电力系统电压及无功补偿

合集下载

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案为了保证电力系统的稳定运行和电能质量的提高,无功补偿和电压调整是非常重要的技术手段。

本文将从技术和设备两方面,详细讨论电力系统的无功补偿和电压调整的解决方案。

1.静态无功补偿装置(SVC):SVC是通过控制可变电容器和可变电抗器的容量,实现电力系统的无功调节。

它具有快速响应、精确调节无功功率因数的特点,并且能够提供压力支撑和电压稳定功能。

2.静态同步补偿装置(STATCOM):STATCOM是利用电力电子器件和控制系统,通过直流电压的调节来实现对电力系统无功功率的调节。

它能够实现快速响应和灵活控制的特点,可以有效地提高电力系统的无功调节能力。

3.无功发电机(SVC):无功发电机是利用发电机的励磁系统来控制无功功率的输出,实现电力系统的无功补偿。

它可以根据需要灵活调节无功功率因数,提高电力系统的无功调节能力。

4.并联电容器补偿装置:并联电容器补偿装置是通过并联连接电容器,提供无功功率来补偿电力系统的无功功率缺陷。

它具有成本低、简单可靠的特点,并且能够有效改善电力系统的功率因数。

5.无功补偿滤波器:无功补偿滤波器是利用滤波器来抑制电力系统中的无功电流,实现无功补偿。

它可以有效减少电力系统中的谐波和电磁干扰,提高电力系统的电能质量。

1.电压调整变压器:通过调整变压器的变比来实现电力系统的电压调整。

它可以根据需要提高或降低电压水平,保证电力系统的电压稳定性。

2.电压调整容性器:通过并联连接容性器,提供额外的无功功率,实现电力系统的电压调整。

它可以根据需要灵活调整电压水平,保证电力系统的电压稳定性。

3.电压调整调压器:通过调节调压器的输出电压,实现电力系统的电压调整。

它具有调节范围广、快速响应的特点,并且能够适应不同负荷变化的需求。

4.电力电子设备:电力电子器件和控制系统可以通过改变电力系统中的电流、电压和频率等参数,实现对电力系统的电压调整。

它具有响应快、控制精度高的特点,并且能够适应不同负荷的变化。

无功补偿对电力系统电压暂降的影响与调节

无功补偿对电力系统电压暂降的影响与调节

无功补偿对电力系统电压暂降的影响与调节电力系统是现代社会中不可或缺的重要基础设施之一,而电压暂降是电力系统中常见的问题之一。

无功补偿作为一种调节电力系统的有效手段,对电压暂降具有重要影响。

本文将探讨无功补偿对电力系统电压暂降的影响以及该如何进行调节。

1. 电压暂降的原因在电力系统运行过程中,电压暂降是由多种因素造成的。

其中,最常见的原因是电源故障、线路过载、电力设备故障以及短路等。

这些原因导致电力系统的电压瞬时下降,给电气设备的正常运行带来影响。

2. 无功补偿对电压暂降的影响无功补偿作为电力系统的调节手段,能够有效地影响电压暂降。

它通过调节功率因数和电流相位来改善电力系统的稳定性和可靠性。

2.1 改善电力系统的功率因数无功补偿可以通过增加或减少无功功率来改变电力系统的功率因数。

当电力系统的功率因数过低时,无功补偿可以提供无功功率,从而提高功率因数,减小电压暂降的概率。

2.2 调节电力系统的电流相位无功补偿可以通过调节电力系统中的电流相位来影响电压暂降。

当电力系统的电流相位失调时,无功补偿可以通过提供补偿电流来调节相位,减小电压暂降的程度。

3. 无功补偿的调节方式无功补偿可以通过多种方式进行调节,包括静态无功补偿和动态无功补偿。

3.1 静态无功补偿静态无功补偿是指通过调节并控制无功补偿设备(如电容器和电抗器)的投入或退出,来实现电力系统功率因数的调节。

静态无功补偿具有响应快、控制精度高等优点,广泛应用于电力系统中。

3.2 动态无功补偿动态无功补偿是指通过控制可变电抗器、电容器等设备的电抗或功率因数,实现对电力系统的调节。

动态无功补偿能够更加灵活地响应电力系统的变化,对电压暂降的调节效果更好。

然而,动态无功补偿设备成本较高,需要进行复杂的控制。

4. 无功补偿的优化调度为了更好地调节电压暂降,无功补偿的优化调度变得尤为重要。

优化调度可以通过综合考虑电力系统的负荷需求、线路容量以及无功补偿设备的工作状态等因素,来实现对电压暂降的有效控制。

无功补偿与电力系统过电压的关系

无功补偿与电力系统过电压的关系

无功补偿与电力系统过电压的关系无功补偿是电力系统中一个重要的概念,它与电力系统中的过电压问题密切相关。

本文将介绍无功补偿的概念和作用,并探讨无功补偿与电力系统过电压之间的关系。

一、无功补偿的概念和作用无功补偿是指在电力系统中使用电容器或电感器等装置来产生无功电流,从而改善功率因数的一种措施。

