古典概型的概率计算公式

合集下载

1.3 古典概率模型

1.3 古典概率模型

于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
3 83 333 250 1 。 4 2000 2000 2000
二、几何概型
定义 当随机试验的样本空间是某个区域,并且 任意一点落在度量 (长度、 面积、体积) 相同的 子区域是等可能的,则事件 A 的概率可定义为
t

T

x
解 设 x, y 分别为甲、乙两人到达的
时刻 , 那么 0 x T , 0 y T。
两人会面的充要条件为 x y t ,
若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为
T
o
y
y xt
x yt
阴影部分面积 p 正方形面积
T 2 (T t )2 2 T t 2 1 (1 ) 。 T
序称为组合,其组合总数为:
r n
A n! C r ! r !( n r )!
r n
A n(n 1)(n r 1) C r !
r n r n
3. 古典概型的基本模型: 摸球模型
(1) 无放回地摸球
问题1 设袋中有4 只白球和 2只黑球, 现从袋中 摸出2只球,求这2只球都是白球的概率。
是样本点,样本空间中包含样本点的总数以及
A所包含的样本点数,当样本点较多时,很难
将它们一一列出,需用排列、组合的知识进行
分析。
① 从n个不同元素中取出r 个元素且考虑其顺 序 称为排列,其排列总数为:
r An n( n 1) ( n r 1)
② 从n个不同元素中取出r 个元素且不考虑其顺
(其中 S 是样本空间的度量, S A 是构成事件 A 的子区域的度量。这样借助于几何上的度量 ) 来合理规定的概率称为几何概型。 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型。

古典概型a公式

古典概型a公式

古典概型a公式(实用版)目录1.引言:介绍古典概型和 a 公式2.古典概型的定义和性质3.a 公式的推导和含义4.a 公式的应用和举例5.结论:总结古典概型 a 公式的重要性和影响正文一、引言在概率论的研究中,古典概型是一种基本的概率模型,而 a 公式则是古典概型中一个重要的概率计算公式。

本文将从古典概型的定义和性质入手,详细介绍 a 公式的推导和含义,并通过具体的应用举例,阐述 a 公式在实际问题中的重要性和影响。

二、古典概型的定义和性质古典概型是指具有以下性质的概率模型:1.试验的所有可能结果是互斥的,即任何两个结果都不会同时发生。

2.试验的所有可能结果是等可能的,即每个结果发生的概率相等。

古典概型的概率计算公式为:P(A) = n(A) / n(S),其中 P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 的可能结果数,n(S) 表示试验的所有可能结果数。

三、a 公式的推导和含义a 公式,又称为补集公式,是在古典概型中计算事件 A 的概率的一种方法。

其公式为:P(A) = 1 - P(A") ,其中 P(A") 表示事件 A"(即事件 A 的补集)发生的概率。

a 公式的推导过程如下:假设事件 A 的概率为 P(A),事件 A"的概率为 P(A"),则根据概率的补集公式,有 P(A) + P(A") = 1。

因此,P(A) = 1 - P(A")。

四、a 公式的应用和举例a 公式在实际问题中的应用非常广泛,下面通过一个具体的例子来说明 a 公式的应用。

例:一个袋子里有 5 个红球和 3 个绿球,从袋子里随机抽取一个球,求抽到红球的概率。

根据古典概型概率计算公式,P(A) = n(A) / n(S),其中 n(A) 表示事件 A(抽到红球)的可能结果数,n(S) 表示试验的所有可能结果数。

则 P(A) = 5 / (5 + 3) = 5/8。

2.1古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式

....
........ ........ .....

第一个条件.
2、如图,射击运动员向一靶心进行射击,这一试验的结 果只有有限个:命中10环、命中9环……命中1环和命中0 环.你认为这是古典概型吗?为什么? 〖解〗不是古典概型,因为试验的所有可
能结果只有11个,而命中10环、命中9 环……命中1环和不中环的出现不是等可能
(2)计算选取的两个质量盘的总质量分别是下列质量的概率. (ⅰ)20 kg;(ⅱ)30 kg;(ⅲ)不超过10 kg;(ⅳ)超过10kg.
解:表2
总质量 第二个质量
第一个质量
2.5
5
10
20
2.5
5
7.5
12.5 22.5
5
7.5
10
15
25
10
12.5
15
20
30
20
22.5
25
30
40
(3)如果一个人不能拉动超过22 kg的质量,那么他不能拉开拉力器的概
的,即不满足古典概型的第二个条件.
思考二:
掷一粒均匀的骰子,骰子落地时向上的点数为2的概率是多少?
点数为4的概率呢?点数为6的概率呢?骰子落地时向上的点数为偶数
的概率是多少?
பைடு நூலகம்
分析:用事件A表示“向上的点数为偶数”,则事件A由“点数为2”、
“点数为4”、“点数为6”三个可能结果组成,又出现“点数为2”
的概率为
1 6
1
,出现“点数为4”的概率为 6 ,出现“点数为6”的概
率为 1 , 且A的发生,指三种情形之一的出现,因此 P( A) 3 1 .
6
62
即骰子落地时向上的点数为偶数的概率是 1 .

