酶在食品风味方面的应用

合集下载

酶在面粉里的应用

酶在面粉里的应用

酶在面粉里的应用酶在面粉中的应用一、引言面粉是制作面食、糕点等食品的主要原料之一,而酶作为一种生物催化剂,可以在食品加工中发挥重要作用。

本文将介绍酶在面粉中的应用,包括增加面团发酵性能、改善面粉品质、提高面包口感等方面。

二、酶的种类与作用1. 淀粉酶淀粉酶主要作用于面粉中的淀粉分子,将其分解为较小的糖分子。

这样可以增加面团中的可溶性糖分含量,提供微生物发酵所需的营养物质,促进面团的发酵过程,使面包更松软、口感更好。

2. 蛋白酶蛋白酶可以分解面粉中的蛋白质,降低面粉的黏性,使面团更易于加工和形成。

此外,蛋白酶还能改善面粉的品质,提高面包的卤面性和延展性。

3. 脂肪酶脂肪酶可以分解面粉中的脂肪,使其更易于被人体吸收。

同时,脂肪酶还能改善面包的风味和口感,使其更加香脆可口。

三、酶在面粉中的应用1. 面团发酵性能的提高在面粉中加入适量的淀粉酶,可以增加可溶性糖分的含量,为面团中的酵母菌提供更多的营养物质,促进其发酵过程。

这样可以使面团发酵得更加充分,提高面包的松软度和口感。

2. 面粉品质的改善在面粉中加入适量的蛋白酶,可以分解面粉中的蛋白质,降低其黏性,使面团更易于加工和形成。

同时,蛋白酶还能改善面粉的品质,提高面包的卤面性和延展性。

3. 面包口感的提升在面粉中加入适量的脂肪酶,可以分解面粉中的脂肪,使其更易于被人体吸收。

同时,脂肪酶还能改善面包的风味和口感,使其更加香脆可口。

四、酶在面粉中的应用实例1. 面团发酵性能的提高实例某面粉生产企业在生产过程中加入了一定量的淀粉酶,经过实验发现,与未加酶的面粉相比,加酶的面粉能够在相同的时间内实现更好的发酵效果。