在电力系统中,无功电流与有功电流同时存在,其作用是维持电力系统的稳定运行,提高电能利用率和线路传输能力。

无功补偿的主要作用有三个方面:1. 改善功率因数:功率因数是指有功功率与视在功率的比值,是衡量电力系统电能利用率和电能质量的一个重要指标。

功率因数低会导致电线电压降低、电力系统线路传输能力减小,甚至引发过电压问题。

通过无功补偿,可以减小无功功率,提高功率因数,从而改善电能利用效率。

2. 校正电压:电力系统中,电压的稳定性对电器设备的正常运行至关重要。

无功补偿装置可以通过调节无功功率的大小来维持电力系统的电压稳定,防止电压的波动或过低引发电器设备的故障。

3. 降低线路损耗:电力系统中,存在着导线的电阻和电抗,导线上的电流流过导线时会产生一定的损耗。

无功补偿可以减小导线上流动的无功电流,从而降低导线损耗,提高电力系统的传输能力。

二、尽管无功补偿在电力系统中具有重要作用,但过量的无功补偿也会带来过电压问题。

在电力系统中,无功补偿装置会产生电容电流或电感电流,这些电流会与设备本身的电阻电流叠加,导致电流变大,从而引起过电压现象。

过电压会对电力设备造成损坏,甚至导致系统的短路事故。

因此,在实际应用中,无功补偿装置需要根据电力系统的需求进行合理配置,以避免过电压问题。

合理的无功补偿装置能够确保电力系统的稳定运行,提高电能利用率,同时避免过电压风险。

三、无功补偿与过电压问题的解决方案为了解决无功补偿引起的过电压问题,可以采取以下几种措施:1. 使用适当的无功补偿设备:在设计和选择无功补偿装置时,应该根据电力系统的实际需求进行合理配置,避免因过量的无功补偿产生过电压。

关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。

如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。

同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。

因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。

同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。

无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。

这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。

二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。

电压与无功功率也和频率与有功功率一样,是一对对立的统一体。

当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。

电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。

当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。

电力系统电压控制与无功补偿设备考核试卷

电力系统电压控制与无功补偿设备考核试卷
A.负荷有功功率增加
B.负荷无功功率增加
C.发电机有功功率减少
D.发电机无功功率减少
13.在电力系统中,以下哪种补偿方式适用于负荷变化较大的场合?()
A.固定电容器补偿
B.可调电容器补偿
C. SVC补偿
D. STATCOM补偿
14.以下哪个设备可以实现电力系统的动态无功补偿?()
A.电容器
B.电感器
6. STATCOM(静止同步补偿器)是一种__________无功补偿装置。
7.提高电力系统的电压质量可以通过__________和__________来实现。
8.在电力系统中,有功功率的调节通常通过__________和__________来进行。
9.电压暂降是指电压在短时间内下降到__________以下的现象。
14. D
15. B
16. A
17. C
18. D
19. D
20. D
二、多选题
1. ABC
2. ABC
3. ABCD
4. ABCD
5. AC
6. CD
7. ABC
8. ABCD
9. ABCD
10. ABCD
11. ABCD
12. ABC
13. ABCD
14. ABCD
15. ABCD
16. A
17. ABC
A.电容器
B.电感器
C.变压器
D.断路器
2.以下哪种现象表明电力系统出现了无功不足?()
A.系统电压升高
B.系统电压降低
C.负荷电流增大
D.发电机转速提高
3.在电力系统中,为什么要进行无功补偿?()
A.提高有功功率的传输效率

