偏高岭土-粉煤灰基地质聚合物的制备与性能研究
粉煤灰地聚合物材料性能及应用的研究进展

粉煤灰地聚合物材料性能及应用的研究进展俞华栋【摘要】粉煤灰地聚合物在微观结构上与传统偏高岭土基地聚合物相似,但制备成本大幅降低,且某些性能甚至还会超越偏高岭土基地聚合物,因此受到国内外学者的高度关注.针对粉煤灰基地聚合物反应机理,着重介绍了粉煤灰特性、激发剂及水组分含量对所得地聚合物性能的影响,阐述了粉煤灰地聚合物在处置利用固废中的应用.【期刊名称】《山西建筑》【年(卷),期】2018(044)016【总页数】3页(P81-83)【关键词】粉煤灰;地聚合物;性能【作者】俞华栋【作者单位】浙江天地环保科技有限公司,浙江杭州 310018【正文语种】中文【中图分类】TU502地质聚合物(Geopolymer,简称地聚物)是一类新型的无机胶凝材料,主要通过含铝硅酸盐的矿物在碱性环境中反应生成无机聚合物[1]。
地聚合物拥有无规则的三维网状结构,其主体由硅氧四面体、铝氧四面体构成,空隙中填充了碱金属离子。
其链接结构以离子键和共价键为主,范德华力、氢键为辅,同时具有高分子材料、水泥及陶瓷材料的结构特点。
因此地聚物可呈现出良好的力学性能、耐久性、耐化学腐蚀、耐高温和环境友好等优点[2],在耐火隔热材料、建筑材料、重金属固化和核废料固封等方面得到广泛的应用[3,4]。
与传统的胶凝材料相比,可以用于制备地聚合物的原料包容度高。
富含硅铝成分的矿物、固废、尾矿,如粉煤灰、矿渣和煅烧高岭土等均用作制备地聚合物的原材料。
此外,其制备工艺简单,制备过程的能耗低。
在常压条件下,通过使用一些激发剂还可促使其强度快速发展,整个环节的碳排放量仅为传统硅酸盐水泥的10%~20%,因此,地聚物是一类优秀的绿色建筑材料[2]。
1 地聚合物制备出于绿色环保的考虑,现阶段制备地聚合物的原料为多种含铝硅酸盐矿物和工业固体废弃物。
在碱激发条件下,一些典型矿物的活性顺序按以下顺序依次增大:高岭土、火山灰、粉煤灰、炉渣、沸石、偏高岭土[5]。
由于粉煤灰(含有SiO2和Al2O3)与天然铝硅原材料在组成及结构上的相似性,其成为制备地聚合物一种原材料。
粉煤灰地质聚合物材料的实验研究

图 2 粉 煤 灰 比 表 面 积 随粉 屠 时 间 的 变化
可 以看 出 , 粉煤 灰粉磨 后 的 比表 面积先 增大 后减
[ 键 词 ] 煤 灰 ; 质 聚合 物 ; 激 发 ; 观分 析 关 粉 地 碱 微 [ 图分 类 号 ]Q17X 0 中 T 7 ;7 5 [ 献标志码 ] 文 A [ 文章 编 号 ]0 3 1 2 (0 0 一 3 0 2 一 3 10 — 3 4 2 1 )0 — 0 3 O
O 前 言
论文 利用 粉 煤灰 为 主要原 料 . 以水 玻 璃 为激 发剂 制 备 地质 聚合 物 , 确定 制备 地 质 聚合物 材 料 的最佳 工 艺条 件 , 分 析影 响材 料性 能 的 主要 因素 。 并
1 原 材 料 与 实 验 方 法
11 原 材 料 .
图 1 粉 煤 灰 XRD 分 析
2 世 纪 建 筑 材 料 1
2 1 00
随着粉磨 时间 的继续延 长 , 小颗粒 又不 断发生团 聚…。 粉 煤灰经 过一 个小 时 的粉 磨 以后 , 积 比表面积 体
也 由 02 1 /n 增 大 到 03 6m2 I 。 图 2给 出 了 . cl 6 m2 . /T 8 cI 粉煤灰 比表 面积 随粉磨 时 间变 化 的规律 。
21 粉煤灰 比表面 积对 地 质聚 合 物性 能 的影 响 .
对粉 煤灰 进 行粉 磨有 利 于提 高其 反 应活性 , 并 但
非粉 磨 时 间 越长 越 好 , 是 存 在一 个 最 佳 值 , 而 随着 粉 磨 的进 行 , 面致 密膜 不 断被 打 破 , 粒 逐渐 变小 , 表 颗 但
1 . 实 验 方 法 2 实 验 过 程 按 照 G / 1 6 1 19 《 泥 胶 砂 强 度 BT 7 7 — 9 9 水
偏高岭土-粉煤灰基地聚物砂浆力学性能研究

第40卷第4期2021年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.40㊀No.4April,2021偏高岭土-粉煤灰基地聚物砂浆力学性能研究管柏伦1,郭荣鑫1,齐荣庆1,2,付朝书1,张㊀敏1,张文帅1(1.昆明理工大学建筑工程学院,云南省土木工程防灾重点实验室,昆明㊀650500;2.西南林业大学土木工程学院,昆明㊀650500)摘要:本研究以偏高岭土和粉煤灰为原料,以不同模数(0.75㊁1.00㊁1.25㊁1.50)和碱浓度(质量分数)(40%㊁44%㊁48%)的钾水玻璃为碱激发剂,微珠㊁蛭石和珍珠岩为细骨料来制备地聚物砂浆试件㊂主要通过测试地聚物砂浆试件常温及1000ħ高温作用后的抗压强度,探明碱激发剂模数和浓度对砂浆试件力学性能的影响,并利用XRD㊁SEM 手段对地聚物的物相组成及微观形貌进行表征㊂结果表明:当碱浓度不变时,除40%碱浓度外,其余试件的抗压强度随模数的增大先升高后略微降低或者基本不变㊂当模数不变时,除模数为0.75的试件外,其余试件的抗压强度随碱浓度的增大先升高后降低㊂当模数为1.00且碱浓度为44%时,试件的抗压强度最高,历经1000ħ高温后地聚物砂浆试件相对残余强度仍能维持42%及以上,该温度下水化产物为白榴石(KAlSi 2O 6)和钾霞石(KAlSiO 4),地聚物在常温下有大量絮状的水化产物生成且微观结构较为致密㊂关键词:偏高岭土-粉煤灰基地聚物;砂浆;抗压强度;碱浓度;模数;高温;微观结构中图分类号:TU526㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2021)04-1250-08Mechanical Properties of Geopolymer Mortar Based on Metakaolin and Fly AshGUAN Bolun 1,GUO Rongxin 1,QI Rongqing 1,2,FU Chaoshu 1,ZHANG Min 1,ZHANG Wenshuai 1(1.Yunnan Key Laboratory of Disaster Reduction in Civil Engineering,Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China;2.School of Civil Engineering,Southwest Forestry University,Kunming 650500,China)收稿日期:2020-10-16;修订日期:2021-01-18基金项目:国家自然科学基金(52068038);云南省教育厅科学研究基金(2019J0044)作者简介:管柏伦(1996 ),男,硕士研究生㊂主要从事碱激发胶凝材料等相关研究工作㊂E-mail:1650941424@通信作者:齐荣庆,博士,讲师㊂E-mail:qrqing@Abstract :In this study,geopolymer mortar specimens were prepared with metakaolin and fly ash as raw materials,potassium sodium silicate with different modulus (0.75,1.00,1.25,1.50)and alkali concentration (mass fraction)(40%,44%,48%)as alkali activator,and microbeads,vermiculite and perlite as fine aggregate.The compressive strength of geopolymer mortar specimens at room temperature and 1000ħhigh temperature were tested,the influences of the modulus and concentration of alkali activator on the mechanical properties of mortar specimens were explored,and the phase composition and micro-morphology of geopolymer were characterized by XRD and SEM.The test results show that when the alkali concentration is unchanged (except concentration of 40%),the compressive strength of most specimens increase first and then decrease slightly or remain basically unchanged with the increase of modulus.When the modulus remains unchanged (except modulus of 0.75),the compressive strength of most specimens increase first and then decrease with the increase of alkali concentration.When the modulus is 1.00and the alkali concentration is 44%,the compressive strength of the specimen is the highest.After 1000ħhigh temperature,the relative residual strength of the sample still maintains at 42%or above.The