数值分析的matlab实现
数值分析上机作业(MATLAB)

将系数矩阵 A 分解为:A=L+U+D
Ax=b
⇔ (D + L +U)x = b ⇔ Dx = −(L + U )x + b ⇔ x = −D −1(L + U )x + D −1b x(k +1) = −D −1 (L + U ) x(k ) + D −1b
输入 A,b 和初始向量 x
迭代矩阵 BJ , BG
否
ρ(B) < 1?
按雅各比方法进行迭代
否
|| x (k+1) − x(k) ||< ε ?
按高斯-塞德尔法进行迭代
否
|| x(k+1) − x (k ) ||< ε ?
输出迭代结果
图 1 雅各布和高斯-赛德尔算法程序流程图
1.2 问题求解
按图 1 所示的程序流程,用 MATLAB 编写程序代码,具体见附录 1。解上述三个问题 如下
16
-0.72723528355328
0.80813484897616
0.25249261987171
17
-0.72729617968010
0.80805513082418
0.25253982509100
18
-0.72726173942623
0.80809395746552
0.25251408253388
0.80756312717373
8
-0.72715363032573
0.80789064377799
9
-0.72718652854079
数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法1、调用函数--f.Mfunction y=f(x)%------------------------------------------------------------函数1 y=sqrt(4-sin(x)*sin(x));%------------------------------------------------------------函数2 %y=sin(x)/x;%if x==0% y=0;%end%------------------------------------------------------------函数3 %y=exp(x)/(4+x*x);%------------------------------------------------------------函数4 %y=(log(1+x))/(1+x*x);2、复合梯形公式--tixing.M%复合梯形公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;T=0;for k=1:n;T=0.5*h*(f(x(k))+f(x(k+1)))+T;endT=vpa(T,8)3、复合Simpson公式--simpson.M%复合Simpson公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;S=0;for k=1:n;xx=(x(k)+x(k+1))/2;S=(1/6)*h*(f(x(k))+4*f(xx)+f(x(k+1)))+S;endS=vpa(S,8)4、Romberg算法--romberg.M%Romberg算法clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');num=0:n;R=[num'];h=b-a;T=h*(f(a)+f(b))/2;t(1)=T;for i=2:n+1;u=h/2;H=0;x=a+u;while x<b;H=H+f(x);x=x+h;endt(i)=(T+h*H)/2;T=t(i);h=u;endR=[R,t'];for i=2:n+1for j=n+1:-1:1if j>=it(j)=(4^(i-1)*t(j)-t(j-1))/(4^(i-1)-1);elset(j)=0;endendR=[R,t'];endR=vpa(R,8)R(n,n)5、变步长算法(以复化梯形公式为例)--tixing2.M%复合梯形公式,确定最佳步长format longclear alla=input('请输入积分下限:');b=input('请输入积分上限:');eps=input('请输入误差:');k=1;T1=(b-a)*(f(a)+f(b))/2;T2=(T1+(b-a)*(f((a+b)/2)))/2; while abs((T1-T2)/3)>=epsM=0;n=2^k;h=(b-a)/n;T1=T2;x=a:h:b;for i=1:n;xx=(x(i)+x(i+1))/2;M=M+f(xx);endT2=(T1+h*M)/2;k=k+1;endT=vpa(T2,8)n=2^k。
数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。
实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。
一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。
MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。
二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。
三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。
3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。
2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。
3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。
五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。
数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。
本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。
一、误差分析在数值计算中,误差是无法避免的。
误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。
在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。
通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。
二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。
在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。
通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。
三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。