高中数学知识点精讲精析 古典概型的特征和概率计算公式

高中数学知识点精讲精析 古典概型的特征和概率计算公式

3.2.1 古典概型的特征和概率计算公式1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件.3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可.4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= mn.5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t).6.古典概型的公式推导如:在20瓶饮料中,有1瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?在20瓶饮料中,有2瓶已经过了保质期了呢?(1/20,2/20=1/10)在n 瓶饮料中,有m 瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?(m/n)假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?分析:有n 个等可能基本事件,则每个基本事件发生的概率是多少?答:1/n 事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?答:nm 1⨯公式:假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率nm A P =)(1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?分析:理解并运用各定义.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).2.甲.乙两人做出拳游戏(锤子.剪刀.布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.分析:研究此试验是否为古典概型,如果是,基本事件总数n,事件A包含的基本事件数m各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.由图3-2-1容易得到:图3-2-1(1)平局含3个基本事件(图中的△);(2)甲赢含3个基本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==; P (B )3193==; P (C )3193==. 3.甲.乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m .n .解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.①每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==. ②有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94. 4.判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”.“两个反面”.“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球.两个黑球和一个白球,那么每一种颜色的球被模到的可能相同;⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同.解:以上命题均不正确.⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同.说明:对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有 先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n个.5.将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率. 解:将骰子先后抛掷两次,得到的点数情况如下表:统计向上点数和的情况如下:⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个,⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.说明:⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了.6.从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率; ⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.解:“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴P(A)= 420 =15;⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴P(A)= 820 =25;⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴P(A)= 820 =25.说明:⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方.7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?解:从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B .有序:从5只球中摸出2只球,其基本事件总数为5×4=20. ⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴P(A)=610 =35.说明:某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 8.袋中有红.黄.白色球各一个,每次任取一个,有放回抽三次,计算下列事件的概率: (1)三次颜色各不同;(2)三种颜色不全相同;(3)三次取出的球无红色或无黄色; 解:基本事件有3327=个,是等可能的,(1)记“三次颜色各不相同”为A ,332()279A P A ==; (2)记“三种颜色不全相同”为B ,2738()279P B -==; (3)记“三次取出的球无红色或无黄色”为C ,332215()279P C +-==; 9.将一枚骰子先后掷两次,求所得的点数之和为6的概率。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。