制作出的面包更加松软,口感更好,受到了消费者的好评。

2. 面粉品质的改善实例某糕点店在制作蛋糕时,使用了添加了蛋白酶的面粉。

经过实验发现,加酶的面粉在搅拌过程中更易于形成均匀的面糊,蛋糕的质地更加细腻,口感更好。

3. 面包口感的提升实例某面包厂家在制作法式面包时,加入了适量的脂肪酶。

食品加工中的酶解技术

食品加工中的酶解技术

食品加工中的酶解技术酶解是指将高分子物质通过酶的作用分解成低分子物质的过程。

在食品加工领域中,酶解技术被广泛应用于熟化、增味、提香、保鲜、改善营养成分等方面。

下面将对食品加工中的酶解技术进行探讨。

一、酶解在肉制品加工中的应用1. 熟化熟化是肉制品加工过程中的一种重要的酶解技术。

在熟化过程中,肉中的胶原蛋白经过酶的作用被分解成胶原多肽,使得肉的质地变得更加柔软,口感更佳。

同时,酶解还可以使肉中的水分得到释放,促进肉质的收缩,改善肉的口感。

2. 提香增味添加酶解剂可以使肉制品中蛋白质和酶产生相互作用,形成一系列新的化合物,从而增强肉的风味和口感。

例如,在火腿的制作过程中,添加的酶解剂可以使得肉中的天然香味物质被充分释放出来,从而使得火腿的风味更加浓郁。

3. 保鲜美国研究人员发现,在肉制品中添加酶解剂能够缩短食品的保质期,将其有效期延长3到5天。

这是因为酶能够促进肉中细菌和酵母的生长,使肉变坏的速度加快,从而排出已经变质的肉。

同时,酶也可以使肉中的氨和酸释放出来,减缓微生物的生长速度,降低肉变质的风险。

二、酶解在乳制品加工中的应用乳制品中通常含有胆固醇、蛋白类、脂肪、糖类等成分,可以通过酶解技术提高营养价值和口感。

1. 乳清蛋白酶解乳清蛋白在人体内易被吸收利用,而酶解后的乳清蛋白更容易消化吸收,因此在许多体育营养饮料中广泛应用。

同时,酸奶等发酵乳制品中也添加了具有酸性的拉丝提,酵母酶等酶解剂,以加强其营养成分的吸收利用。

2. 乳糖酶解乳糖是乳制品中的主要糖类成分,但是由于人体缺乏乳糖酶的作用,因此一部分人群无法消化乳糖,容易引起腹泻等不适症状。

添加乳糖酶可以使这一部分人群消化乳糖,更好地享用乳制品中的营养成分。

三、酶解在面制品加工中的应用面制品中含有大量的淀粉类成分,而酶解技术可以使淀粉类分子分解为低分子糖,可以使得面条口感更佳。

1. 酵母发酵酵母是一种具有酶解作用的微生物,可以将淀粉类分子分解为低分子糖,使得面团更加松软、口感更佳。

《酶在食品加工中的应用》 讲义

《酶在食品加工中的应用》 讲义

《酶在食品加工中的应用》讲义一、引言食品加工是一个将原材料转化为美味、安全且易于保存的食品的过程。

在这个过程中,酶发挥着至关重要的作用。

酶作为生物催化剂,能够加速化学反应的进行,同时具有高效性、特异性和温和性等特点。

接下来,让我们深入了解酶在食品加工中的广泛应用。

二、酶在食品加工中的具体应用1、蛋白酶蛋白酶在食品加工中的应用非常广泛。

在肉类加工中,蛋白酶可以使肉质嫩化,改善口感。

例如,木瓜蛋白酶常用于牛肉的嫩化处理,它能够分解肌肉中的胶原蛋白和弹性蛋白,使肉质变得更加鲜嫩多汁。

在酿造业中,蛋白酶用于水解蛋白质,产生氨基酸,为微生物的生长和代谢提供营养,从而促进发酵过程。

此外,在乳制品加工中,蛋白酶也可以用于水解乳蛋白,改善乳制品的风味和消化性。

2、淀粉酶淀粉酶主要作用于淀粉的水解。

在制糖工业中,淀粉酶可以将淀粉转化为葡萄糖、麦芽糖等糖类。