hydration products after 1000ħare leucite (KAlSi 2O 6)and potassiumnephritic (KAlSiO 4).And a large number of flocculent hydration products are formed at room temperature and the microstructure is relatively compact.Key words :geopolymer based on metakaolin and fly ash;mortar;compressive strength;alkali concentration;modulus;high temperature;microstructure第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1251㊀0㊀引㊀言建筑火灾频发使得建筑结构安全面临严重威胁,而混凝土作为传统的建筑材料在温度超过1000ħ时强度几乎损失殆尽[1]㊂因此,为混凝土加固一层耐高温隔热材料来提高其耐火性能非常必要,而地聚物和轻质隔热填料在耐高温和隔热方面分别发挥着其优越的性能㊂地聚物是指富含硅铝质原料的物质在碱的作用下生成[SiO 4]和[AlO 4]三维网络结构的新型胶凝材料[2],因其具有早期强度高和耐高温性能优异的特点而被广泛研究[3]㊂有学者研究表明,粉煤灰基和偏高岭土基地聚物的耐高温性能优良:Duan 等[4]用粉煤灰和偏高岭土以1ʒ1(质量比)制备的地聚物在1000ħ高温后恒温2h 的抗压强度损失率仅为30%;郑娟荣等[5]研究表明以标准砂为细骨料时,偏高岭土基地聚物砂浆在1000ħ高温后恒温2h 仍有50%以上相对残余抗压强度㊂还有学者表示碱激发剂的模数和浓度是影响地聚物性能的关键因素:侯云芬等[6]认为K 2SiO 3溶液激发效果最佳,随着其浓度的提高,粉煤灰基地聚物的抗压强度逐渐提高,当浓度为2mol /L 时,强度达到最大;但Palomo 等[7]认为增大激发剂碱浓度会使得溶液pH 值较高,增加地聚物的聚合时间,限制离子的迁移和凝结硬化,从而致使力学性能下降;陈士堃[8]认为碱浓度在25%~35%之间,模数较高的偏高岭土基地聚物具有较好的力学性能㊂Wang 等[9]认为地聚物的强度会随着模数的减小而持续增大;但郑娟荣等[10]认为地聚物的抗压强度都随水玻璃模数的增加先升高后降低在模数为1.4时达到峰值;李启华等[11]发现碱激发剂模数在1.2~1.4之间㊁掺量为25%(水玻璃占地聚物的质量分数)左右的水玻璃对于粉煤灰基系统早期强度发展较好㊂除地聚物外,微珠㊁蛭石和珍珠岩等轻质材料也因其耐高温和隔热性能良好被广泛应用于建筑中:姚韦靖等[12]认为玻化微珠经1000ħ高温后结构仍旧完好,是性能极佳的耐高温材料;吴仕成等[13]发现随着玻化微珠掺量的增加,水泥基材料导热系数逐渐减小,隔热性能得到提升;程小伟[14]以膨胀珍珠岩等为无机隔热材料制备隧道防火涂料,当涂料涂层10mm 时,耐火极限可达2.5h;夏海江等[15]表示膨胀蛭石具有难熔的结构骨架,轻质低导热,能应用于超过1000ħ的环境中㊂综上所述,地聚物和隔热材料都有着良好的耐高温性能,但对于同时使用地聚物和保温隔热材料并探究其高温后抗压强度的研究较少,而碱浓度和模数对地聚物性能的影响存在争议㊂因此,本文选用钾水玻璃(复掺氢氧化钾调整模数)作为碱激发剂,粉煤灰和偏高岭土复掺为硅铝原料,微珠㊁蛭石和珍珠岩作为隔热填料,研究碱激发剂的浓度和模数对地聚物砂浆的力学性能的影响,并采用XRD㊁SEM 等技术手段对地聚物物相组成及微观结构进行表征㊂1㊀实㊀验1.1㊀原材料图1㊀偏高岭土和粉煤灰XRD 谱Fig.1㊀XRD patterns of metakaolin and fly ash所用偏高岭土(MK)为河南省巩义市辰义耐材磨料有限公司生产,粒径为10μm;粉煤灰(FA)为云南省宣威火电厂生产的Ⅰ级粉煤灰㊂粉煤灰和偏高岭土化学组成见表1,XRD 谱见图1㊂碱激发剂采用河北省永清县聚利得化工有限公司所生产的钾水玻璃(硅酸钾溶液),其中SiO 2和K 2O 的质量分数分别为25.16%㊁9.57%,钾水玻璃的初始模数为2.71,加入KOH 将模数调节为需求值,KOH 为天津市风船化学试剂科技有限公司所产分析纯,KOH 含量ȡ85%(质量分数)㊂微珠为河南省巩义市辰义耐材磨料有限公司生产,粒径为0.106~0.212mm㊂蛭石为河北灵寿县强东矿产品加工厂生产,粒径为0.25~0.425mm㊂珍珠岩为昆明吉祥保温材料有限公司所生产,粒径为0.106~0.212mm㊂试验所用拌合水为自来水㊂由表1可知,偏高岭土和粉煤灰的化学组成主要为SiO 2和Al 2O 3,分别占质量的99%和77.19%㊂图1是1252㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷偏高岭土和粉煤灰的XRD谱,由图可知,粉煤灰的结晶相较多,主要为石英(SiO2)和莫来石(3Al2O3㊃2SiO2);偏高岭土的主要衍射峰在2θ=20ʎ~30ʎ之间,该衍射峰相对较弱,主要为无定型态,结晶相较少;主要晶相有锐钛矿(TiO2)和石英(SiO2)㊂表1㊀偏高岭土和粉煤灰的主要化学组成(质量分数)Table1㊀Main chemical composition of fly ash and metakaolin(mass fraction)/% Material SiO2Al2O3CaO TiO2MgO K2O Na2O Fe2O3SO3P2O5 MK55.0043.000.100.200.050.500.050.50 FA53.0024.19 3.30 2.86 1.34 1.730.348.090.670.24 1.2㊀配合比试验设计12个配合比砂浆试件㊂碱浓度以K2O的当量计,占硅铝质原料(偏高岭土和粉煤灰质量和)的40%㊁44%㊁48%;偏高岭土和粉煤灰按质量比1ʒ1混合㊂碱激发剂的模数分别为0.75㊁1.00㊁1.25㊁1.50㊂微珠等保温材料具有较高的吸水率,经过多次试配确定水胶比为0.9㊂钾水玻璃中固含量计入胶凝材料计算,含水量计入用水量计算㊂隔热填料中微珠㊁蛭石㊁珍珠岩按质量比5ʒ3ʒ4混合㊂详细配合比见表2㊂表2㊀试验配合比Table2㊀Mix ratio of specimens/g No.MK FA Water glass KOH Water Insulation filler40%-0.75302.3302.3460.2235.7900.21088.140%-1.00302.3302.3613.6218.2932.41088.140%-1.25302.3302.3767.0200.7964.61088.140%-1.50302.3302.3920.4183.3996.91088.144%-0.75302.3302.3506.2259.3935.81088.144%-1.00302.3302.3675.0240.0971.21088.144%-1.25302.3302.3843.7220.81006.71088.144%-1.50302.3302.31012.5201.61042.11088.148%-0.75302.3302.3552.3282.9971.41088.148%-1.00302.3302.3736.4261.91010.11088.148%-1.25302.3302.3920.4240.91048.71088.148%-1.50302.3302.31104.5219.91087.41088.1㊀㊀注:40%-0.75表示碱浓度为40%且模数为0.75的配比,其余配比以此类推㊂1.3㊀试件制备每个配合比成型6个试件,其中3个试件用于常温测试,另外3个试件用于高温测试㊂试件尺寸为70.7mmˑ70.7mmˑ70.7mm,在基础配合比不变的情况下,调整水胶比为0.6,每组配合比成型净浆试件选出2个用于XRD物相分析,净浆试件尺寸为25mmˑ25mmˑ25mm㊂试件装模完毕后,在75ħ的环境中固化12h养护,然后拆模,随后放入标准养护室(温度(20ʃ1)ħ,湿度>95%)养护至7d㊂1.4㊀试验方法试件达到养护龄期后取出,一部分试件进行高温试验,高温试验采用编程式箱式电炉以10ħ/min的升温速率将试件加热到目标温度1000ħ,恒温3h,待试件自然冷却后与常温组试件一起进行抗压强度测试(所报道的强度值为3个平行试件的平均值)㊂抗压测试结束后选取试件中心碎块放入丙酮溶液中浸泡3d 以终止其水化,然后取出碎块置于真空干燥皿中干燥,选取部分样品使用美国FEI公司发射丝扫描电子显微镜观察微观形貌,选取压碎净浆试件样品研磨后过0.08mm方孔筛,粉样封存于试样袋中,然后使用日本理学公司XRD Rigaku Ultima IV型X射线衍射仪进行物相分析㊂2㊀结果与讨论2.1㊀抗压强度地聚物砂浆养护7d后的抗压强度见表3,表4给出了高温后地聚物砂浆的相对残余抗压强度,即相同第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1253㊀模数相同碱浓度下高温作用后的抗压强度与常温时的抗压强度之比㊂表3㊀地聚物砂浆的抗压强度Table 3㊀Compressive strength of geopolymer mortar/MPa Alkali concentration /%0.75-20ħ 1.00-20ħ 1.25-20ħ 1.50-20ħ0.75-1000ħ1.00-1000ħ1.25-1000ħ1.50-1000ħ407.08ʃ0.8016.52ʃ1.9418.44ʃ1.3920.31ʃ2.07 4.64ʃ0.417.81ʃ0.627.74ʃ0.608.86ʃ0.47448.08ʃ1.1022.24ʃ1.1020.84ʃ0.1021.24ʃ1.42 