在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。
通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。
四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。
在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。
在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
Matlab与数值分析实验

>> sum
法 2: >>a=1:100; >>sum=a*a’
法 3: >>n=1;
>>sum=0;
>> while n<=100
sum=sum+n*n;
n=n+1;
end
-6-
>> sum * 选择语句
if expression() statements;
[else statements;]
end 例:编写函数文件 demo3 实现 sgn 函数功能
例 2:编写命令文件 demo1 完成以下操作
-4-
建立数组 a=[1,2,3,...,20],b=[1,3,5,...,39],并求 a,b 内积 操作 1) 主窗口点击新建按钮 2) 在弹出的文本编辑窗口添加 a=1:20 b=1:2:39 sum=a*b'
3) 单击保存按钮 将文件命名为 demo1 保存在例 1 新建文件夹中
4) 在 Command Window 中输入 demo1 并回车 例 3:编写函数文件 demo2,返回输入变量的内积
操作:1) 新建 M 文件,编辑如下: function sum=demo2(a,b) sum=a*b';
2) 保存文件在查询目录下,注意不要修改默认名 3) 在 Command Window 中输入
操作:1)新建 M 文件,并编辑如下 function val=demo3(x) if x>0 val=1; elseif x<0 val=-1; else val=0; end 2) 将文件保存在查询目录内 3) >>demo3(0) >>demo3(90) >>demo3(-12)
(完整版)MATLAB数值分析实例

2016-2017 第一学期数值分析上机实验报告姓名: xxx学号: 20162…….学院:土木工程学院导师:………..联系电话:…………..指导老师:………..目录第一题 (1)1.1题目要求 (1)1.2程序编写 (1)1.3计算结果及分析 (2)第二题 (4)2.1题目要求 (4)2.2程序编写 (4)2.3计算结果及分析 (6)第三题 (7)3.1题目要求 (7)3.2程序编写 (7)3.3计算结果及分析 (8)第四题 (9)4.1题目要求 (9)4.2程序编写 (9)4.3计算结果及分析 (10)第五题 (11)5.1题目要求 (11)5.2程序编写 (12)5.3计算结果及分析 (13)第六题 (17)6.1题目要求 (17)6.2程序编写 (17)6.3计算结果及分析 (18)6.4程序改进 (18)第一题选做的是第(1)小问。
1.1题目要求编出不动点迭代法求根的程序;把??3+4??2-10=0写成至少四种??=g(??)的形式,取初值??0=1.5,进行不动点迭代求根,并比较收敛性及收敛速度。
1.2程序编写1.3计算结果及分析①第一种迭代公式:??=??3+4??2+??-10;matlab计算结果如下:(以下为命令行窗口的内容)2;matlab计算结果如下:②第二种迭代公式:??=√(10-??3)/4(以下为命令窗口内容)2;matlab计算结果如下:③第三种迭代公式:??=√10(??+4)?(以下为命令窗口内容)④第四种迭代公式:??=10(??2+4??)?;matlab计算结果如下:(以下为命令窗口内容)上述4种迭代公式,1、4两种由于在x真实值附近|g`(x)|>1,不满足迭代局部收敛条件,所以迭代序列不收敛。
对于2、3两种式子,由于在x真实值附近|g`(x)|<=L<1,满足迭代局部收敛条件,所以迭代序列收敛。
对于2、3两迭代公式,由于L3<L2,所以第3个迭代公式比第2个迭代公式收敛更快。
matlab_examples(数值分析)
Experiments in Finding Root of Equation
计算方法课程组
华中科技大学数学与统计学院
1
方程求根 —二分法
一、实验目的
1) 熟悉Matlab编程 ; 2) 应用 Matlab实现二分法,牛顿迭代法等求根算法 ;
二、二分法
基本思想: 二分法通过不断搜索有根区间,最终收缩为一 点。算法简单、容易且保证算法收敛。
答案: x=1.3247
f(x)=-7.6580e-005
5
作
业
参看范例代码(.m文件) 独立完成如下编程内容:
6
2
方程求根 —二分法
function [xvect,xdif,fx,nit]=bisect(fun,a,b,toll,nmax)
% % % % % % % % % % 求根算法:二分法 [xvect,xdif,fx,nit]=bisect(fun,a,b,toll,nmax) fun 求根函数名 [a,b] 最初的有根区间的范围 toll 精度,默认为10e-5 nmax 最大迭代次数 xvect 返回所得根 xdif 返回缩小的根区间的长度 fx 返回函数值 nit 返回满足要求的迭代次数
bisect _main.m
x=1:0.01:2;
y=x.^3-x-1; plot(xห้องสมุดไป่ตู้y);hold on;
运行结果:
plot(x,zeros(size(x)),'r-.');
fun=inline('x^3-x-1');
[xvect,xdif,fx,nit]=bisect(fun,1,2,0.005,100);
disp((['
数值分析matlab实验报告
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
数值分析在生活中的应用举例及Matlab实现
一、最小二乘法,用MATLAB实现1. 数值实例下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。
下面用MATLAB编程对上述数据进行最小二乘拟合。
下面用MATLAB编程对上述数据进行最小二乘拟合2、程序代码x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1=polyval(a1,x)b2=polyval(a2,x)b3=polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%3、数值结果不同次数多项式拟合误差平方和为:r1=67.6659r2=20.1060r3=3.7952r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。