例如,α淀粉酶能够将淀粉分子中的α-1,4 糖苷键随机切断,产生短链糊精和少量麦芽糖;而糖化酶则可以进一步将糊精水解为葡萄糖。

在烘焙行业,淀粉酶能够改善面团的加工性能和烘焙特性。

它可以降低面团的粘度,增加面团的延展性和弹性,使烘焙出的面包更加松软、口感更好。

3、果胶酶果胶酶在果蔬加工中具有重要作用。

在果汁生产中,果胶酶能够分解果胶物质,降低果汁的粘度,提高出汁率,同时还能使果汁澄清,改善果汁的品质。

在果酒酿造中,果胶酶可以促进葡萄汁的澄清和过滤,提高酒的稳定性和口感。

4、脂肪酶脂肪酶在油脂加工和乳制品加工中发挥着作用。

在油脂加工中,脂肪酶可以用于油脂的水解和酯交换反应,生产具有特定脂肪酸组成的油脂。

在乳制品加工中,脂肪酶可以参与干酪的成熟过程,产生独特的风味。

5、葡萄糖氧化酶葡萄糖氧化酶常用于食品的保鲜和抗氧化。

它能够将葡萄糖氧化为葡萄糖酸和过氧化氢,过氧化氢具有杀菌作用,可以延长食品的保质期。

在面粉加工中,葡萄糖氧化酶可以改善面团的筋力和弹性。

三、酶在食品加工中的优势1、提高产品质量酶的特异性作用能够精准地改变食品的成分和结构,从而改善食品的口感、质地、色泽和风味等品质特性。

酶工程技术在食品工业中的应用

酶工程技术在食品工业中的应用

3、拓展应用领域:酶工程技术的运用领域将不断扩大,除了传统的食品加工 和制造领域外,还将在保健品、医药、环保等领域得到更广泛的应用。
4、食品安全与质量控制:利用酶工程技术建立更加快速、准确、灵敏的食品 安全检测方法和技术,提高食品质量安全水平。
5、适应环保要求:在酶工程技术的运用过程中,应注重环保和可持续发展, 减少对环境的污染和资源浪费。
谢谢观看
关键词:酶工程技术、食品工业、食品加工、食品改性、质量检测、蛋白质工 程技术、基因工程技术。
酶工程技术在食品工业中的应用
1、食品加工
酶工程技术在食品加工方面具有广泛的应用。例如,在奶制品行业,酶工程技 术可以用来水解乳糖,降低乳糖含量,使产品更加适合糖尿病患者食用。此外, 在肉类加工中,酶工程技术可以嫩化肉质,提高产品的口感和品质。
应用前景展望
随着科技的不断进步和人们健康意识的提高,酶工程技术在食品工业中的应用 前景十分广阔。未来,酶工程技术将在以下几个方面得到进一步发展:
1、开发新的酶制剂:随着生物技术的不断发展,将会有更多具有特殊功能的 酶被发现和开发出来,为食品工业提供新的加工助剂和添加剂。
2、提高生产效率:通过基因工程等手段对酶进行改造和优化,提高其催化效 率和稳定性,降低生产成本,从而提高酶工程技术的生产效率和经济效益。
2、食品改性
酶工程技术还可以用于食品改性。例如,通过使用特定的酶,可以破坏食物中 的某些成分,从而改变食物的口感、营养价值等。此外,酶还可以将果蔬加工 成具有特殊风味的食品,如柑橘类水果罐头中添加柚皮苷酶,可降解果胶,提 高产品的口感和透明度。
3、食品质量检测
酶工程技术也可以应用于食品质量检测。例如,在食品安全检测方面,酶联免 疫分析技术(ELISA)利用酶与抗体或抗原的反应,可快速检测食品中残留的 农药、兽药、毒素等有害物质。

举例说明酶对食品颜色风味质地营养价值

举例说明酶对食品颜色风味质地营养价值

举例说明酶对食品颜色风味质地营养价值大豆富含蛋白质,发酵过程中,蛋白酶能将豆类中的蛋白质分解成小分子的肽和氨基酸,谷氨酸也被释放出来,成为游离的谷氨酸钠,从而产生鲜味。