6.06ʃ0.7112.13ʃ0.5610.12ʃ1.169.77ʃ0.914810.28ʃ1.2420.28ʃ0.6219.80ʃ1.4618.88ʃ2.159.14ʃ0.8210.24ʃ0.959.38ʃ1.247.87ʃ0.68㊀㊀注:0.75-20ħ表示模数为0.75在20ħ时试件的强度,40%表示碱浓度为40%时试件强度,其余以此类推㊂表4㊀高温后地聚物砂浆的相对残余抗压强度Table 4㊀Relative residual compressive strength of geopolymer mortar after high temperatureAlkali concentration /%0.75 1.00 1.25 1.50400.660.470.420.44440.750.550.490.46480.890.500.470.42㊀㊀注:0.75表示模数为0.75的试件经历1000ħ高温后的强度与该模数下常温试件强度之比,40%表示碱浓度为40%的试件经历1000ħ高温后的强度与该碱浓度下常温试件强度之比㊂2.1.1㊀模数对强度的影响图2㊀激发剂的模数对地聚物砂浆抗压强度的影响Fig.2㊀Effect of modulus of activator on compressive strength of geopolymer mortar 碱激发剂模数对地聚物砂浆抗压强度的影响见图2㊂由图可知,常温下当水玻璃的模数为0.75时,除48%-20ħ组抗压强度达到10.28MPa 外,其余各组强度均低于10MPa㊂这可能是因为水玻璃模数太低使得其水化过程中产生Si(OH)4太少,而Si(OH)4有利于消除粉煤灰周围硅氧阴离子团的过饱和现象从而促进粉煤灰的解聚[16],因此粉煤灰解聚不完全使得砂浆强度偏低㊂当模数为1.00时,除个别配比外,其余试件的强度均达到最高,其中44%-20ħ组强度最高,为22.24MPa㊂这可能是因为水玻璃中低聚合度硅氧四面体的含量增加进一步促进硅铝原料的溶解解聚,生成更多胶体沉淀,使得强度升高[16-17]㊂当模数继续升高至1.50时,大部分配比试件的强度都略有降低㊂这可能是因为在较高的模数下,高聚合度硅氧四面体含量增加,不利于原料中硅铝相的解聚,抑制缩聚反应过程,导致强度降低[18]㊂在经历1000ħ高温后,地聚物砂浆的强度较常温下普遍降低,其强度随模数的变化规律与常温时大致相同㊂由表4可知,高温后试件的相对残余抗压强度在42%~89%之间;而水泥胶砂试件在1000ħ高温后仅有15.8%的相对残余抗压强度[19],因此该材料具有较好的耐高温性能㊂当模数为1.00且碱浓度为44%时,试件在经历1000ħ高温后残余强度达到最高,为12.13MPa,仍有55%相对残余强度,为最佳耐高温组㊂该材料具有较好的耐高温性能可能是因为部分未反应的颗粒在高温下发生烧结形成更强的结合力使得强度增加,从而抵消了一部分在高温下引起的热损伤[20]㊂2.1.2㊀碱浓度对强度的影响图3描述了激发剂碱浓度对地聚物砂浆抗压强度的影响㊂由图可知,除0.75模数外,其余各模数下试件的强度均随着碱浓度的增大先增大后减小㊂当碱浓度为44%,各组强度达到最高,这可能是因为随着碱浓度的升高,原料颗粒溶解更充分,生成更多的凝胶体来填充多孔体系,使得结构更为致密[17]㊂而当碱浓度继续升高至48%时,各组强度反而下降,这可能是因为在较高的浓度下,水化反应太快,水化产物附着在粉1254㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷图3㊀激发剂的浓度对地聚物砂浆抗压强度的影响Fig.3㊀Effect of the concentration of activator on compressive strength of geopolymer mortar 煤灰表面来不及分散,水化难以继续进行而导致强度降低[17]㊂后续扫描电镜的观测也证实了这点㊂在经历1000ħ高温后,当模数为1.00时,试件的强度随着碱浓度的增大呈现出先增大后减小的趋势,其余各模数下试件强度均保持稳定,这与常温时的规律相似㊂2.2㊀XRD 分析图4和图5分别为不同模数和不同碱浓度下地聚物净浆的XRD 谱㊂由图可知,地聚物常温下存在的晶相主要为石英(quartz)和莫来石(mullite),仅有少量的白云母(muscovite)和钾长石(microcline),结合图1可知,石英和莫来石来自未反应的原料㊂常温下地聚物在2θ=20ʎ~40ʎ之间出现弥散的馒头峰,这是地聚物的典型特征谱,表明偏高岭土-粉煤灰基地聚物水化产物主要为无定型硅铝酸盐凝胶[21-22]㊂地聚物高温后的水化产物主要为白榴石(leucite)和钾霞石(kalsilite)㊂图4(a)为常温下碱浓度为44%时不同模数下的XRD 谱㊂石英的主衍射峰随着模数的增加先下降后升高,模数为1.00时最低,莫来石峰的变化也符合这个规律,这说明此时原料溶解得最为充分,因此宏观表现为该模数下的试件强度最高㊂当模数增加至1.50时,石英峰反而升高,这可能是水玻璃模数偏大时,高聚合度硅氧四面体含量增加,使得原料中硅铝相的解聚不充分,最终生成的无定型凝胶相较少[18]㊂此外,在地聚物中还有少量白云母和钾长石,Selman 等[23]也探测到白云母的存在㊂图4㊀不同模数下地聚物净浆的XRD 谱Fig.4㊀XRD patterns of geopolymer clean pulp with different modulus 图4(b)为1000ħ高温后碱浓度为44%时不同模数下的XRD 谱㊂由图可知,在经历1000ħ高温后,原有的晶体与凝胶相均转化为白榴石和钾霞石㊂李娜等[24]也探测到这两种晶相的存在,认为地聚物生成了更加稳定的陶瓷相结构;黄丽婷等[25]认为白榴石常用作烤瓷材料,是一种良好的耐高温晶体,因此试件在经历1000ħ高温后仍有较高的残余强度㊂白榴石的主衍射峰随着模数的增加先升高后下降,模数为1.00时最高,宏观表现为高温后该模数下的试件强度偏高㊂图5(a)为常温下模数为1.00时不同碱浓度下的XRD 谱㊂由图可知,石英的主衍射峰随着碱浓度的增加先下降后升高,石英峰与莫来石的衍射峰在48%碱浓度时最强,这说明过高的碱浓度不利于原料的溶解,可能是因为部分水化产物的包裹使得反应减慢使反应生成的无定型凝胶减少㊂图5(b)为高温后模数为1.00时不同碱浓度下的XRD 谱㊂由图可知,1000ħ高温作用后,各碱浓度下的衍射峰几乎均为白榴石,白榴石的主衍射峰随着碱浓度的增加先升高后下降,碱浓度为44%时最高,这与强度规律一致㊂㊀第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1255图5㊀不同碱浓度下地聚物净浆的XRD谱Fig.5㊀XRD patterns of geopolymer clean pulp with different alkali concentrations2.3㊀SEM分析图6为地聚物砂浆的微观形貌图㊂图6㊀地聚物砂浆的SEM照片Fig.6㊀SEM images of geopolymer mortar图6(a)㊁(b)和(c)为同一碱浓度(44%)下不同模数(0.75㊁1.00和1.50)的SEM照片㊂由图6(a)可以看到未反应而呈板状结构的偏高岭土,此外还有不少空心腔和未反应的粉煤灰颗粒,Kong等[26]认为粉煤1256㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷灰包含大量具有空心球的颗粒,当这些颗粒部分溶解时,会在小尺寸孔的基质中产生孔隙㊂因此看到的空心腔可能是由于溶解的粉煤灰颗粒留下的空间㊂同样的板状结构在图6(c)中也可以见到,而从图6(b)可以看到大量絮状的水化产物,其微观结构也较密实㊂上述现象与强度规律一致,过低或者过高的碱激发剂模数都不利于水化㊂图6(b)㊁(d)和(e)为同一模数(1.00)下不同碱浓度(44%㊁40%和48%)的SEM照片㊂图6(d)中虽然有不少的水化产物,但也存在未反应偏高岭土㊁裂纹和空隙,这些空隙可能是因为反应过程中凝胶相中水分排出后留下[27],这使得当碱浓度较低时,试件强度较低㊂从图6(e)可以看到未反应完全的粉煤灰颗粒周围包裹着一层水化产物,这与文献[17]的描述一致,可能是这层水化产物薄膜使得后续反应变慢导致强度降低㊂图6(f)㊁(g)和(h)为同一碱浓度(44%)下不同模数(0.75㊁1.00和1.50)高温后的SEM照片㊂由图结合XRD谱及文献[28]可知,图中白色颗粒为白榴石(KAlSi2O6),它作为烤瓷材料为试件高温后的强度提供了保障㊂图6(f)可见少量的白榴石嵌入骨料的孔隙中;随着模数的增加,生成更多的白榴石,同时白榴石与骨料镶嵌较为紧密,这使得该组宏观力学性能较好;随着模数的继续增大,仍然可见大量的白榴石,但它与骨料的界面过渡区密实程度大大降低,过渡区出现了清晰可见的裂缝,这使得该组强度有所下降㊂此外,还可以观测到大量烧结后的空心腔,粉煤灰地聚物的这种多孔系统为加热过程中的水分提供了逃逸途径[27],从而抵消部分热应力带来的强度损伤,这使得试件经历1000ħ高温后仍有较高残余强度㊂3㊀结㊀论(1)当碱浓度不变时,大部分试件的强度随模数的增大先升高后略微下降或者基本不变㊂当模数不变时,大部分试件强度随碱浓度的增大先升高后降低㊂在模数为1.00且碱浓度为44%时抗压强度最高,为22.24MPa㊂㊀(2)地聚物砂浆有着较为良好的耐高温性能,经历1000ħ高温后试件仍能维持42%及以上相对残余强度;试件残余强度最高为12.13MPa,该组仍有55%相对残余强度㊂(3)地聚物净浆常温下的主要水化产物无定型凝胶,此外还有少量钾长石和白云母;1000ħ高温后的水化产物转化为白榴石和钾霞石㊂(4)地聚物砂浆在模数为1.00且碱浓度为44%时的微观结构较为致密,且有大量絮状的水化产物,过低或者过高的模数都存在着较为明显未反应的偏高岭土和粉煤灰,而过高的碱浓度可能使得水化产物薄膜包裹未反应粉煤灰,使得后续水化反应变慢㊂参考文献[1]㊀徐㊀彧,徐志胜.高温作用后混凝土强度试验研究[J].