九年级数学下册第29章投影与视图29.2三视图第3课时由视图确定几何体的表面积或体积习题课件新版新人教版

合集下载

九年级数学下册三视图第三课时《由三视图描述几何体》教学设计

九年级数学下册三视图第三课时《由三视图描述几何体》教学设计

29.2 三视图(第3课时)一、内容和内容解析1.内容根据三视图说出立体图形的名称,描述物体的形状,感受“综合”思考的过程。

2.内容解析学生在七年级已经接触过“从不同的方向看物体”的内容,但当时没有明确给出“视图”这个概念;本章是从投影的角度解释三视图的概念,这与从不同的方向看物体所得到的平面图形是一致的。

前一节课学生已经能够画出基本几何体的三视图,体会了从立体图形到平面图形的转化。

本节课是在上一节“由物画图”的基础上“由图想物”,让学生体会从平面图形到立体图形的转化过程,这种从“二维”到“三维”的转化,不仅使学生对投影和视图的认识水平再次提升,更能对培养学生的空间观念起到很好的促进作用。

画三视图是将一个物体从三个方向观察,分别表现这三个方面的分解过程;由三视图想出物体的立体形状,则是把物体的三个方面形状“综合”起来的过程,这两个过程是相反的,也是相互联系的。

基于以上分析,确定本节课的教学重点为:根据三视图描述基本几何体和实物原型。

二、目标和目标解析1.目标(1)能根据三视图描述基本几何体形状和实物原型。

(2)通过观察和动手实践,理解三视图中相关各线条之间的对应关系,通过它们能形成一个整体性认识,并根据这些关系由平面图形得出对应的立体图形。

2.目标解析达成目标(1)的标志是:能通过给出的三视图用语言来描述出立体图形的形状。

达成目标(2)的标志是:通过三视图描述立体图形,体会三视图在转化为立体图形的过程中所起的作用。

三、教学问题诊断分析本节课是在学习了“从不同方向看物体”的内容后,又进一步引入“三视图”的概念,并通过观察能够画出立体图形的三视图,这要准确把握三视图中的相对位置关系和大小关系,并要求学生有较强的空间想象能力,而本节课要求学生能够通过三视图想象并描述出立体图形,这对学生的空间想象能力有了较高的要求,是教学中的一个难点。

基于以上分析,确定本节课的教学难点为:根据三视图观察想象,描述出基本几何体和实物原型。

《三视图》_PPT1

《三视图》_PPT1

是(
)
第二十九章 投影与视图
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表面积是(
)
A.青 B.春 C.梦 D.想
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表
)
5.(4分)(随州中考)如图是一个几何体的三视图,则这个几何体的表面积为( )
14×(20÷2)2×20+25×30×40=36280(mm3);
3.(4分)(济宁中考)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是(
)
A.青 B.春 C.梦 D.想
9.(山西中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对的面上的汉字
数学
九年级下册
第二十九章 投影与视图
人教版
29.2 三视图
第3课时 由三视图确定几何体的表面积或体积
1.(4分)(深圳中考)下列哪个图形是正方体的展开图( B )
2.(4分)(毕节中考)某正方体的平面展开图如下,由此可知,原正方 体“中”字所在面的对面的汉字是( B )
A.国 B.的 C.中 D.梦
21π m3 3B..30(π4m分3 )C(.济45π宁m3中D考.6)3π如m3图,一个几何体上半部为正四棱锥,下半部为
21π m3 B.30π m3 C.45π m3 D.63π m3
(72.)根(4立据分所)(方金示华数体中据考计,)算如且这图个为有几一何一个体长个的方表体面面,积涂则;该有几何颜体色主视,图的该面几积为何___体_cm的2. 表面展开图是( B )

人教版九年级数学下册第二十九章《29-2-1 三视图》优质课课件(共24张PPT)

人教版九年级数学下册第二十九章《29-2-1 三视图》优质课课件(共24张PPT)
§29.2.1 三视图
横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
——苏 轼
复习什么是三视图
三视图 主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图
填一填
1.直三棱柱的三视图分别是 矩形 , 矩形 , 三角形 ; 2.圆锥的三视图分别是 三角形, 三角形, 圆形 .






俯 视 图
画下例几何体的三视图
圆台
主视图
左视图
俯视图
圆台
画下例几何体的三视图
练一练
你能说出下面这个几何体的三视图吗? 主视图
左视图
俯视图
小结
画物体的三视图时,要符合如下原则: 位置:正视图 侧视图
俯视图
三视图的对应规律
主视图和俯视图 ----长对齐 主视图和左视图 ----高对齐
例2 画出图所示的支架(一 种小零件)的三视图.
分析:支架的现状:由两个大小不等的长方体构成的组合体,画三视图时 要注意这两个长方体的上下、前后位置关系.
解:图是支架的三视图.