因此大豆的发酵产物,如酱油、豆豉、味噌等,其鲜度会大大增加。

采用酶制作甜面酱,亦历史悠久,它主要依靠微生物米曲霉、酵母、细菌所分泌的糖化酶、蛋白酶等,作用于淀粉原料,在适当的温度下经发酵作用而发生一系列变化。

此外,过程中会产生一定的糖分和甜味,可以起到提鲜、回甘的作用。

一些发酵产生的分子,再经过复杂的化学反应,形成了独特的风味。

制作鱼露,有时为了加快发酵,可以加入鱼的内脏,所含有的蛋白酶会帮助蛋白质的水解,使得发酵效率更高。

还有一些发酵工艺,直接加入“曲”,用曲霉产生的各种酶来帮助发酵,发酵速度就可以更快。

酶在食品方面的应用

酶在食品方面的应用

2.酶在蛋白质类食品生产方面的应用
以蛋白质为主要成分或原料加工而成的食品称为蛋白质类食品,在 生产过程中主要应用的酶有蛋白酶和乳糖酶等。
蛋白酶
动物蛋白酶 植物蛋白酶 微生物蛋白酶
水解蛋白 氨基酸 明胶 奶酪 低乳糖奶(乳糖酶)
3.酶在果蔬类食品生产方面的应用
• 果蔬类食品是指以各种水果或蔬菜为主要原料加工而成的食品
3.酶在甜味剂生产中的应用
• 嗜热菌蛋白酶催化天冬氨酸和苯丙氨酸反应生成天本肽(天本肽 是一种常用的甜味剂)
• 葡萄糖基转移酶生产帕拉金糖 • 果聚糖蔗糖酶生产低聚果糖 • Β-葡萄糖醛酸苷酶生产单葡萄糖醛酸基甘草皂苷
4.酶在乳化剂生产中的应用
• 食品乳化剂是使食品中互不相溶的液体形成稳定的乳浊液的一类 食品添加剂,目前国内外最普遍使用的乳化剂是甘油单脂及其衍 生物和大豆磷脂等。 脂肪酶
柑橘制品去除苦味(柚苷酶) 柑橘罐头防止白色浑浊(橙皮苷酶) 果蔬制品的脱色(花青素酶) 果汁生产(果胶酶) 果酒生产(果胶酶 蛋白酶)
三.酶在食品添加剂生产方面的应用
• 食品添加剂是指为改善食品品质和色,香,味,以及为防腐和加 工工艺需要而加入食品中的化学合成或天然物质
酸味剂

增味剂

甜味剂
添 加
乳化剂

增稠剂
强化剂
1.酶在酸味剂生产中的应用
• 酸味剂:以赋予食品酸味为主要目的的食品添加剂。在食品中添 加一定量的酸味剂可以可以给人们一种爽快的刺激感,起到增加 食欲的效果,有利于钙的吸收,有一定的防止微生物污染的作用
• 目前广泛采用酶法生产的酸味主要有乳酸和苹果酸 1)采用乳酸脱氢酶,催化丙酮酸还原为乳酸 2)采用2-卤代酸脱卤酶,催化2-氯丙酸水解生成乳酸 3)采用延胡索酸酶催化反丁烯二酸水和,生成苹果酸

第八章酶在果蔬类食品生产中的应用

第八章酶在果蔬类食品生产中的应用

研究表明,用果胶酯酶和聚半乳糖醛酸酶处理 苹果汁有很好的效果,但大部分商品酶对柠檬 汁、酸橙汁等pH值低的果汁的澄清作用不理想, 原因主要是过低的pH值抑制了酶的活性,研究 发现利用酶作用的产物即聚半乳糖醛酸可以起 到澄清作用。
固定化多酶系统(果胶酶、淀粉酶)
现在的研究趋向是使用固定化的多果胶酶系统 讲行果汁澄清,这些酶中包括降低果汁粘度、 降解果实组织的酶,甚至包括除去果汁中淀粉 的淀粉酶系统,因为一般果汁中都含有一些淀 粉,这些淀粉的存在会引起贮藏过程中果汁的 混浊,必须除去。
基因枪原理
导入ACC合成酶反义基因的番茄
Hamilton等于1990年首次构建了ACC氧化酶反 义RNA转基因番茄,在纯合转基因番茄果实中, 乙烯的合成被抑制了97%,从而使果实的成熟 延迟,贮藏期延长。导入ACC合成酶反义基因 的番茄也得到了类似的结果。转基因番茄的乙 烯合成也被抑制了99.5%,果实中不出现呼吸 跃变,叶绿素降解和番茄红素合成也都被抑制。 果实不能自然成熟,不变红,不变软,只有用 外源乙烯处理6天后才能使转基因番茄正常成 熟。因此,利用反义基因技术可以成功的培育 耐贮藏果蔬。
8.3 控制酶的基因表达进行果 蔬保鲜
控制果实成熟的酶
促进果实和器官衰老是乙烯最主要的生理功能。 在果实中乙烯生物合成的关键酶主要是乙烯在 直接前体—1-氨基环丙烷-1-羧酸合成酶(ACC 合成酶)和ACC氧化酶。在果实成熟中这两种 酶的活力明显增加,导致乙烯产生急剧上升, 促进果实成熟。
基因技术控制酶的表达
在对这两种酶基因克隆成功的基础上,可以利 用反义基因技术抑制这两种基因的表达,从而 达到延缓果实成熟,延长保质期的目的。利用 反义RNA技术抑制酶活力已有许多成功的例子, 其中最成为成功的就是延缓成熟和软化的反义 RNA转基因番茄。