每个基本结果出现的可能性相等。

111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。

112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。

12 古典概型的特点确定性:试验的条件和结果都是明确的。

互斥性:不同的基本事件之间是相互排斥的,不会同时发生。

121 可重复性相同的条件下,重复进行试验,结果具有稳定性。

122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。

13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。

131 计算步骤确定基本事件的总数 n 。

确定事件 A 包含的基本事件数 m 。

代入公式计算 P(A) 。

132 注意事项计算要准确,避免遗漏或重复计算基本事件。

确保对基本事件的界定清晰无误。

14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。

141 基本事件的性质独立性:每个基本事件的发生与否互不影响。

完整性:所有基本事件的集合构成了试验的全部可能结果。

15 基本事件的特点最小性:不能再分解为更小的随机事件。

明确性:能够清晰地定义和区分。

151 基本事件的表示通常用简单的符号或数字来表示。

152 基本事件的数量确定根据试验的具体情况,通过分析得出。

16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。

抽奖问题:在有限数量的抽奖券中计算中奖的概率。

摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。

161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式预习课本P130~133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?[新知初探]1.古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=m n.[点睛]在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件.例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件.[小试身手]1.一个家庭有两个小孩,则所有的基本事件是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女).2.下列试验是古典概型的为()①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率; A .①② B .②④ C .①②④D .③④解析:选C ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.3.从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是( ) A.1100 B.15 C.16D.120解析:选D 每台电脑被抽到的概率为5100=120.4.从1,2,3,4中随机取出两个数,则其和为奇数的概率为________.解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型.和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为46=23.答案:23古典概型的判定[典例] (1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.[活学活用]下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:题号判断原因分析①不属于命中0环,1环,2环,…,10环的概率不一定相同②属于任选1人与学生的性别无关,仍是等可能的③不属于灯泡的寿命是任何一个非负实数,有无限多种可能④属于该试验结果只有“正”“反”两种,且机会均等⑤不属于该品牌月饼评“优”与“差”的概率不一定相同古典概型的概率计算[典例](1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率.[解]在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,…,6点,共6种结果.两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A)=436=19.(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B)=636=16.(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C)=1 36.求解古典概型的概率“四步”法[活学活用]先后抛掷均匀的壹分、贰分、伍分硬币各一次.(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)用A 表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)因为每种结果出现的可能性相等,所以事件A 的概率P (A )=38.[层级一 学业水平达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.19解析:选D 个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为19.3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 4.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P =15.答案:15[层级二 应试能力达标]1.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.2.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.427B.827C.18D.14解析:选B 在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P =827.3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.4.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B 袋中的1个红球、2个白球和3个黑球分别记为a ,b 1,b 2,c 1,c 2,c 3. 从袋中任取两球有{a ,b 1},{a ,b 2},{a ,c 1},{a ,c 2},{a ,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个基本事件.其中满足两球颜色为一白一黑的有{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共6个基本事件.所以所求事件的概率为615=25.5.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59.答案:596.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1107.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:348.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.9.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.(1)若以A 表示事件“和为6”,求P (A );(2)若以B 表示事件“和大于4而小于9”,求P (B ); (3)这种游戏公平吗?试说明理由. 解:将所有可能情况列表如下:甲乙 123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型.(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为525=15. (2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P (B )=1625.(3)这种游戏不公平.因为“和为偶数”包括13个基本事件,即甲赢的概率为1325,乙赢的概率为25-1325=1225,所以它不公平.。

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析

高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现偶数点”)=“出现偶数点”所包含的基本领件的个数÷基本领件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A7
A8 A9
A10
11
复习回顾
1.古典概型的两个基本特点: (1) 所有的基本事件只有有限个; (2) 每个基本事件发生都是等可能的.
2. 古典概型的概率计算公式:
P( A)

m n

事件A包含的基本事件数 基本事件的总数
探索归纳
问题2:取一根长度为3m的绳子,如果拉直后
在任意位置剪断,那么剪得两段的长都不小
小试牛刀
解:记“小杯水中含有这个细菌”为事件A, 事件 A发生的概率
P( A)