俯 视 图
例3 图是一根钢管的直观图,画出它的三视图.
分析:钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反 映立体图形的现状,画图时规定:
俯视图和左视图 ----宽对齐
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分 的轮廓线画成虚线.

人教版数学九年级下册29.2三视图(教案)

人教版数学九年级下册29.2三视图(教案)
3.培养学生的动手操作和实践能力,通过绘制三视图,使学生将理论知识与实际操作相结合。
4.培养学生的团队协作和沟通能力,在小组讨论和交流中,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
-理解并掌握三视图(主视图、左视图、俯视图)的基本概念及其作用,明确它们在几何体认识中的应用。
-学会使用正方体、长方体等简单几何体进行三视图的绘制,并能够根据三视图判断几何体的空间形状。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三视图的基本概念、重要性和应用。通过实践活动和小组讨论,加深了对三视图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调三视图的绘制方法和投影规律这两个重点。对于难点部分,如从二维视图转换为三维空间思维,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三视图相关的实际问题,如根据给定的三视图推断几何体的形状。
其次,在实践活动和小组讨论中,有些学生表现得比较被动,可能是因为他们对三视图的应用场景不太熟悉。为了提高学生的参与度,我计划在下次课堂中加入更多与生活实际相结合的案例,让他们感受到三视图在生活中的重要性。
此外,在小组讨论环节,我发现有些小组的讨论成果不够深入。为了提高讨论效果,我将在下一次教学中加强对学生的引导,鼓励他们提出更多有见地的观点,并学会倾听他人的意见。

初中九年级数学下册,第二十九章,《投影与视图》,全章课件汇总

初中九年级数学下册,第二十九章,《投影与视图》,全章课件汇总

【必须掌握】
平行投影的特点:
不同 位置
物体
物体平行于投 物体倾斜于投 物体垂直于 影面 影面 投影面 形状、大小不 变(全等)
线段
大小变化 形状、大小 均变化


形状、大小不 变(全等)
线
【趁热打铁】
画出如图摆放的正方体在投影面上的正投影。 (1)正方体的一个面ABCD平行于投影面; (2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影 面P,并且对角线AE垂直于投影面.
A’
D’
C’
B’ A D C
B
解:(1)如图所示,正方体的正投影为正方形 A’B’C’D’,它与正方体的一个面是全等关系。
【趁热打铁】
分析:(2)当正方体在如图(2) 的位置时,正方体的一个面ABCD和 面ABGF倾斜于投影面,这两个面的 正投影分别是矩形A’B’C’D’和 A’B’G’F’;正方体其余两个侧 面的投影也分别是上述矩形;上下 底面的投影分别是线段D’F’和 C’G’,因此正方体的投影是矩形 F’G’C’D’,其中线段A’B’把 矩形一分为二。
------------强化训练-------------2某住宅区的两幢楼如图所示,它们的高AB=CD=30米,两楼间的 距离AC=24米,现需了解甲楼对乙楼的采光的影响情况.当太阳 光与水平线的夹角为30°时,甲楼的影子在乙楼上有多高? ( 3 ≈1.732,结果精确到0.1米) 解:设光线射到乙楼的最低点为E点, 过E作EF⊥AB于F, BF=EF· tan30°=8 3 , EC=30-8 3 ≈16.1(米). F
(3)铁丝垂直于投影面。 正投影是一个点A3
【探究求索】
如图,把一块正方形硬纸板P(例如正方形ABCD)放在 三个不同的位置,三种情况的正投影各是什么形状? D

人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件

人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件

知1-讲
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
知1-讲
单个几何体的三视图直接根据常见的几何体三 视图中识别.
知1-练
1 把图中的几何体与它们对应的三视图用线连接起来.
知1-练
2 【中考·海南】如图是由四个相同的小正方体组成 的几何体,则它的主视图为( A )
分析:支架的形状是由两个大 小不等的长方体 构成的 组合体.画三视图时要注 意这两个长方体的上 下、 前后位置关系.
解:下图是支架的三视图.
知2-讲
总结
知2-讲
画组合体的三视图时,构成组合体的各部分的视图也要遵 守“长对正,高平齐, 宽相等”的规律.
知2-练
1 画出如图所示的正三棱柱、圆锥、半球的三视图.
(2) 请指出三视图、立体图形、展开图之间的对应边.
讲授新课
三视图的有关计算 合作探究
例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三 视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
分析: 1. 应先体__形__状____; 2. 画出物体的 展开图 .
1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为
()
B
A. 6
B. 8
C. 12
D. 24
2. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得
这个几何体的体积为3 cm3 .
3 主视图
1 1 左视图 俯视图
2π 3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为