酶在食品领域的应用

酶在食品领域的应用

酶在食品领域的应用【摘要】酶是一种高效的生物催化剂,具有催化高效性、专一性等显著特点。

文章介绍了果胶酶、脂肪酶、纤维素酶在食品领域的应用。

【关键词】果胶酶;脂肪酶;纤维素酶;食品工业;应用(一)前言酶是一种生物催化剂,鲜明的体现了生物识别、催化、调节等奇妙功能。

将酶加工成不同纯度和剂型(包括固定化酶和固定化细胞)的生物制剂即为酶制剂。

动、植物和微生物产生的许多酶都能制成酶制剂。

近年来,酶的生产普遍引起各国重视,并且酶已广泛应用到食品生产中。

(二)食品工业中常用酶1、果胶酶果胶酶(pectolytic enzyme or pectinase)是指能够分解果胶物质的多种酶的总称【1】。

果胶酶广泛分布于高等植物和微生物中,在某些原生动物和昆虫中也有发现。

在微生物中,细菌、放线菌、酵母和霉菌都能代谢合成果胶酶【2】。

果胶酶一般分为原果胶酶、果胶水解酶(pectin hydrolases)、果胶裂解酶(pentin lyases,PL)和果胶酯酶(pectin esterases,PE)等。

果胶酶在食品工业的应用有果汁澄清、提高果蔬汁的出汁率、提取生物活性功能成分、改善酒的品质等。

1.1果汁澄清工业上果汁的澄清一般包括酶催化脱果胶作用和澄清剂加果胶酶、明胶、硅溶胶和(或)膨润土来分别完成果胶的降解及非溶物质的物理化学沉淀【3】。

果胶酶澄清的实质包括果胶的酶促水解和非酶的静电絮凝两部分;当果汁中的果胶在果胶酶作用下部分水解后,原来被包裹在内的部分带正电荷的蛋白质颗粒就暴露出来,与其他带负电荷的粒子相撞,从而导致絮凝的发生,絮凝物在沉降过程中,吸附、缠绕果汁中的其他悬浮粒子,通过离心、过滤可将其除去,从而达到澄清目的【4】。

1.2提高果蔬汁的出汁率果蔬的细胞壁中含有大量的果胶质、纤维素、淀粉、蛋白质、木质素等物质,使得破碎后的果浆比较黏稠,压榨取汁非常困难且出汁率很低。

果胶酶不但能催化果胶降解为半乳糖醛酸,破坏了果胶的黏着性及稳定悬浮微粒的特性,有效降低黏度、改善压榨性能,提高出汁率和可溶性固形物含量,而且能增加果汁中的芳香成分,减少果渣产生,同时有利于后续的澄清、过滤和浓缩工序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津科技大学课程论文酶在食品风味方面的应用Application Of Enzymes In The Food Flavor摘要本文介绍了酶的作用机理,食品中脂肪、蛋白质、核酸和风味前体在酶的作用下生成风味物质的过程, 用于消除食品异味的酶, 用来生产风味物质的酶,并展望风味酶的前景。