4、拟合曲线如下图二、 线性方程组的求解( 高斯-塞德尔迭代算法 )1、实例: 求解线性方程组(见书P233页)⎪⎪⎩⎪⎪⎨⎧=++=-+=+-3612363311420238321321321x x x x x x x x x 记A x=b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=363320,,12361114238321b x A x x x任取初始值()()Tx0000=,进行迭代。
数值分析matlab数值试验
实验一:误差传播及算法稳定性实验1.21、试验程序:function charpt1_2% 误差传播及算法稳定性实验clc;clear all;promps={'请选择递推关系式,若选E1=1/e,En=1-nEn-1,请输入1,若选EN=0,En-1=(1-En)/n,请输入2:'};I=1;while Iresult=inputdlg(promps,'charpt1_2',1,{'1'});Nb=str2num(char(result));if ((Nb~=1)|(Nb~=2))I=0;endend%%%%%%%%%%%%%%%%%I=1;while Iresult=inputdlg('请输入递推步数 n>=1:','charpt1_2',1,{'10'});steps=str2num(char(result));if (steps>0)&(steps==fix(steps)) %% 如果steps大于0且为整数I=0;endend%%%%%%%%%%%%%%%%%result=inputdlg('请输入计算中所采用的有效数字位数n:','charpt1_2',1,{'5'});Sd=str2num(char(result));format long %% 设置显示精度result=zeros(1,steps); %% 存储计算结果err=result; %% 存储计算的绝对误差值func=result; %% 存储用quadl计算的近似值%%%%%%%%%%%%%%%%%%% 用quadl计算积分近似值for n=1:stepsfun=@(x) x.^n.*exp(x-1);func(n)= quadl(fun,0,1);end%%%%%%%%%%%%%%%%%%% 用自定义算法计算if(Nb==1)digits(Sd);result(1)=subs(vpa(1/exp(1)));for n=2:stepsresult(n)=subs(vpa(1-n*result(n-1)));enderr=abs(result-func);elseif(Nb==2)digits(Sd);result(steps)=0;for n=(steps-1):-1:1result(n)=subs(vpa((1-result(n+1))/(n+1)));enderr=abs(result-func);end%%%%%%%%%%%%%%%%%%% 输出结果数值及图像clf;disp('库函数计算值:');disp(sprintf('%e ',func));disp('递推值:');disp(sprintf('%e ',result));disp('误差值:');disp(sprintf('%e ',err));if(Nb==1)plot([1:steps],result,'-rs',[1:steps],func,':k*',[1:steps],err,'-.bo' );elseif(Nb==2)plot([steps:-1:1],result,'-rs',[steps:-1:1],func,':k*',[steps:-1:1],e rr,'-.bo');endxlabel('第n步');ylabel('计算值');legend('自定义算法结果','库函数计算结果','误差值');grid on2、试验结果:选择递推关系式1,递推步数为10,有效数字为5位,计算结果如下:库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-0011.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708800e-001 1.456000e-0011.264000e-001 1.152000e-001 7.840000e-0022.944000e-001 -1.944000e+000误差值:5.588280e-007 1.117662e-006 3.352927e-006 1.341222e-0056.705713e-005 4.023702e-004 2.816427e-003 2.253226e-002 2.027877e-001 2.027877e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为5位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708900e-001 1.455300e-001 1.267900e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.117662e-006 3.352927e-006 3.412224e-006 2.942873e-006 1.237016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值选择递推关系式1,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678790e-001 2.642420e-001 2.072740e-001 1.709040e-001 1.454800e-001 1.271200e-001 1.101600e-001 1.187200e-001 -6.848000e-002 1.684800e+000 误差值:4.411720e-007 8.823378e-007 2.647073e-006 1.058778e-0055.294287e-005 3.176298e-004 2.223573e-003 1.778774e-002 1.600923e-001 1.600923e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642410e-001 2.072770e-001 1.708930e-001 1.455360e-001 1.267860e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.176622e-007 3.529274e-007 4.122239e-007 3.057127e-006 1.637016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值3、结果分析:很明显第二种递推式结果要比第一种好,式1在第七步后有明显误差,而式2在第三步后基本与近似解一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章牛顿插值法实现
参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55.