混凝土,2000(2):44-45+53.XU Y,XU Z S.Experiment investigation of strength of concrete after high temperature[J].Concrete,2000(2):44-45+53(in Chinese).[2]㊀VAN DEVENTER J S J,PROVIS J L,DUXSON P.Technical and commercial progress in the adoption of geopolymer cement[J].MineralsEngineering,2012,29:89-104.[3]㊀ZHANG Y S,SUN W,CHEN Q L,et al.Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J].Journal of HazardousMaterials,2007,143(1/2):206-213.[4]㊀DUAN P,YAN C J,ZHOU W,et al.An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer afterheat and acid exposure[J].Materials&Design,2015,74:125-137.[5]㊀郑娟荣,张㊀涛,覃维祖.碱-偏高岭土基胶凝材料的热稳定性研究[J].郑州大学学报(工学版),2004,25(4):16-19.ZHENG J R,ZHANG T,QIN W Z.High-temperature stability of cementitious materials based on metakaolin[J].Journal of Zhengzhou University(Engineering Science),2004,25(4):16-19(in Chinese).[6]㊀侯云芬,王栋民,李㊀俏.激发剂对粉煤灰基地聚合物抗压强度的影响[J].建筑材料学报,2007,10(2):214-218.HOU Y F,WANG D M,LI Q.Effects of activator on compressive strength of fly ash-based geopolymers[J].Journal of Building Materials, 2007,10(2):214-218(in Chinese).[7]㊀ALONSO S,PALOMO A.Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures[J].Cement and ConcreteResearch,2001,31(1):25-30.[8]㊀陈士堃.偏高岭土基地聚合物基础力学性能与影响因素研究[D].杭州:浙江大学,2015.㊀第4期管柏伦等:偏高岭土-粉煤灰基地聚物砂浆力学性能研究1257 CHEN S K.Study of basic mechanical properties and influential factors of metakaolin-based geopolymer[D].Hangzhou:Zhejiang University, 2015(in Chinese).[9]㊀LYU S J,WANG T T,CHENG T W,et al.Main factors affecting mechanical characteristics of geopolymer revealed by experimental design andassociated statistical analysis[J].Construction and Building Materials,2013,43:589-597.[10]㊀郑娟荣,刘丽娜.偏高岭土基地质聚合物合成条件的试验研究[J].郑州大学学报(工学版),2008,29(2):44-47.ZHENG J R,LIU L N.Experimental study on formation conditions of metakaolinite-based geopolymer[J].Journal of Zhengzhou University (Engineering Science),2008,29(2):44-47(in Chinese).[11]㊀李启华,丁天庭,陈树东.粉煤灰-矿渣碱激发体系的早期性能和耐高温研究[J].硅酸盐通报,2017,36(1):365-368+373.LI Q H,DING T T,CHEN S D.Early property and high temperature resistance of alkali activated system of fly ash-slag[J].Bulletin of the Chinese Ceramic Society,2017,36(1):365-368+373(in Chinese).[12]㊀姚韦靖,庞建勇.玻化微珠保温混凝土高温后性能劣化及微观结构[J].复合材料学报,2019,36(12):2932-2941.YAO W J,PANG J Y.Performance degradation and microscopic structure of glazed hollow bead insulation normal concrete after exposure to high temperature[J].Acta Materiae Compositae Sinica,2019,36(12):2932-2941(in Chinese).[13]㊀吴仕成,严捍东.膨胀玻化微珠及其在水泥基材料中应用现状的综述和分析[J].材料导报,2012,26(23):18-23.WU S C,YAN H D.Review and analysis of surface-vitrified micron sphere and its application status in cement-based materials[J].Materials Review,2012,26(23):18-23(in Chinese).[14]㊀程小伟.隧道防火涂料的制备及表征[D].成都:四川大学,2005.CHENG X W.Preparation and characterization of fireproof coating for tunnels[D].Chengdu:Sichuan University,2005(in Chinese). [15]㊀夏海江,鲁雪艳,迪里夏提㊃买买提.膨胀蛭石:综合性能超凡的高温隔热材料[J].西部探矿工程,2008,20(2):111-112.XIA H J,LU X Y,DILIXIATI M M T.Expanded vermiculite:a high temperature insulation material with extraordinary comprehensive performance[J].West-China Exploration Engineering,2008,20(2):111-112(in Chinese).[16]㊀杨立荣,王春梅,封孝信,等.粉煤灰/矿渣基地聚合物的制备及固化机理研究[J].武汉理工大学学报,2009,31(7):115-119.YANG L R,WANG C M,FENG X X,et al.Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J].Journal of Wuhan University of Technology,2009,31(7):115-119(in Chinese).[17]㊀李亚林.粉煤灰-偏高岭土复合基地质聚合物的结构与性能研究[D].绵阳:西南科技大学,2017.LI Y L.Study on the structure and properties of fly ash-metakaolin composite based geopolymer[D].Mianyang:Southwest University of Science and Technology,2017(in Chinese).[18]㊀章定文,王安辉.地聚合物胶凝材料性能及工程应用研究综述[J].建筑科学与工程学报,2020,37(5):13-38.ZHANG D W,WANG A H.Review on property of geopolymer binder and its engineering application[J].Journal of Architecture and Civil Engineering,2020,37(5):13-38(in Chinese).[19]㊀张㊀敏,马倩敏,史天尧,等.磷渣胶凝材料高温力学性能试验研究[J].非金属矿,2018,41(6):10-14.ZHANG M,MA Q M,SHI T Y,et al.Mechanical properties of mortars containing phosphorus slag after exposure to high temperatures[J].Non-Metallic Mines,2018,41(6):10-14(in Chinese).[20]㊀KONG D L Y,SANJAYAN J G,SAGOE-CRENTSIL K.Factors affecting the performance of metakaolin geopolymers exposed to elevatedtemperatures[J].Journal of Materials Science,2008,43(3):824-831.