九年级数学下册第二十九章投影与视图29


C.135°
D.150°
[解析] B 根据圆锥的底面圆半径得到圆锥的底面 圆周长,也就是圆锥的侧面展开图的弧长,根据勾 股定理得到圆锥的母线长,利用弧长公式可求得圆 锥的侧面展开图中扇形圆心角的度数.
图K-27-4
第3课时 由三视图到展开图
4.2018·威海 图K-27-5是某圆锥的主视图和左视图,该圆
第3课时 由三视图到展开图
二、填空题
8.如图K-27-9是一个几何体的三视图,若这个几何体的体 积是36,则它的表面积是___7_2____.
图K-27-9
第3课时 由三视图到展开图
9.如图K-27-10是某几何体的三视图,其中主视图和左视图 是由若干个大小相同的正方形构成的.根据图中所标的尺寸, 该几何体的表面积是__1_6_+_π___.
第3课时 由三视图到展开图
(3)由圆锥母线长为 6 cm,底面圆半径为 2 cm,可得此圆锥侧面展开图(扇形) 的圆心角为 120°,半径为 6 cm,如图,连接 AB′,B′C,B′D,则∠B′AC =60°, ∴△AB′C 为等边三角形,B′D 的长为蚂蚁所爬行的最短路程.∵D 为 AC 的中 点,∴B′D⊥AC,∴B′D= AB′2-AD2= 62-32=3 3(cm),即蚂蚁爬行的 最短路程为 3 3 cm.
最短路程.
图K-27-14
第3课时 由三视图到展开图
解:(1)圆锥. (2)由三视图知该圆锥的底面直径为 4 cm,母线长为 6 cm,∴圆锥的侧面积 S 侧 =12×4π×6=12π(cm2),底面圆的面积为 π×(42)2=4π(cm2),故该几何体的 表面积为 12π+4π=16π(cm2).
6.一个长方体的三视图如图 K-27-7 所示,若其俯视图为正方

九年级数学下册第二十九章投影与视图29.2三视图(第一课时认识几何体的三视图)课件(新版)新人教版


2. 常见的几何体的三视图:
几何体
主视图
左视图
俯视图
例1 如图所示的几何体的左视图是( C )
导引:左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
单个几何体的三视图直接根据常见的几何体三 视图中识别.
1 把图中的几何体与它们对应的三视图用线连接起来.
2 (2015·资阳)如图是一个圆台,它的主视图是( )
三视图的画法:画三视图时,三个视图要放在正确的 位置,并且使主视图与俯视图的长对正;主视图与左 视图的高平齐;左 视图与俯视图的宽 相等. 如图(2)为图(1)按 1∶1的比例画出 的三视图.
例2 画出图中基本几何体的三视图
分析:画这些基本几何体的三视图时,要注意 从三个方面观
察它们.具体方法为:
1. 视图的相关概念: (1)视图:当我们从某一方向观察一个物体时,所看到
的平面图形叫做物体的一个视图,视图可以看作物 体在某一方向光线下的正投影. (2)三视图:一个物体在三个投影面内进行正投影,在 正面内得到的由前向后观察物体的视图,叫做主视 图;在水平面内得到的由上向下观察物体的视图, 叫做俯视图;在侧面内得到的由左向右观察物体的 视图,叫做左视图.
(1) 确定主视图的位置,画出主视图;
(2) 在主视图正下方画出俯视图,注意与主 视图“长对
正”;
(3) 在主视图正右方画出左视图,注意与主 视图“高平
齐”,与俯视图“宽相等”;
(4) 为表示圆柱、圆锥等的对称轴,规定在视图中加画
点划线(
)表示对称轴.
解: 如图所示.
总结
不论是画单个几何体的三视图还是组合几何体的 三视图,都必须注意两点:一是遵循“长对正,高平 齐,宽相等”的原则;二是看得见的轮廓线画成实线, 看不见的轮廓线画成虚线.