求牛顿插值多项式和差商的MA TLAB 主程序:
function[A,C,L,wcgs,Cw]=newpoly(X,Y)
n=length(X);A=zeros(n,n);A(:,1) =Y';
s=0.0;p=1.0;q=1.0;c1=1.0;
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1));
end
b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1;
end
C=A(n,n);b=poly(X(n));q1=conv(q1,b);
for k=(n-1):-1:1
C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k);
end
L(k,:)=poly2sym(C);Q=poly2sym(q1);
syms M
wcgs=M*Q/c1;Cw=q1/c1;
(1)保存名为newpoly.m 的M 文件
(2)输入MA TLAB 程序
>> X=[242,243,249,250];
>> Y=[13.681,13.526,13.098,13.095];
>> [A,C,L,wcgs,Cw]=newpoly(X,Y)
输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其
)
()()1(ξ+n n f x R 的系数向量Cw 。
A =
13.6810 0 0 0
13.5260 -0.1550 0 0
13.0980 -0.0713 0.0120 0
13.0950 -0.0030 0.0098 -0.0003
C =
1.0e+003 *
-0.0000 0.0002 -0.0551 4.7634
L =
- (23*x^3)/84000 + (2981*x^2)/14000 - (7757472138947345*x)/140737488355328 + 5237382665812919/1099511627776
wcgs =
(M*(x^4 - 984*x^3 + 363071*x^2 - 59535444*x + 3660673500))/24
Cw =
1.0e+008 *
0.0000 -0.0000 0.0002 -0.0248 1.5253
输入MATLAB程序
>> x=244;
>> y=- (23*x^3)/84000 + (2981*x^2)/14000 - (7757472138947345*x)/140737488355328 + 5237382665812919/1099511627776
y =
13.3976
输入MATLAB程序
>> x=[244,245,246,247,248];
>> y=- (23.*x.^3)./84000 + (2981.*x.^2)./14000 - (7757472138947345.*x)./140737488355328 + 5237382665812919./1099511627776
y =
13.3976 13.2943 13.2143 13.1560 13.1178
第4章 高斯-勒让德积分公式实现
用高斯-勒让德积分公式计算dx e I x ⎰--=112221
π,取代数精度为3和5,再根据截断误差公
式写出误差公式,并将计算结果与精确值进行比较。
(1)建立并保存fun.m 文件命名的M 文件函数
function y=fun(x)
y=exp((-x.^2)./2)./(sqrt(2*pi));
(2)建立并保存GaussR1.m 文件命名的M 文件函数
function[GL,Y,RGn]=GaussR1(fun,X,A)
n=length(X);n2=2*n;Y=feval(fun,X);GL=sum(A.*Y);
sun=1;su2n=1;su2n1=1;wome=1;
syms x
for k=1:n
wome=wome*(x-X(k));
end
wome2=wome^2;Fr=int(wome2,x,-1,1);
for k=1:n2
su2n=su2n*k;
end
syms M
RGn=Fr*M/su2n;
(3)输入程序
代数精度为3:
>> X1=[-1/(3^(1/2)),1/(3^(1/2))];A1=[1,1];
>> [GL1,Y1,Rn1]=GaussR1(@fun,X1,A1)
GL1 =
0.6754
Y1 =
0.3377 0.3377
Rn1 =
M/135
代数精度为5:
>> X2=[-(3/5)^(1/2),0,(3/5)^(1/2)];A2=[5/9,8/9,5/9];
>> [GL2,Y1,Rn2]=GaussR1(@fun,X2,A2)
GL2 =
0.6830
Y1 =
0.2955 0.3989 0.2955
Rn2 =
M/15750
截断误差:
>> syms x
>> fi=int(exp((-x.^2)./2)./(sqrt(2*pi)),x,-1,1);
>> Fs=double(fi),wGL1=double(abs(fi-GL1)),wGL2=double(abs(fi-GL2)) Fs =
0.6827
wGL1 =
0.0073
wGL2 =
3.0777e-004。