无功补偿对电力系统电压平衡的提升

无功补偿对电力系统电压平衡的提升

无功补偿对电力系统电压平衡的提升电力系统中,电压的稳定是保障电力供应质量和正常运行的重要因素之一。

而无功补偿技术则是一种有效的手段,可以提升电力系统的电压平衡。

本文将从无功补偿的作用机制、无功补偿对电力系统电压稳定性的影响以及无功补偿的实际应用等方面进行探讨。

一、无功补偿的作用机制无功补偿是指通过补偿电力系统中的无功功率,以提升电网的功率因数和电压质量。

在电力系统中,无功功率由电感负载和电容负载所产生,无功功率的存在会导致电压波动、电压不平衡等问题。

而无功补偿技术则是通过串联和并联无功器件的调节,来产生等大而相反的无功功率,从而实现电力系统中的无功补偿。

二、无功补偿对电力系统电压稳定性的影响1. 提高电压质量无功补偿技术在电力系统中能够减少或消除无功功率的影响,从而提高电压质量。

通过在电力系统中引入无功补偿设备,可以有效地控制电网的无功功率,并减少无功功率对电压造成的波动。

因此,无功补偿对电力系统的电压稳定性有着显著的提升作用。

2. 减少电压偏差电力系统中,电压偏差是指电压在正常工作条件下出现的异常波动情况。

电压偏差的存在会影响电力设备的正常运行和电能质量的保证。

而无功补偿技术可以通过提供适当的无功功率补偿,来减少电压偏差的发生,从而提升电力系统的电压平衡能力。

三、无功补偿的实际应用1. 配电网中的无功补偿在配电网中,无功补偿技术可以通过安装无功补偿装置,来平衡配电网中的电压,改善电压质量。

例如,通过并联无功补偿装置来提高电压的稳定性,减少电压波动,进而提高供电质量。

2. 高压输电线路的无功补偿在高压输电线路中,无功补偿技术可以通过串联无功补偿装置,来调整电压平衡和稳态电压的稳定性。

通过无功补偿装置的控制,实现对电力系统中无功功率的有效调节,从而提升电力系统的电压平衡能力。

3. 无功补偿在电力系统规划中的应用在电力系统规划中,无功补偿技术也扮演着重要的角色。

通过合理规划和设计无功补偿系统,可以降低系统的无功损耗,提升电力系统的稳定性和运行效率。

无功补偿与电力系统电压不平衡的关系

无功补偿与电力系统电压不平衡的关系

无功补偿与电力系统电压不平衡的关系电力系统是现代社会不可或缺的重要基础设施,而其中的电力质量问题一直备受关注。

电力系统中的电压不平衡是一种常见的问题,它会导致电力系统的稳定性和运行效率下降。

为解决这一问题,无功补偿技术成为了改善电力系统电压不平衡的关键手段之一。

本文将详细介绍无功补偿与电力系统电压不平衡之间的关系,并探讨无功补偿的应用前景。

1. 电力系统电压不平衡概述电力系统中,三相电压由于各种因素的影响可能存在不平衡现象。

电压不平衡主要包括两个方面:一是电压幅值不平衡,即三相电压的幅值不相等;二是电压相位不平衡,即三相电压之间的相位差不为120度。

这种不平衡会导致电力负荷分配不均匀,给电力设备的安全运行带来隐患。

2. 无功补偿的概念和原理无功补偿是一种通过在电力系统中补偿或调整无功功率的技术手段,用以解决电力系统中无功功率过大或过小的问题。

无功补偿主要通过无功补偿装置(如静态补偿器、动态补偿器等)来实现。

无功补偿系统会根据电力系统的需求,自动控制无功补偿装置的投入或退出,以维持电力系统的无功功率在合理范围内,从而提高电力系统的稳定性和可靠性。

3. 无功补偿对电力系统电压不平衡的影响(1)对电压幅值不平衡的影响:无功补偿可以减小电力系统中的无功功率,从而减小了电流的不平衡程度。

当无功补偿及时投入时,它可以吸收或注入适当的无功功率,使得电压幅值不平衡得到一定程度的补偿。

这样可以降低系统电压的波动,提高电力系统的电压稳定性。

(2)对电压相位不平衡的影响:无功补偿可以通过对系统中的不同支路或节点进行补偿,调整电压相位差,使得三相电压之间的相位差逐渐接近120度,以达到电压相位不平衡的补偿效果。