关键词:食品;风味;酶ABSTRACTThis paper introduces the mechanism of enzymes, the process of generating flavor using fat, protein, nucleic acid and flavor precursors in food with the help of enzyme , Introducing enzymes used to eliminate the smell of food, enzymes used to produce flavor substances, and looking forward to the prospect of enzymes in food.Key words: food, flavor, enzyme目录1前言 (5)2食品中的风味酶及其作用机理 (6)3风味酶在食品风味方面的应用 (7)3.1食品组分在酶作用下产生风味物质 (7)3.1.1脂肪 (7)3.1.2蛋白质 (7)3.1.3核酸 (8)3.1.4风味前体物质 (8)3.2风味化合物的酶法合成 (8)3.2.1脂肪酶和酯酶 (8)3.2.2氧化还原酶 (9)3.2.3其它酶 (9)4消除食品异味 (10)5展望 (11)6参考文献 (12)前言人类为了生存,必须从食品中不断地吸取维持生命所必需的热量和营养。

在长期的生活实践中,人们对食品逐渐形成了一种选择性。

尽管各种食品都具有自身的营养价值,然而消费者对于食品的接受程度主要取决于食品的风味。

我国食品风味的传统概念是指食品入口前后对人的视觉、嗅觉、味觉、触觉等器官的刺激所形成的一种综合印象[1]。

食品应具有良好的风味, 有时需要进行风味强化;而公众对食品添加剂的安全性日益关注。

酶是生物细胞所产生的生物催化剂,由于酶催化过程具有反应时间短、专一性强、作用条件温和、易于控制、反应效率高能、保持食物的色、香、味和营养成分等优点,因而在食品工业中的应用日趋广泛,这就促进了用酶法或发酵法合成天然风味物质的研究[2]。

凡是能影响食品风味的酶都可称为风味酶。

许多食品风味的产生、消失与自身的酶系密切相关,食品生产中酶的组成、活性大小等因素都会影响食品的风味。

另外,根据风味酶的作用,可以讲其分为能改善食品风味,提高食品质量的风味酶和导致食品风味变差,质量下降的风味酶2大类[3]。

本文主要讲述第一大类风味酶,即风味酶在食品风味技术中的主要应用。

2 食品中的风味酶及其作用机理食品风味的形成是一个生化过程,无论是通过正常的新陈代谢积累起来的风味还是通过组织细胞被破坏后才产生的风味,都要有先决条件:一是形成风味物质的底物,即风味前体;二是催化风味物质形成的酶系。