[21]㊀LIZCANO M,KIM H S,BASU S,et al.Mechanical properties of sodium and potassium activated metakaolin-based geopolymers[J].Journal ofMaterials Science,2012,47(6):2607-2616.[22]㊀李㊀娜,徐中慧,李㊀萍,等.机械力活化粉煤灰制备地聚合物的性能及机理研究[J].功能材料,2018,49(4):4102-4106.LI N,XU Z H,LI P,et al.Mechanical activation of fly ash:effect on performance and mechanism of resulting geopolymer[J].Journal of Functional Materials,2018,49(4):4102-4106(in Chinese).[23]㊀SELMANI S,SDIRI A,BOUAZIZ S,et al.Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay[J].Applied ClayScience,2017,146:457-467.[24]㊀李㊀娜,徐中慧,陈筱悦,等.偏高岭土基地聚合物高温陶瓷化特性研究[J].硅酸盐通报,2019,38(4):957-961.LI N,XU Z H,CHEN X Y,et al.Characteristics of metakaolinite-based geopolmers after exposure to high temperatures[J].Bulletin of the Chinese Ceramic Society,2019,38(4):957-961(in Chinese).[25]㊀黄丽婷,刘㊀洋,彭㊀诚,等.立方相白榴石的合成与稳定[J].硅酸盐学报,2017,45(7):948-954.HUANG L T,LIU Y,PENG C,et al.Synthesis and stabilization of cubic leucite[J].Journal of the Chinese Ceramic Society,2017,45(7): 948-954(in Chinese).[26]㊀KONG D L Y,SANJAYAN J G,SAGOE-CRENTSIL parative performance of geopolymers made with metakaolin and fly ash after exposureto elevated temperatures[J].Cement and Concrete Research,2007,37(12):1583-1589.[27]㊀VILLAQUIRÁN-CAICEDO M A.Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymerbinders from metakaolin/boiler slag[J].Construction and Building Materials,2019,227:116621.[28]㊀黄丽婷.低热膨胀系数立方相白榴石的合成与稳定[D].广州:华南理工大学,2017.HUANG L T.Synthesis and stabilization of cubic leucite with low coefficient of thermal expansion[D].Guangzhou:South China University of Technology,2017(in Chinese).。
粉煤灰基地质聚合物材料的应用研究进展

性能。
刘泽等 [9-10] 研究证明循环流化床超细粉煤灰基
地质聚合物与 Zn 2+ 、 Pb 2+ 均具有较好的相容性, 使
得大掺量 Zn 2+ 的固化率达 99%以上, Pb 2+ 的固化率
也达到了 90% 以上。 其对含铬电镀污泥也可以进
行良好的固化, 固化体强度较高, 毛林清等 [11] 对
Abstract The discharge of fly ash from coal - fired power plant has caused certain harm to the earths ecological
environment and human health. The preparation of geopolymer with fly ash as raw material has the advantages of
水等发泡剂对块体、 球形等吸附材料进行起泡处
技术的投入及研究, 以应对水资源短缺的问题。
理, 以增加其吸附活性位点, 从而加大吸附量。 因
粉煤灰本身具有特殊的多孔蜂窝状结构、 比表
面积较大, 又具有 Al 2 O 3 、 SiO 2 、 CaO 等活性组分,
此, 块体及球形吸附剂特别是球形吸附剂很有可能
固体废弃物中包含了大量的重金属及其化合物, 如
且在内部形成密闭性良好的牢笼形状, 从而可以将
断富集并潜移默化地渗透到了广袤的土壤及水资源
实现了以废治废、 变废为宝的环保目标, 在材料、
Pb、 Zn、 Cs、 Sr、 As、 Cd 等, 有害重金属离子不
重金属离子、 有毒废物质等包裹在牢笼空腔内部,
中, 这对人们赖以生存的生态环境造成了严重的威
水热合成法制备偏高岭土-粉煤灰基地聚合物材料的研究

氧 化 钠 溶 液 浓 度 影 响 最 为 突 出 ; 粉 煤 灰 掺 量 为 5 % , 氧 化 钠 溶 液 浓 度 为 1 l , 10o下 蒸养 2 , 样 3d抗 压 强 度 达 当 0 氢 0mo L 在 0 / C 4h 试
新 建巍
全 中核 期 国 文 心刊
水热合成法制备偏高岭土一 粉煤灰基 地聚合物材料的研究
唐婕 , 陈益 兰 , 君生 周
( 西大学, 西 南宁 广 广 500) 3 0 4
摘要: 以氖氧化钠为激发剂, 高岭 土和粉煤灰为主要原料, 偏 采用水热合成法制各沸石增强型地 聚合物材料 , 探讨粉煤灰掺量、
h u s te srn h o e p lme a e c 75 oy rc n ra h 4 . t n tr e d y.Amop o s sl o lmiu a i ata d e l e wee many r h u ic n au n m cd s l n zoi r il i t
t e i r c s . h ss p o e s
K e wor s: y rtema snh ss g o oy rmea a l fy a h y d h doh r l y te i:e p lme ; tk oi l s n;
4 .MP ; 过 X 7 a通 5 RD和 S M 分 析 可知 , 聚 合 物 样 品主 要 为 无 定 形 的硅 铝 酸 盐 及 沸 石 相 , 着 水 热 合 成 工 艺条 件 的改 变 , E 地 随 生成 的沸 石 类 型不 同 。
偏高岭土基地质聚合物合成条件的试验研究

2008年 6月郑州大学学报(工学版)Jun 2008第29卷 第2期Journa l of Zhengzhou U n i ve rs i ty (Eng ineer i ng Sc ience)V o l 29 N o 2收稿日期:2008-01-14;修订日期:2008-04-07 基金项目:国家自然科学基金资助项目(50572096).作者简介:郑娟荣(1964-),女,博士,郑州大学教授,从事高性能混凝土和新型胶凝材料的研究及应用研究.E -ma i:l Zheng jr @ .文章编号:1671-6833(2008)02-0044-04偏高岭土基地质聚合物合成条件的试验研究郑娟荣,刘丽娜(郑州大学土木工程学院,河南郑州,450001)摘 要:研究了由不同产地的高岭土经不同煅烧条件所得的偏高岭土、水玻璃类型和模数、碱含量及养护条件等对地质聚合物合成的影响规律.结果表明:某种苏州高岭土经800 煅烧6h 活性最好,即在碱液中硅铝溶出率最大;当水玻璃模数为1.4,碱含量为10%时,制得的地质聚合物在20 (相对湿度大于90%)的条件下养护28d ,其抗压强度达到82.5M Pa .合成地质聚合物中的偏高岭土的活性、水玻璃模数、碱含量和养护条件达到最佳匹配条件时,其抗压强度最大.关键词:地质聚合物;原材料;养护条件;抗压强度中图分类号:TQ 172.79 文献标识码:A0 引言地质聚合物是法国的J .Davidov its 在20世纪70年代开发的,并取名为Geopo l y m er [1-2].地质聚合物具有普通水泥所没有的独特性能:优良的耐热性、耐酸性、耐久性和制备过程的节能环保性,因此,近30年来受到国内外材料研究者的极大关注.Dav i d ovits 最初使用偏高岭土(煅烧高岭土)作为制备Geopo l y m er 的原料.现在将制备Geopo l y m er 的原料扩大到粉煤灰、矿渣、硅灰、天然铝硅酸盐矿物等[3-5].笔者通过试验找出规律并进行了深入的分析,得出的结论是在一定养护条件下,合成地质聚合物中的偏高岭土的活性、水玻璃模数和碱含量达到最佳匹配条件时,其抗压强度最大.1 实验部分1.1 原材料偏高岭土:由高岭土A (苏州土)和高岭土B (济源土),其化学成份如表1所示,分别经不同煅烧温度和保温时间焙烧、自然冷却至室温,过0.08mm 的方孔筛而得.碱性激活剂:由市售水玻璃和N a OH 或KOH (化学纯级试剂)配制而成一定模数的水玻璃.1.2 样品制备将偏高岭土和碱激发剂按表2中的比例搅拌成均匀的浆体并浇注到40mm 40mm 40mm 的钢模中,在一定温度和保湿条件下养护到规定的时间,试块供抗压强度测试使用.表1 高岭土的化学成份Tab 1 Ch e m ical co mpositions of kaoli n es %编号产地Si O 2A l 2O 3LO I A 苏州42.3938.4316.57B河南济源44.1537.3310.891.3 测试方法抗压强度测试方法:按照国家标准GB /T 17671-1999的方法进行.