4. 无功补偿的应用前景无功补偿技术在电力系统中的应用前景广阔。

首先,无功补偿技术可以提高电力系统的电压质量,降低电力系统的电压不平衡程度,从而减少电力设备的故障率,并延长设备的使用寿命。

其次,无功补偿技术可以提高电力系统的运行效率,减少电力输送中的线损,并提高电力系统的输电容量。

无功补偿对电力系统电压的影响与调节

无功补偿对电力系统电压的影响与调节

无功补偿对电力系统电压的影响与调节无功补偿在电力系统中扮演着重要的角色。

它对电力系统的电压稳定性和功率因数的调节起着关键作用。

本文将探讨无功补偿对电力系统电压的影响以及相应的调节方法。

一、无功补偿对电力系统电压的影响无功补偿是用于对抗电力系统中无功负荷而引起的电压波动现象的一种方法。

随着无功负荷的增加,电网中的无功功率需求也会增加。

由于无功功率的存在,电力系统的电压会出现波动和不稳定的现象。

1.1 电压降低与电流上升无功功率引起的电压降低现象会导致电力系统中的电流上升。

当无功功率过多时,电网电压会下降,从而影响到系统中各个设备的正常运行。

如果不及时采取措施进行补偿,电力系统可能会发生电压崩溃等严重故障。

1.2 电压波动与电气设备损坏无功功率的不稳定会导致电网电压的波动。

电压的快速升降会对电气设备产生冲击,从而损坏设备,缩短其使用寿命。

特别是对于对电压要求较高的设备,如半导体器件等,电压波动可能会造成不可逆转的损坏。

1.3 电压不平衡与谐波扩散无功功率引起的电压不平衡会导致电力系统中各相电流的不平衡。

这种不平衡会产生谐波电流,扩散到电网中的其他设备,增加了电力系统的谐波污染问题。

谐波电流会引起额外的能量损耗,导致电网效率降低。

二、无功补偿的调节方法为了消除或减轻无功功率对电网电压的影响,需要采取相应的无功补偿措施。

以下是几种常见的无功补偿调节方法:2.1 静态无功补偿装置静态无功补偿装置是一种通过改变电容和电抗的连接方式来实现无功功率的补偿调节。

其中,串联电容可以用来补偿无功功率,提高电网电压;并联电抗则用于吸收无功功率,降低电网电压。

2.2 动态无功补偿装置动态无功补偿装置是通过控制电容和电抗的导纳值来实现无功功率的补偿调节。

该装置可以实时监测电力系统的电压和电流,通过对电容和电抗进行调节,及时平衡电力系统的无功功率,以保持电压的稳定。

2.3 SVC(静止无功补偿器)SVC是一种在高压电力系统中广泛应用的无功补偿装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统电压及无功补偿电力系统电压与无功补偿交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。

另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。

2、无功功率按电路的性质有正有负,Q为正值(感性)时表示吸收无功功率,Q为负值(容性)时表示发出无功功率,在感性电路中,电流滞后于电压,f >0,Q为正值。

而在容性电路中,电流超前于电压,f < 0,Q为负值。

这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。

3、输电线路电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。

一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。

所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。

因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。

由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻;(2)改变元件的电抗,都能起到改变电压损耗的作用。

可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。

适宜负荷不断增加的农村地区采用。

而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。

在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。

采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。

减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180串联电容器补偿,现在主要应用于超高压、大容量的输电线路上4、除了用改变电力网参数来减少电压损耗以外,改变电压损耗的另一个重要方面是改变电网元件中传输的功率。

即改变表达式中的P和Q的大小,在满足负荷有功功率的前提下,要改变供电线路、变压器传输的有功功率,是比较困难的,常常是不可能的。

因此,改变线路、变压器传输功率都是改变其无功功率,使表达式中的Q减少。

由此我们引出无功功率的几个非常重要的关键的概念。

5、在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。

电压与无功功率也和频率与有功功率一样,是一对对立的统一体。

当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。

(高峰负荷时段无功需求多,也就是感性无功需求大,也就是需要吸收很多无功,这时一般将变电所低压侧的电容器投入,确保电压不至于降低太多;当谷期负荷时无功需求不大,也就是感性无功需求下降,也就是不需要吸收太多的无功,这是一般将变电所低压侧的电容器退出,以上控制在变电所中一般是由系统自动完成,而不需要人工干预)6、有些地方想用调节变压器分接头的办法来解决本地区电压低的问题。

开始,这种办法也有一些效果,某些供电点电压升高了,但这是以降低别处电压为代价的,因为总的无功电源不足,局部地区电压升高无功负荷增大,必然使别处无功功率更少、电压更低。

各处普遍采用调节变压器分接头的结果,不仅没能提高负荷的供电电压,而是使得无功损耗加大,整个系统低电压问题更加严重。

在这种情况下,首要的问题应该是增加无功功率补偿设备。

7、各种无功补偿设备及补偿方式1 同步调相机2 并联电容器3 并联电抗器并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。