许多食品原料中都含有这种酶系,但是往往在其加工过程中,游离态的风味物质可能部分损失,产生风味的前体物却不易挥发和破坏。

与此同时,产生风味的酶也会失活。

因此在食品加工过程中添加合适的风味酶,使结合态的风味前体物水解,从而释放出风味物质,增强和改善食品的风味[4]。

风味酶还可以控制肽的苦味,有以下2种方法,即氨肽酶法和羧肽酶法。

氨肽酶法通过作用于肽链的氨基端疏水氨基酸,使其水解成游离的氨基酸;而羧肽酶作用于肽链碳端的疏水氨基酸,使其释放出来,从而达到脱苦去苦的目的。

由于酶反应的专一性,单一酶作用范围小,因此酶解的水解度不高,所得多肽分子质量较大。

而风味酶是兼有外切与内切双重作用的混合蛋白酶,能将已溶解的蛋白质和肽进一步水解,水解程度更高。

复合风味酶水解蛋白质初期水解液苦味明显,这是由于蛋白质在酶作用下,分解为氨基酸和肽类,其中短链的疏水性肽明显苦味,大多由带芳香式侧链的中性氨基酸组成[5]。

在蛋白质未水解时,疏水基被掩盖在分子中,水解过程中暴露出来而显苦味。

风味酶能水解这些侧链,除去苦味。

3 风味酶在食品风味方面的应用3.1食品组分在酶作用下产生风味物质当食品中的蛋白质、碳水化合物、脂肪和核酸被水解时,几乎都会影响食品风味。

有多种酶可以催化这类物质水解。

当生产某种特定的风味物质时,也常会有多条途径。

3.1.1 脂肪许多食品的主要风味特征由脂肪决定。

脂肪在脂肪酶的作用下水解得到的游离脂肪酸对食品风味有重要影响。

短链脂肪酸(<C5) 有刺激性的烟熏味,与油脂的酸败味有关。

中链脂肪酸(C5~C12) 有肥皂味, 对食品风味影响最大。

例如菠萝椰子老姆酒有时会带有强烈的肥皂味, 就是由于椰子中的脂肪在菠萝脂肪酶作用下,释放出十二碳脂肪酸[6]。

长链脂肪酸(> C12) 对食品风味无明显影响。

一般情况下,胰脂肪酶用于形成短链脂肪酸,曲霉和假丝酵母脂肪酶可以形成广泛链长的脂肪酸,青霉菌用于释放丁酸,米曲霉用于释放C6~C10的脂肪酸。

在干酪生产中, 添加脂肪酶或含有脂肪酶的微生物,可以改善风味,缩短成熟期。

在赛达干酪生产中,加入米曲霉可使其风味明显增强,而且可以在风味形成与质构破坏之间找到一个最佳平衡点。

向原料乳中加入酸乳酪和脂肪酶,可以改善拉丁美洲白干酪的风味、质构,缩短成熟期。

通过对乳脂肪有控制的水解,可使蓝干酪的风味强度提高20~30倍。

在干酪生产中通过使用不同的脂肪酶可以得到不同的脂肪酸组成,以使各种干酪的典型风味特征得到充分体现。

黄油在青霉菌与胰脂肪酶混合作用下,可得到干酪类型风味物质。

对由黄油生产干酪类型风味物质的酯水解动力学研究表明:固态发酵中的脂肪酶活性比液态深层发酵中的高3.3倍。

前者还可用于对橄榄油的水解,并且对乳脂肪中的风味物质组成有一定的控制能力。

在面包中添加活性大豆风味物质以作为脂肪氧化酶的来源,可以对亚麻酸和其它多不饱和脂类进行过氧化作用,以改善面包的挥发性组分[7]。

3.1.2 蛋白质对蛋白质进行水解,可以得到风味物质或风味增强剂。

如青霉蛋白酶可水解大豆蛋白; 链霉蛋白酶水解酪素; 胃蛋白酶水解豌豆蛋白; 血管紧张肽原酶重组脱脂奶的蛋白质。

将蛋白质水解后,有时需要进一步用谷氨酸酶处理以增强风味。

例如: 将小麦泥用枯草杆菌和米曲霉蛋白酶处理后,再加入谷氨酸酶,可以使谷氨酸含量增加2.6倍。

蛋白酶也可改善干酪的风味和口感,并缩短成熟期。

细菌中性蛋白酶可以大大增加2类西班牙干酪的非蛋白氮含量, 有助于缩短其成熟期。

细菌甲硫氨酸酶通过将含硫氨基酸转变成甲硫醇,有助于赛达干酪的风味形成。

但是,蛋白酶可能导致蛋白质中疏水基团的释放,使食品产生苦味,故对它的使用要慎重。

当用脂肪酶等可以达到缩短干酪成熟期并改善风味的目的时,尽量不用蛋白酶。

3.1.3 核酸5′-肌苷酸和5′-鸟苷酸(即“I+ G”) 是广泛使用的风味增强剂,可以由核酸酶催化RNA 得到。

可以直接往食品中加酶来获得“I+ G”;也可以在使用可溶性酶或固定化酶的酶反应器中合成后再往食品中添加。

反应中常用的酶是桔青霉5′-磷酸二酯酶[8]。

3.1.4 风味前体物质食品加工过程中的风味损失可以通过添加合适的酶制剂来恢复。

原因是在加工过程中,风味物质损失且内源酶被钝化,但风味前体依然存在。

加入的酶作用于风味前体,又可以重新生成风味物质。

这种方法已经在水田芥、芥子、甘蓝、洋葱和覆盆子的加工中得到应用。

用适当酶作用于水果中的风味前体,可以有效释放香气物质。

有孢汉逊酵母β-葡萄糖苷酶释放水果中的萜烯醇,葡萄糖能抑制该酶的活性,乙醇则有助于提高酶活性α-L-吡喃鼠李糖苷酶或α-L-呋喃阿拉伯糖苷酶释放水果中的沉香醇和香叶醇。