偏高岭土中活性A l 2O 3和S i O 2的测定方法:准确称取1g 样品,放入250mL 的锥形瓶中,加入5g /L 的Na OH 溶液200mL ,采用回流冷凝的方法煮沸30m in ,然后加入8mL 浓盐酸,再煮沸5m i n ,冷却后过滤,将滤液定容到250m L 的容量瓶中,做为活性S i O 2和A l 2O 3的待测溶液,其活性Si O 2和A l 2O 3分别用氟硅酸钾容量法和EDTA 络合滴定法测定[6-7].2 结果及讨论2.1 高岭土的不同煅烧温度对合成地质聚合物性能的影响将高岭土A 和高岭土B 分别在500,600,700,800,900,1000 下煅烧6h ,得到相应的偏高岭土,将其与模数为1.5(固含量为46.39%)第2期郑娟荣等 偏高岭土基地质聚合物合成条件的试验研究45的水玻璃合成相应的地质聚合物,在65 下养护1.5h ,测定其抗压强度如图1所示.随着高岭土的煅烧温度升高,所合成的地质聚合物的抗压强度升高,当温度达到800 时,抗压强度最大;当温度提高至900 时,其抗压强度开始下降;当温度提高至1000 时,其抗压强度为零,这可能是当温度升至900 以上,偏高岭土开始结晶并转化为莫来石和方石英,此时就失去了活性.而且在相同条件下,煅烧高岭土A 比煅烧高岭土B 所合成的地质聚合物的抗压强度要高得多.表2 地质聚合物的配比T ab 2 M ix ratios of geopoly mer编号混合配合比锻烧温度/5006007008009001000A L C 1 0.841 0.841 0.811 0.751 0.721 0.70W /S 0.400.400.420.440.450.46BL C 1 1.521 1.521 1.451 1.211 1.141 1.07W /S0.270.270.280.320.340.35注:L C 为碱液与锻烧高岭土质量比;W /S 为水固比;锻烧时间为6h.图1 高岭土的煅烧温度与地质聚合物的抗压强度的关系F ig .1 R elati on bet w een ca l c i nation te mp eratu re of kao li n e and co mpressi ve stren gth of geopoly m er2.2 高岭土的不同煅烧时间对合成地质聚合物性能的影响将高岭土A 在800 煅烧2,6,10,16h ,得到相应的偏高岭土,将其与模数为1.5(固含量为46.39%)的水玻璃合成相应的地质聚合物,在65 下养护1.5h ,测定其抗压强度的结果如图2所示.图2 高岭土的煅烧时间与地质聚合物抗压强度的关系F ig .2 R elati on bet w een ca l c i nation ti m e of kao li n e and co mpressi ve stren gth of geopoly m er由图2可以看出,高岭土A 在800 有一个最佳煅烧时间,其值为6h;当低于或超过这一时间时,所合成的地质聚合物的抗压强度下降.这可能是在煅烧时间较短时,高岭土的层状结构还没完全被破坏,降低偏高岭土的活性;在高温下长时间煅烧使偏高岭土向弱结晶的尖晶石转变[8],也降低偏高岭土的活性.从表1可看出,高岭土A 是苏州土,高岭土B 是河南济源土,这2种土的化学成份相差不大,但合成地质聚合物的性能却相差很大.为了解引起这种差异的原因,对高岭土A 和高岭土B 在不同煅烧条件下煅烧后,其在碱溶液中活性Si O 2和A l 2O 3的溶出率进行了测定,其结果如图3所示.从图3可看出:煅烧高岭土的硅铝溶出率(即活性)的变化规律与合成相应的地质聚合物的抗压强度的变化规律(见图1和图2)一致,高岭土经800 煅烧6h 后,其硅铝溶出率总量最大.其原因可能是地质聚合物的凝结硬化机理主要包括解聚、定向迁移、再聚合等过程[9],煅烧高岭土的活性越高,在碱液中解聚溶出的硅铝离子越多,通过迁移,最后聚合形成的产物越多,结果所合成的地质聚合物硬化体的抗压强度越大.从表2还可看出,用相同的碱配制稠度相同的地质聚合物浆体,其水固比随高岭土煅烧温度升高而升高;而高岭土A 的水固比高于高岭土B 的水固比,其地质聚合物硬化体的抗压强度与水固比没有反比关系,这进一步说明煅烧高岭土的活性是影响地质聚合物硬化体抗压强度的一个主要因素.2.3 水玻璃的类型、模数和碱含量的影响水玻璃俗称泡花碱,是一种碱金属硅酸盐.根据其碱金属氧化物种类的不同,又分为硅酸钠水玻璃(N a 2O n S i O 2)和硅酸钾水玻璃(K 2O n S i O 2)等,它们是化学激发胶凝材料中常用的碱46郑州大学学报(工学版)2008年图3 高岭土的煅烧温度与其在碱液中硅铝溶出率的关系F ig.3 R elati on bet w een ca l c i nation te mp eratu reof kao li n e and elu ti on Si O2and A l2O3conten tof ca l c i n ed kao li n e in alkali sol u tion激发剂.二氧化硅与碱金属氧化物的摩尔比n称为水玻璃的模数.笔者研究了水玻璃的类型(即硅酸钠水玻璃和硅酸钾水玻璃)和水玻璃模数(1.0,1.2,1.3,1.4,1.5,1.6,1.7,2.0)对地质聚合物合成的影响,其中碱含量固定为10%,试块在65 下养护1.5h,其抗压强度的试验结果如图4所示.从图4可以看出,无论是钠水玻璃还是钾水玻璃作激发剂,地质聚合物的抗压强度都随水玻璃模数的增加而升高,在模数为1.4时达到峰值,然后随着水玻璃模数的增加降低;由钾水玻璃作图4 水玻璃的种类和模数与其地质聚合物的强度的关系F i g.4 Re l ation b et w een typ e and m odu l u s of water-glass and co m pressive strength s of geopoly m er激发剂的地质聚合物的抗压强度比钠水玻璃作激发剂的地质聚合物的抗压强度略高,这种差异在水玻璃模数低于1.6时较明显.为了解碱含量的变化对地质聚合物抗压强度的影响规律,笔者进行了2组试验,一组是将800 煅烧6h后的偏高岭土与水玻璃模数为1.4的钠水玻璃混合,控制其中碱含量为12%、10%、8%和6%;另一组是将800 煅烧6h后的偏高岭土与纯N a OH溶液混合,控制其中碱含量为15%、20%和25%.试块都在65 下养护1.5h,其抗压强度的试验结果如表3所示.表3 地质聚合物的抗压强度随含碱量的变化规律Tab 3 R elation between the co mpressive strength s and a l kali conten t of geopo l y m er项目碱含量/%121086152025抗压强度/M Pa54.564.052.025.805.08.5表4 不同养护温度下的地质聚合物的抗压强度T ab 4 Co m pressive strength s of geopoly m er under differen t cur i ng te m peratures水玻璃模数碱含量/N a2O%抗压强度/M Pa20 65 907d28d1.5h24h1.5h24h1.41068.582.564.465.545.655.5由表3分析发现,当模数为1.4的钠水玻璃为碱性激发剂时,碱含量为10%的地质聚合物抗压强度最高;碱量再增大,强度开始降低;碱量减小,强度也降低,要想地质聚合物具有一定强度,碱含量应该大于6%;当以纯N a OH溶液为激发剂时,碱含量高达25%,地质聚合物的抗压强度才8.5M Pa,这一结果说明水玻璃引入的初始S i O2有极其重要的作用.水玻璃的模数越大,其中Si O2的聚合度越大;当水玻璃模数大于2时,其硅酸聚合度为15~150[10].本试验结果也表明,当水玻璃模数大于2时,地质聚合物只有极低的强度,说明没有发生地质聚合反应;当水玻璃模数为1.4时,碱液中含有一定量的单体[S i O4].当碱含量大于6%时,首先解聚出偏高岭土中的铝离子,这种铝离子与碱液中的单体[S i O4]发生聚合反应,反应到一定程度就成核,为进一步的聚合反应创下条件.当合成地质聚合物的原材料中偏高岭土的活性、水玻璃的模数和碱含量以及养护温度最佳时,偏高岭土在碱液中的解聚和地质聚合物的聚合反应越充分,试块的抗压强度会越高.当碱含量过多时,会与空气中的CO2反应生成碳酸盐导致材料强度下降;碱含量过大导致材料下降第2期郑娟荣等 偏高岭土基地质聚合物合成条件的试验研究47的另一个主要原因可能是地质聚合物体系中的解聚和聚合反应速度不匹配造成的.养护温度(在保湿条件下)过高也会限制地质聚合物强度的发展(如表4),这是因为温度对地质聚合物体系中的解聚和聚合反应速度都有影响,结果破坏了其中的匹配关系.从表4可看出,当用某种苏州高岭土经800 煅烧6h得的偏高岭土为原料,水玻璃模数为1.4,碱含量为10%时,制得的地质聚合物在一天内脱模(静置在室内空气中,室温约20 ),并在20 (相对湿度大于90%)的条件下养护28d,其抗压强度达到82.5M Pa.3 结 论(1)高岭土经不同温度(500,600,700,800, 900,1000 )煅烧6h后,所合成的地质聚合物的抗压强度随高岭土的煅烧温度升高而提高,到达900 开始下降.(2)高岭土在800 经不同煅烧时间(2,6, 10,16h)后,所合成的地质聚合物的抗压强度在煅烧时间为6h时达到最大值,800 6h是最佳煅烧条件.(3)高岭土经高温煅烧后,所合成的地质聚合物硬化体的抗压强度与煅烧高岭土在碱溶液中硅铝溶出率(即活性)有相关性.(4)经800 煅烧6h得的偏高岭土,在模数为1.4、碱含量为10%的水玻璃激发下,制得的地质聚合物在20 (相对湿度大于90%)的条件下养护28d,其抗压强度达到82.5M Pa.