4 静止补偿器(SVC-Static Var Compensator)静止补偿器是近年来发展起来的一种动态无功功率补偿装置,电容器、电抗器、调相机是对电力系统静态无功电力的补偿,而静止补偿器主要是对电力系统中的动态冲击负荷的补偿。

根据负荷变动情况,静止补偿可以迅速改变所输出无功功率的性质或保持母线电压恒定。

静止补偿器实际上是将可控电抗器与电容器并联使用。

电容器可发出无功功率,可控电抗器可吸收无功功率。

其控制系统由可控的电子器件来实现,响应速度远远高于调相机,一般只有20ms。

它主要用于冲击负荷如大型电炉炼钢、大型轧机以及大型整流设备等。

另外,在电力系统的电压枢纽点、支撑点也可以用静止补偿器来提高系统的稳定性,同时,静止补偿器还可以抑制谐波对电力系统的危害。

在我国湖南、湖北、广东、河南等多个500kV枢纽变电站都采用了这种装置。

例如我国某大型炼钢厂使用电弧炉炼钢,严重影响供电质量,电弧炉运行时使电压下降15%~20%,谐波的干扰使众多用户的电视不能收看,电器设备不能正常使用,群众反应强烈。

在装了静止补偿装置后,供电质量显著改善,电压波动很小,完全在允许范围内,谐波干扰明显降低。

在周围广大用户普遍受益的同时,该厂也降低了线损,减少了电费支出,提高了产品的产量和质量,获得了良好的经济效益。

静止补偿器的最大特点是调节快速。

为了充分发挥它在需要无功功率时的快速调节能力,在正常情况下应经常运行在接近零功率的状态。

但因正常负荷变动引起的电压变化过程缓慢,用一般价格比较便宜的电容器与电抗器等投切配合,完全可以满足要求,没有必要选用这种设备。

8、并联电容器组的接线方式电容器的接线通常分为三角形和星形两种方式。

此外,还有双三角形和双星形之分。

三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。

因此这种接线已经很少在10kV系统中使用,只是在380V 配电系统中有少量使用。

在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。

星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。

当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。

星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。

星形接线的最大优点是可以选择多种保护方式。

少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。

电容器一次侧接有串联电抗器和并联放电线圈。

放电线圈的作用是将断开电源后的电容器上的电荷迅速、可靠地释放掉。

由于电容器组需要经常进行投入、切除操作,其间隔可能很短,电容器组断开电源后,其电极间储存有大量电荷,不能自行很快消失,在短时间内,其极间有很高的直流电压,待再次合闸送电时,造成电压叠加,将会产生很高的过电压,危及电容器和系统的安全运行。

因此,必须安装放电线圈,将它和电容器并联,形成感容并联谐振电路,使电能在谐振中消耗掉。

放电线圈应能在电容器断开电源5s内将电容器端电压下降到50V。

对串联电抗器的作用,我们做一下重点介绍:电容器配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,串联电抗器限制合闸涌流的作用非常浅显,不言而喻。

但是限制谐波的原理我们需要解释一下:在实际运行中,3次、5次、7次谐波分量往往偏高,是电容器滤波回路的主要目标。

所谓3次、5次、7次……谐波,指的是谐波的频率相当于工频的3倍、5倍或7倍。

当串联电抗器的n次谐波感抗与电容器的n次谐波容抗相等时,即nwL = 1/(nwC)时构成串联谐振条件,则母线的n次谐波电压将被抑制得干干净净。

对于3次谐波:3XL = (1/3)XC,则XL = (1/9)XC = 0.11XC;对于5次谐波:5XL = (1/5)XC,则XL = (1/25)XC = 0.04XC。

实际运行中,各变电站普遍采有在回路中串联12%电抗构成3次谐波滤波器,12%电抗率的含义是指串联电抗器的感抗值为该回路电容器容抗值的12%,而用串联6%电抗构成5次谐波滤波器。

不正好采用11%和4%,而是稍大一点,目的是使电容器回路阻抗呈感性,避免完全谐振时电容器过电流。

9 并联电容器的保护方式9.1 保护熔丝现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。

此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。

9.2 过电流保护过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。

电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。

为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。

9.3 不平衡电压保护电容器发生故障后,将引起电容器组三相电容不平衡。

电容器组的各种主保护方式都是从这个基本点出发来确定的。

根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。

这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。

这些保护方式各有优缺点,我们可以根据需要选择。

单星形接线的电容器组目前国内广泛采用开口三角电压保护。

对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。

9.4 不平衡电流保护这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。

常见的不平衡电流保护的方式有以下两种:。

相关文档
最新文档