在不久的将来,会开发出用于特定水果以释放特定香气成分的商业酶制剂。

在植物的非果实部分也有风味前体,可以使用生产中的下脚料来合成香气物质。

例如: 用β-葡萄糖苷酶处理豆荚,可把其中的葡萄糖香草醛转化成香草醛。

用黑曲霉水解酶处理豆荚也可达到类似目的,这种工艺现已发展到接近工业生产的规模。

糖苷水解物是高品质葡萄酒中重要的香气化合物。

用非特异性葡萄糖苷酶水解由葡萄酒和葡萄汁中分离出的糖苷,水解样品与感官分析记录中的“蜂蜜味”、“茶味”、“酸橙味”或“花香”等特征有关,葡萄酒正是由于这些非浆果属性而得到高的定位。

这种用酶法提高产品档次的技术,已经在葡萄酒中得到应用。

3.2 风味化合物的酶法合成用酶对风味物质进行合成、分离和纯化,是风味化学工业的重要研究方向。

3.2.1 脂肪酶和酯酶用脂肪酶可以催化酯化反应、酯基转移反应(酸解、醇解或酯交换作用)和内酯化反应,以进行风味酯的合成。

到目前为止,已经有超过50种的酯可以由酶法合成。

合成产量受溶剂的疏水性( logP)、脂肪酶来源、醇与酸的分子质量等因素的共同影响。

底物极性和水分活度对酯化反应和酯基转移反应的速率影响很大,因为酶活性高度依赖于酯化过程中的游离水分子。

当溶剂的logP> 3.5且水分含量<1%时,是合成短链风味酯的最佳条件[9]。

毛霉脂肪酶可将15-羟基十五烷酸和16-羟基十六烷酸转化成相应的大环内酯,反应在含有醚和甲苯的有机溶剂中进行,80℃时转化率可达30%。

如果水分含量保持在0.083%,可以使反应的转化率上升。

香蕉、甜瓜、草莓等水果中的香气酯主要是乙酸和丁酸的乙酯、丁酯、异丁酯和异戊酯,其合成酶是乙酰CoA转移酶或酯合成酶。

在体外,反应性能与酶的来源和底物结构有关, 例如: 来自草莓的合成酶的最适底物是戊酰CoA ,而来自香蕉和甜瓜的合成酶的最适底物是乙酰CoA、丙酰CoA和丁酰CoA。

L-薄荷醇是香气和风味工业中广泛使用的萜烯醇。

制取L-薄荷醇的关键步骤是把它从dl-混合物中分离出来。

酶法分离L-薄荷醇, 主要是通过特异性水解dl-薄荷醇酯中的“L”部分,得到L -薄荷醇, 再把L-薄荷醇结晶出来。

这个工艺可以由酵母酯酶或藻酸单胞菌酯酶实现。

把红酵母用聚亚氨树脂凝胶固定,可以得到100%光学纯度的L -薄荷醇。

3.2.2 氧化还原酶氧化还原酶在风味工业应用较少,主要困难是酶的生产成本高,反应过程中的辅助因子再生困难。

但氧化还原酶仍然具有应用潜力,通过适宜的酶促反应可以对辅助因子进行再生。

3.2.2.1 醇脱氢酶(ADH)醇脱氢酶可以从葡萄或马肝中提取出来,也可用微生物方法生产。

它既可以把酮、醛还原成醇,又可以把醇氧化成相应的醛或酮。

乙醛在柑橘和酸乳酪等食品的风味中发挥重要作用。

使用ADH可以把柑橘香精中的乙醇转化成乙醛,其辅助因子NAD通过使用FMN、O2和酶再生。

相关文档
最新文档