人教版九年级数学全册教案附教学反思:29.2 第3课时 由三视图确定几何体的面积或体积

29.2 三视图第3课时 由三视图确定几何体的面积或体积1.能根据三视图求几何体的侧面积、表面积和体积等;(重点)2.解决实际生活中与面积、体积等方面有关的实际问题.(难点)一、情境导入已知某混凝土管道的三视图,你能根据三视图确定浇灌每段这种管道所需混凝土的体积吗(π=3.14)?二、合作探究探究点:由三视图确定几何体的面积或体积【类型一】 由三视图求几何体的侧面积已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm ,从上面看的圆的直径为4cm ,求这个几何体的侧面积(结果保留π).解析:(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.解:(1)该几何体是圆柱;(2)∵从正面看的长为10cm ,从上面看的圆的直径为4cm ,∴该圆柱的底面直径为4cm ,高为10cm ,∴该几何体的侧面积为2πrh =2π×2×10=40π(cm 2).方法总结:解题时要明确侧面积的计算方法,即圆柱侧面积=底面周长×圆柱高. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 由三视图求几何体的表面积如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.解析:先由三视图得到两个长方体的长,宽,高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.解:根据三视图可得:上面的长方体长6mm,高6mm,宽3mm,下面的长方体长10mm,宽8mm,高3mm,这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=268+108=376(mm2).答:这个几何体的表面积是376mm2.方法总结:由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律—“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.注意:求解组合体的表面积时重叠部分不应计算在内.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】由三视图求几何体的体积某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积(参考公式:V球=43πR3).解析:由已知中的三视图,我们可以判断出该几何体的形状为下部是底面半径为1,高为1的圆柱,上部是半径为1的14球组成的组成体,代入圆柱体积公式和球的体积公式,即可得到答案.解:由已知可得该几何体是一个下部为圆柱,上部为14球的组合体.由三视图可得,下部圆柱的底面半径为1,高为1,则V圆柱=π,上部14球的半径为1,则V14球=13π,故此几何体的体积为错误!.方法总结:由三视图求几何体的体积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律“长对正,高平齐,宽相等”确定几何体的长、宽、高等相关数据值.再根据相关公式计算几何体各部分的体积并求和.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型四】由三视图确定几何体面积或体积的实际应用杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)?解析:从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.解:∵工件的体积为(30×10+10×10)×20=8000cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800cm2=0.28m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).方法总结:本题主要考查了由三视图确定几何体和求几何体的面积;关键是得到几何体的形状,得到所求的等量关系的相对应的值.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.由三视图求几何体的侧面积;2.由三视图求几何体的表面积;3.由三视图求几何体的体积.题的根本,通过具体的例题,让学生进行练习,巩固学习效果.。

人教版九年级数学下册说课稿:第29章投影与视图29.2由三视图确定几何体

-理解三视图的定义和作用。
-掌握几何体的分类及其特征。
-学会通过三视图确定几何体的方法。
2.过程与方法:
学生在解决实际问题时,能够运用所学的知识和方法,发展空间想象能力,提高解决问题的能力。具体目标如下:
-能够运用三视图的概念和方法,解决实际问题。
-在实践中培养空间想象能力,提高解决问题的效率。
-学会从多角度观察和分析问题,形成严谨的思维方式。
-利用互动式教学,如小组讨论、角色扮演等,让学生在合作中发现问题、解决问题,增强学习的趣味性。
-设计有趣的游戏和竞赛活动,如“视图猜谜”、“几何体拼图比赛”等,激发学生的竞争意识和探索欲望。
-给予学生充分的鼓励和肯定,尤其是当他们能够成功解决复杂问题时,以提高他们的自信心和学习动力。
三、教学方法与手段
-学生对空间想象能力的差异,可能导致部分学生对三视图的理解困难。
-小组合作中可能出现分工不均或交流不畅的情况。
应对策略包括:
-为不同水平的学生提供不同难度的练习,以适应他们的学习需求。
-明确小组合作的规则和期望,确保每个学生都参与其中。
课后,我将通过学生的课堂表现、作业完成情况和小组反馈来评估教学效果。具体的反思和改进措施包括:
1.三视图的基本概念,即正视图、侧视图和俯视图。
2.几何体的分类,包括柱体、锥体、球体等。
3.通过三视图确定几何体的方法,包括视图的对应关系、几何体的特征等。
4.空间想象能力的培养,即如何从三视图还原出几何体的真实形态。
(二)教学目标
1.知识与技能:
学生能够了解三视图的基本概念,掌握通过三视图确定几何体的方法,能够准确识别和绘制正视图、侧视图和俯视图。具体目标如下:
-互动软件:利用互动式教学软件,让学生在计算机上绘制和观察几何体的三视图,增强学习的互动性和趣味性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档