参考文献:[1] DAV I DOV ITS J.M ine ra l po ly m ers and m ethods o fmak i ng them,U.S.P atent4349386[P].1982-09-30.[2] DAV IDOV I T S J.Synthe ti c m i ne ra l po l ym er co m poundof t he s ilicoalu m i na tes fa m ily and prepara ti onprocess,U S.Pa tent4472199[P].1984-09-30. [3] S WAN EPO EL J C,STRYDOM C.A,U tilisation o f fl yash i n a geopo l ym eric m a terial[J].Appli ed G eo-chem istry2002(17):1143-1148.[4] XU H,DEVENTER J S J.The geopo l ym erisation o fa l u m i no-sili cate m i nerals[J].Int.J.M i ner.P rocess.2000,59:247-266.[5] DAV I DOV I T S J.Early h i gh-streng th m i nera l po l y-m e r,U.S.Patent4509985[P].1985-04-30. [6] 中国建筑材料科学研究院水泥所.水泥及其原材料化学分析[M].北京:中国建材工业出版社.1997.190.[7] 郑娟荣,周同和,陈晓堂.地质聚合物合成中偏高岭土活性的快速检测方法研究[J].硅酸盐通报,2007,26(5):887-891.[8] 徐 慧.高岭土热分解期间莫来石形成的两个阶段[J].国外耐火材料,2004,29(4):47-52.[9] XU H,DEVENTER J S J.The geopo l ym erisation o fna t ura l alu m ino-s ili cates[C].In:Proc.2nd Inte r-na t.C on.f G eopo l yme re1999,s..l43-63.[10]朱纯熙,卢 晨,季敦生.水玻璃型砂基本理论[M].上海:上海交通大学出版社.2000,17-18.Experi m ental Study on For m ation Conditions ofM etakaolinite-based G eopoly m erZ H E NG Juan-rong,L IU L i-na(Schoo l of C i v il Eng i neeri ng,Zhengzhou U niversity,Zheng zhou450001,Ch i na)Abst ract:The i n fl u ence of the ra w m ateria ls(inc l u d i n g m etakao li n ites produced by calc i n i n g d ifferent kao-li n es under different conditi o ns,type and m odu l u s o fw ater-g lass and a l k ali content and so on)and curing condition on the synthesis ofm e takao linite-based geopo l y m er w as studied.The results show t h at t h e m etaka-olinite pr oduced a type of kao li n e fro m Suzhou after800 6h heat treat m entw hich has the b i g gest reactiv ity (.i e.e l u ti o n S i O2and A l2O3content o f the m etakao li n ite i n al k ali so l u ti o n reaches the b i g gest value);the28 d co m pressive streng th of the geopo ly m er produced by the m etakao li n ite and w ater-g lass w ith m odulus o f1.4 and10%N a2O reaches82.5MPa under curing cond ition of20 (R.H.>90%).It drs w s a conc l u si o n tha t t h e co m pressi v e streng t h of geopo l y m er reaches t h e b i g gest val u e when the reactivity o fm etakaolinite and the m odulus ofw ater-g lass and alka li content in the ra w m ater i s ls of synthesizing geopoly m er and cur i n g cond ition have bestm atch.K ey w ords:geopoly m er;ra w m ateria;l curing cond iti o n;co m pressive strength。
粉煤灰基地质聚合物力学性能研究

粉煤灰基地质聚合物力学性能研究丁兆栋(甘肃能源化工职业学院,甘肃 白银 730900)摘 要:目前,我国对于粉煤灰基地质聚合物的力学特性研究还不够充分,根据我国当前的研究情况来看,不同学者的研究侧重点有着很大的不同,其中关于粉煤灰基地质聚合物力学性能的研究有所欠缺,需要进一步加强相关研究。
本文通过具体实验的方式来对粉煤灰基地质聚合物力学性能进行了深入的研究与分析,阐述了研究结果和研究结论,希望能够对我国粉煤灰相关领域的研究作出一定的贡献,起到一定的参考作用。
关键词:粉煤灰;地质聚合物;力学性能;抗压强度;研究分析粉煤灰基地质聚合物作为碱激发胶的材料之一,因为粉煤灰的活性难以激发,在常温下粉煤灰体系难以凝结等原因,需要对粉煤灰基地质聚合物力学性能进行研究。
本文通过12组胶砂试件的抗压强度和抗折强度,对粉煤灰基地质聚合物的力学性能进行了相关的试验,并分析了碱渣对粉煤灰基地质聚合物的改性机理。
一、试验方案及试验流程(一)粉煤灰原材料选择本次试验中所选择的粉煤灰原材料来自甘肃省某热电厂,粉煤灰等级为一级,其中二氧化硫指数为45.31%,三氧化二铝指数为41.19%,主要结晶相为莫来石,粉煤灰的主要成分构成是玻璃体和莫来石,其中莫来石呈针状,玻璃体表面较为光滑,经过检测粉煤灰在100%含水率的情况下pH 值为5.932。
(二)氢氧化钠材料选择本次试验中所采用的氢氧化钠为市场中出售的一般种类氢氧化钠颗粒,为甘肃省某化学试剂公司生产,氢氧化钠试剂呈白色固体颗粒状,颗粒大小较为均匀,在经过检测确认氢氧化钠材料合格后将其溶解于水中,制成氢氧化钠溶剂,作为试验原材料备用。
(三)碱渣材料选择本次试验所使用的碱渣材料样本来自甘肃省某制碱厂,经过检测所选择的碱渣材料在100%含水率下的pH 值为8.332,其中的化学成分主要有CaCO 3 (64/wt%)、Ca (OH )2 (10/wt%)、CaCl 2 (6/wt%)、NaCl ( 4/wt%)、CaSO 4 (2/wt%)、SiO 2(4/wt%)、Al 2O 3 (2/wt%)、Acid insolubles (8/wt%)。
偏高岭土一粉煤灰基地质聚合物的制备及其性能研究

宋紫阁1,冯永明2,周文静3(1.新乡学院土木工程与建筑学院,新乡4530002.河南绿锦市政园林工程有限公司,新乡4530003.逸文环境发展有限公司,新乡453000)。
为了改善地质聚合物的力学性能,采用粉煤灰作为主要原料,液体水玻璃和氢氧化钠作为碱激发剂,将偏高岭土作为填料替代部分粉煤灰,制备了应用偏高岭土的粉煤灰基地质聚合物。
对偏高岭土-粉煤灰基地质聚合物进行了扫描电子显微镜、抗折抗压强度以及折压比等表征,研究了偏高岭土-粉煤灰基地质聚合物结构以及强度的影响。
结果显示:在粉煤灰基地质聚合物中添加偏高岭土会加快强度的形成,并且提高了粉煤灰基地质聚合物的强度。
;偏高岭土;粉煤灰;抗压强度;抗折强度;折压比地质聚合物是法国科学家Joseph Davidovits[1]于20世纪70年代发现的一种新型无机非金属材料,被认为是21世纪具有巨大应用潜力的绿色胶凝材料。
地质聚合物由于其特殊的三维网络结构,具有良好的力学性质。
同时,地质聚合物具有收缩性较低[2],早期强度高[3],防火以及低能耗[4]等优点,在建筑材料以及能源领域引起了巨大的关注[5]。
近年来,地质聚合物因其广阔的应用前景及可作水泥替代品得到广泛研究[3-4]。
C Lu等人[6]研究了碱激发剂对地质聚合物强度的影响。
余润翔等人[7]研究了利用碱激发技术制备了煤气化粗渣-粉煤灰基地质聚合物,并对所制备产物的性能进行研究。
丁二宝等[8]研究了利用固态激发剂制备粉煤灰基地质聚合物的方法。
本文将偏高岭土作为一种填料引入到地质聚合物中,详细研究了制备工艺以及由废弃刹车片改性后的地质聚合物试样的力学性能和微观结构等相关性能。
结果显示,地质聚合物组分中引入偏高岭土后,其抗压强度、抗折强度明显提高。
这表明偏高岭土改性后的地质聚合物具有良好的应用前景。
本文所用的粉煤灰为灵寿县加工厂的工业级产品。