取出水的体积 杯中所有水的体积

0.1 1

0.1
答:含有这个细菌的概率 为0.1.
P

A

构成事件A的区域体积 试验的全部结果所构成的区域体积
情境回归
问题3:设立了一个可以自由
转动的转盘(如图),转盘被
等分成12个扇形区域.如果转
背景相似的问题, 当等可能的角度不同时, 其概率是不一样的.
M
C′
课堂小结
延伸了一概个型概念:古典从概有型限到无几限何概型
有限性
无限性
渗透了两特种点思想:等类可比能、性转化等可能性
实践了多公种式测度模P式(A:) 长角mn 度度、、P面弧(A积度) 、Dd的的体测测积度度、
课后作业
必做题:教材P142习题3.3 A组1,2,3
选做题: 甲、乙两人相约在第二天的早上7点到8点在学校 门口碰面,事先约定先到者等候另一方15分钟, 过时离去.那么双方能够碰面的概率是多少?
典型例题
例3 假设你家订了一份报纸,送报人可能在早上 6:30—7:30之间把报纸送到你家,你父亲离开家去 工作的时间在早上7:00—8:00之间,问你父亲在离 开家前能得到报纸(称为事件A)的概率是多少?
事件可视为线段DE上任意一点,所以 P(A)= 1
3
答:剪得的两段均不小于1米的概率为 1
3
探索归纳
问题3:设立了一个可以自由 转动的转盘(如图),转盘被 等分成12个扇形区域.如果转 盘停止转动时,指针正好指 向阴影区域,则可获得月饼 一盒.
顾客能拿到月饼的概率是多少?
圆的面积为S
探索归纳
• 问题4:图中有两个转盘.甲乙两人玩转盘 游戏,规定当指针指向B区域时,甲获胜,否 则乙获胜.在两种情况下分别求甲获胜的 概率是多少?
必修3 第三章第三节
几何概型
问题引入
问题1: 一根长度为3米的绳子上,有A1、A2、A3、A4、
A5五个点将绳子均分成六段,从A1、A2、A3、A4、 A5中任选一点将绳子剪断,那么剪得的两段均 不小于1米的概率是多少?
A1
A2
A3
A4
A5
如果有10个点将绳子均分呢?
3 米A1
A2
A3
A4 A5
A6
建构数学
几何概型的定义
• 如果每个事件发生的概率只与构成该事件区 域的长度(面积或体积)成比例,则称这样的 概率模型为几何概率模型,简称为几何概型.
• 几何概型的特点: (1)试验中所有可能出现的结果(基本事件)有
无限多个. (2)每个基本事件出现的可能性相等.
建构数学
几何概型:
(1)每个基本事件可以示为从可度量的区域D内随机的一 点 ,D区域内每个点被取到的机会一样;
AM<AC,故线段AC′即为区域d,于是
P( A) AC AC 1 AB AB 2 1
答:AM小于AC的概率为 2
练习1:在上一题构造的直角三角形ABC的基
例3 在直角三角形ABC,其中∠CAB=60°.
在斜边AB上任取一点M,那么AM小于AC的概
率有多大? 解:记“在斜边AB上任取一点,
AM<AC”为事件A,
C
由于点M随机地落在线段AB上,
故可以认为点M落在线段AB上任一
A M C’
B 点是等可能的,可将线段AB 看做区 域D.
在AB上截取AC′=AC.当点M位于线段AC′内,
于1m的概率有多大?
1m
C
E 3m
1m
F
D
(1)试验中的基本事件是什么? 从每一个位置将绳子剪断
(2)每个基本事件的发生是等可能的吗?
(3)符合古典概型的特点吗?
探索归纳
问题2:取一根长度为3m的绳子,如果拉直
后在任意位置剪断,那么剪得两段的长都不 小于1m的概率有多大?
1m
1m
C
D 3m E
F
解:设“剪得的两段均不小于1米”为事件A,如图所示 基本事件可视为线段CF上任意一点,构成事件A的基本
盘停止转动时,指针正好指 A
C
向阴影区域,则可获得月饼 M
一盒.
M1
B
顾客能拿到月饼的概率是多少?
典型例题
例1:某人午休醒来,发觉表停了,他打开收音机想听 电台整点报时,求他等待的时间短于10分钟的概率.
解:设A={等待的时间不多于10分钟}.事件A恰 好是打开收音机的时刻位于[50,60]时间段内, 因此由几何概型的求概率的公式得
P(A) 60 50 1 , 60 6
答:等待的时间不超过10分钟的概率为 1
6
拓展练习
练习2:在等腰直角三角形ABC中的斜边AB 上任取一 点M,求AM<AC的概率.
解:在线段AB上截取AC′= AC,
记“AM<AC”为事件A.
由于点M随机地落在线段AB上,
故可认为点M落在线段AB
上任一点是等可能的, 则
M
C′
P( A) AC ' AC AB AB
2 2
.
答:
AM<AC的概率为
2.
2
拓展练习 例2 在等腰直角三角形ABC的斜边AB上任取一点M, 求AM<AC的概率. 变式 在等腰直角三角形 ABC 中, 过直角顶点 C在 ∠ACB 内部任取一条射线CM, 与线段 AB 交于点 M, 求AM <AC 的概率.
(2)随机事件A的发生可视为恰好取到区域D内的某个 指定区域d中的点;
(3)事件A发生的概率与d的测度成正比,与d的形状 和位置无关;
在几何概型中,事件A的概率的计算公式如下:
P(
A)

构成事件A的区域长度(面积或体积) 全部结果所构成的区域长度(面积或体积)
小试牛刀
练习:有一杯1升的水, 其中含有1个细菌, 用一个小杯从这杯水中取出0.1升, 求小杯 水中含有这个细菌的概率.
典型例题
解:以横坐标X表示报纸送到时间,以纵坐标 Y表示父亲离家时间建立平面直角坐标 系,假设随机试验落在方形区域内任何一 点是等可能的,所以符合几何概型的条件. 根据题意,只要点落到阴影部 分,就表示父亲在离开家前能 得到报纸,即时间A发生,所以
ห้องสมุดไป่ตู้602 302
P( A)
2 602
87.5%.
相关文档
最新文档