,那么恰好排成英文单词BEE 的概率为13. 答案:137.(某某高考)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍〞的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上〞为事件A ,那么A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根〞,那么 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10.(某某高考)袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E ,从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一X卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六X卡片中任取两X,这两X卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两X卡片颜色不同且它们的标号之和小于4的概率为815.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40
对照表格回答(2),(3)
练习:课本134页,第3、4题
x y
1
(1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (4,4)
1 2 3
4
小结 1.古典概型的概念 (1)试验的所有可能结果(每一个可能结果 称为基本事件)只有有限个,每次试验只出 现其中的一个结果;(2)每一个结果出现的 可能性相同。 2.古典概型的概率公式 m( A包含的基本事件数 ) P( A) n(基本事件总数) 3.列表法和树状图 作业:课本第147页 2
(2)射击运动员向一靶心进行射击,这一 试验的结果只有有限个:命中10环、命中9 环、……命中1环和命中0环(即不命中), 你认为这是古典概率模型吗?为什么? 所有可能结果有11个, 但命中10环、9环、…. 0环的出现不是等可能的,
故不是古典概率.
问题 掷一粒均匀的骰子落地时向上的点数 为偶数或奇数的概率是多少呢? 解:设用A表示事件“向上 1的点数为偶数”;用B表示 3事件“向上的点数是奇数” 结果共n=6个,出现奇、偶 5 数的都有m=3个,并且每个 2 结果的出现机会是相等的, 4故 树状图 m 3 m 3 6
(1).试验的所有可能结果只有有限个,且每 次试验只出现其中的一个结果; (2).每一个试验结果出现的可能性相同。
把具有上述两个特征的随机试验的数学模型称为
古典概型 试验的每一个可能结果称为基本事件
例如:“反面朝上”,“向上的点数为4”,“ 头指向5” 分别是上述三个试验的基本事件。
思考交流
(1)向一个圆面内随机地投一个点,如果 该点落在圆内任意一点都是等可能的,你认 为是古典模型吗?为什么? 试验的所有可能结果是圆内所有的点,结果 数是无限的,故不是古典模型
口袋内装有2黑2白除颜色外完全相同的4球, 4人按 序摸球,摸到红球为中奖, 如何计算各人中奖的概率?
我们通过大量的重复试验发现:先抓的人和后抓的人的 中奖率是一样,即摸奖的顺序不影响中奖率,先抓还是 后抓对每个人来说是公平。
大量的重复试验 费时,费力 对于一些特殊的随机试验,我们可以根据试 验结果的对称性来确定随机事件发现的概率
(3)如果某人不能拉动超过22kg的质量,那么他 不能拉开拉力器的概率是多少?
解:所有情况列表分析如下:
(1) 列表法 列出所有可能出现的试验结果) (
第二个 第一个
2.5 (2.5,2.5) (5,2.5) (10,2.5) (20,2.5)
5 (2.5,5) (5,5) (10,5) (20,5)
P( A)
; p( B) n 6 n 6
古典概 型的概 率公式
A包含的基本事件的个数 m P ()计算试验的所有可能结果数n; (2)计算事件A包含的可能结果数m.
课本第134页,第1、2题
例2.在一个健身房里用拉力器进行锻炼时,需要 选取2个质量盘装在拉力器上.有2个装质量盘的 箱子,每个箱子中都装有4个不同的质量 盘:2.5kg, 5kg,10kg,20kg,每次都随机地从2个 箱子中各取1个质量盘装在拉力器上,再拉动这 个拉力器。 (1)随机地从2个箱子中各取1个 质量盘,共有多少可能的结果? (2)计算选取的两个质量盘的总质量分别是下列 质量的概率:①20kg ②30kg ③超过 10kg
一、教学目标: 1、知识与技能:(1)正确理解古典概型的两大特点:1)试 验中所有可能出现的基本事件只有有限个; 2)每个基本事件出现的可能性相等; (2)掌握古典概型的概率计算公式:P(A)=
A包含的基本事件个数 总的基本事件个数
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究, 感知应用数学解决问题的方法,体会数学知识与现实世界的联系, 培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问 题的方法,自觉养成动手、动脑的良好习惯。3、情感态度与价 值观:通过数学与探究活动,体会理论来源于实践并应用于实践 的辩证唯物主义观点. 二、重点与难点:正确理解掌握古典概型及其概率公式; 三、学法与教法:1、与学生共同探讨,应用数学解决现实问题 ;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成 动手、动脑的良好习惯. 四、教学过程
10 (2.5,10) (5,10) (10,10) (20,10)
20 (2.5,20) (5,20) (10,20) (20,20)
2.5 5 10 20
(2) 列表法
总质量
2.5
5 7.5
5
7.5 10
10
12.5 15
20
22.5 25
2.5 5
10
20
12.5
22.5
15
25
20
30
30
探究
1、投掷一枚均匀的硬币,出现“正面朝上” 和“反面朝上” 的机会相等吗? 2、抛掷一枚均匀的骰子,出现数字 “1”、 “2”、“3”、“4”、“5”、“6” 的机会均等 吗?
3、转动一个8等分(分别标上数字01、…、
8)的转盘,箭头指向每个数字的机会一样吗?
这些试验有什么共同特点?
抽象概括
古典概型
相关文档
最新文档