偏高岭土为巩义市生产的工业级产品,其细度为1250目,活性指数大于110。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地质聚合物是一种新型胶凝材料,因其具有优异的性能,近年来引起了国内外研究学者的广泛关注。本文利用偏高岭土和粉煤灰为原料,通过碱激发制备地质聚合物。利用正交设计研究了偏高岭土的细度、粉煤灰的掺量和碱激发剂的模数对地质聚合物力学性能的影响,并研究了其工作性能和凝结性能。研究表明:(1)高岭土在850℃下煅烧并保温2h制备具有活性的偏高岭土,偏高岭土在常温下由氢氧化钠和水玻璃溶液制成的碱激发剂激发,可以制备地质聚合物。(2)偏高岭土地质聚合物的早期强度发展很快,通过掺入粉煤灰调控其反应进程,改善其粘聚性,偏高岭土-粉煤灰基地质聚合物浆体的流动性随着粉煤灰掺量的增加而变好。(3)通过正交实验得出影响偏高岭土—粉煤灰基地质聚合物力学性能的大小因素分别为偏高岭土细度、粉煤灰掺量和水玻璃模数。最佳配方为:偏高岭土为最细,粉煤灰掺量为25%,水玻璃模数为1.3;(4)同一粉煤灰含量的混合原料在采用不同模数的水玻璃激发时,随水玻璃模数的增大,凝结时间增长。
1.2.2
粉煤灰是热电站燃煤烟气中分离出来的副产品,呈细微球状,见图1.4,其化学组成和矿物相组成取决于煤的品质和燃烧条件。粉煤灰主要成分为SiO2,
Al2O3. (SiO2+Al2O3+Fe2O3>70%)和C级(70%>SiO2+Al2O3+Fe2O3>50%);GB/T1596-2005也有类似级别的分法,根据来源,无烟煤和生煤燃烧后收集的粉煤灰称为F类,褐煤和亚烟煤燃烧后收集的称为C类,其CaO含量一般高于10%,该标准进一步根据拌制混凝土和砂浆时技术指标(如煤灰细度、需水量、烧失量等)将粉煤灰分为一级、二级和三级。
Keywords:GeopolymerMetakaoliniteFlyashWorkingperformanceSetting time
第一章
1.1
地质聚合物最早由法国的Davidovits J教授在研究古罗马建筑和埃及金字塔时提出的[1]。Geopolymer一词原意指由地球化学作用或地质合成作用而形成的铝硅酸盐矿物聚合物,故此人们将地质聚合物又称为地聚合物、矿物聚合物、土聚水泥、土壤聚合物、化学键陶瓷材料、低温铝硅酸盐玻璃等[2-7]。地聚合材料属于碱激发材料,即强碱溶液与硅酸盐矿物颗粒发生反应,在其表面形成具有硅酸盐长链结构的凝胶相,凝胶相固化脱水后形成的物相称之为基体相,呈非晶态或半晶态,强度较低,而基体相将未反应的矿物颗粒或骨料粘结在一起,形成具有一定强度的材料[8]。
激发剂的性质会显著影响粉煤灰的溶解过程和产物的性质。激发剂中,碱金属离子的类型对粉煤灰基无机聚合物性质影响很大,例如分别用KOH和NaOH溶液作激发剂,前者产物强度更高,比表面积较大,结晶程度差,抗HCl溶液腐蚀能力稍低。激发剂中存在一定量铝酸根离子可促进无机聚合物的形成,使产物强度提高[20-26]。
geopolymer一词原意指由地球化学作用或地质合成作用而形成的铝硅酸盐矿物聚合物故此人们将地质聚合物又称为地聚合物矿物聚合物土聚水泥土壤聚合物化学键陶瓷材料低温铝硅酸盐玻璃等27合材料属于碱激发材料即强碱溶液与硅酸盐矿物颗粒发生反应在其表面形成具有硅酸盐长链结构的凝凝胶相固化脱水后形成的物相称之为基体相呈非晶态或半晶态强度较低而基体相将未反应的矿物颗粒或骨料粘结在一起形成具有一定强度的材料体积稳定性好耐化学腐蚀界面结合力强耐高温性好耐水热作用耐久性好可自调温调湿等
图1.4粉煤灰显微形貌:(a)原灰;(b)中空球体
粉煤灰的预处理工艺对无机聚合物性质有很大影响。Temuujin和van Riessen[18]研究了煅烧工艺对无机聚合物性质的影响,发现煅烧可使粉煤灰中残留的碳粒获得充分燃烧,但也使无机聚合物的强度有所降低,通过XRD、SEM并结合EDS分析,煅烧使粉煤灰无定型相含量降低,颗粒表面生成了莫来石和磁铁矿,降低了原料活性。Temuujin[18]等进一步研究了机械粉磨工艺的影响,将粒径为14.4m的粉煤灰细磨至6.8m,细磨后的粉煤灰活性增高,在室温养护下反应28d无机聚合物抗压强度达45MPa,这与Kumar等人研究结果一致[18]。机械粉磨使粉煤灰内部玻璃体粉碎,产生各种不稳定的断键与畸变,硅氧四面体由聚合态向单体转变,这些结构上的变化是机械活化的本质[19]。
图1.1地聚合物的分类
地聚合物是由硅氧四面体和铝氧四面体以顶角相连而成的具有不规则三维网状结构,金属离子充填网络空隙而形成的非晶态至半晶态的固体材料,在化学成分上类似于沸石,但是地质聚合物为一种无定型凝胶体。地聚合物主要是由不同比例的硅氧四面体和铝一氧四面体连接成的多维网络结构,碱没有直接进入到网络结构中,但是起到了平衡电价的重要作用。
在无机聚合物应用研究方面,往往不使用纯高岭土,因为较纯高岭土资源有限,且用途广泛。使用低品质粘土制备无机聚合物,不仅可以节约资源,而且利于该材料推广应用。Zibouch[17]研究了高岭土中其它矿物的影响,发现含有20%伊利石和10%石英的高岭土仍可以用来制备无机聚合物。Chen等[17]探索使用水库淤泥替代高岭土来制备无机聚合物,淤泥取自台湾A-Kung-Tien水库,主要矿物组成是石英、蒙脱石、蛇纹石和斜铁辉石,先湿法过筛除去某些杂质,烘干后细磨至平均粒径50m,500℃~900℃煅烧6h,煅烧产物经碱激发后制成的无钙无机聚合物强度很高,850℃煅烧产物的激发制品7d和28d抗压强度分别达45.1MPa和57.2MPa,该项研究为开拓无机聚合物原料来源提供了新思路。
掺合料或外加剂的选择也会显著影响产物性质。Swanepoel和Strydom在粉煤灰中掺入40%高岭土,用硅酸钠和NaOH混合作为激发剂,发现大量高岭土残留抑制了产物的强度发展,60°C条件下获得的无机聚合物28d抗压强度仅为7.5MPa。Luna Galiano最近对比研究了粉煤灰中掺矿渣和偏高岭土作为复合原料,发现掺矿渣的无机聚合物经加速碳化后抗压强度显著提高,固化重金属离子的能力更强。胡明玉等[27]使用沸石和膨润土作为矿物掺合料,结果表明掺量为10~15%时,用NaOH溶液和生石灰粉作为复合激发剂,可合成28d抗压、抗折强度分别大于26MPa、8MPa的粉煤灰基无机聚合物材料,沸石作掺合料有利于提高粉煤灰无机聚合物材料的耐硫酸盐腐蚀性。
关键词:地质聚合物;偏高岭土;粉煤灰;工作性能;凝结时间
Abstract
Geopolymer is a new gelledmaterial which attracted lots of attentions, both at home and abroad in recent years, for its excellent properties.In this thesis,geopolymer has been synthesizedfrom raw materials what are metakaoliniteand fly ashunder activation of NaOH solution andsodium silicate solution.We discuss that how fineness of the metakaolinete, content of fly ash and modulus of sodium silicate affect themechanical propertiesof Flyash-Metakaolinite based geopolymer by using orthogonal experimental design.Meanwhile,theworking performance and setting time of geoploymer are studied.Research shows: (1)Flyash-Metakaolinite based geopolymer has been synthesized at room temperature from metakaolinite under activation of NaOH solution and sodium silicate solution.We get metakaolinite with high activity from kaolinite which has been calcined at 850℃,and holds 2 hours.(2)Metakaolinite-based geoploymer has good performance in the development of the early strength.The reaction process is regulated by mixing the flyash and hence the workability is improved.The content of flyash in the total raw materials increased,the flowability of the slurry of Flyash-Metakaolinite based geopolymer is getiing better.(3)We know thatfineness of the metakaolinete, content of fly ash and modulusof sodium silicateare threinfluencing factors. The best formulaisthe finenest metakaolinite,flyash accounted for 25% of the total raw materials and modulus of modified water glass was 1.3.(4)When the raw materials with the same content of flyash getted activated by sodium silicate with different modulus,the setting time getting longer along with the increase of the modulusof thesodium silicate.