化工原理 固体干燥知识点
化工原理 固体干燥知识点

减少干燥过程的各项热损失。
采用部分废气循环操作,一般废气循环量为总气量的20%~30%。
4. 干燥器
(1) 常用干燥器:厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等
(2) 几种干燥器的特点
①喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。
②气流干燥器:颗粒在管内的停留时间很短,一般仅2s左右。
在加料口以上1m左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。
③流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。
固体物料的干燥PPT(化工原理)

03 干燥过程分析
干燥过程的物理变化
01
02
03
去除水分
通过蒸发或升华的方式, 将固体物料中的水分去除, 使其达到所需的干燥程度。
形态变化
随着水分的去除,固体物 料的形态会发生变化,如 从湿润状态变为干燥状态。
在真空环境中,利用低温或高温使物 料中的水分蒸发,适用于易氧化、易 分解或热敏性物料的干燥。
06
其他干燥方法
如微波干燥、冷冻干燥等。
干燥的物理化学基础
湿分的概念
湿分是指物料中所含的水分或其他溶剂,是影响干燥过程的重要因素。湿分的性质、含量和状态对干燥速率、产品质 量和能耗等都有重要影响。
湿分蒸发的原理
通过干燥可以去除物料 中的水分或其他溶剂, 获得一定组成的干制品 。
干燥后的物料体积缩小 ,重量减轻,便于运输 和贮存。
干燥可以改善物料的外 形、色泽和口感,提高 产品质量。
在许多加工过程中,如 造纸、纺织、陶瓷等, 干燥是必不可少的工艺 环节。
干燥的原理和分类
干燥原理
干燥是利用热能将物料中水分或其他溶剂蒸发 掉的过程。根据传热方式和传质推动力的不同,
其他领域的干燥应用
污泥的干燥
污泥在处理过程中需要经过干燥 处理,以降低水分含量,便于后 续的处理和利用。
废水的蒸发
废水在处理过程中需要通过蒸发 工艺,将水分从废水中分离出来 ,实现废水的净化。
05 干燥的优缺点分析
干燥的优点
高效节能
通过去除物料中的水分,提高 其含水率,使其达到所需的干 燥程度,从而减少能源消耗。
化工原理-第14章 固体干燥 知识点

如图 14-2 所示,湿空气经风机送入预热器,加热到一定温度后送入干燥器与湿物料直接接触,进行传 质、传热,最后废气自干燥器另一端排出。
干燥若为连续过程,物料被连续的加入与排出,物料与气流接触可以是并流、逆流或其它方式。若为 间歇过程,湿物料被成批放入干燥器内,达到一定的要求后再取出。
经预热的高温热空气与低温湿物料接触时,热空气传热给固体物料,若气流的水汽分压低于固体表面 水的分压时,水分汽化并进入气相,湿物料内部的水分以液态或水汽的形式扩散至表面,再汽化进入气相, 被空气带走。所以,干燥是传热、传质同时进行的过程,但传递方向不同。
I = (cpg + cpv H )t + r0 H
式中 cpg ——干气比热容,空气为 1.01kJ/(kg•℃);
cpv ——蒸汽比热容,水汽为 1.88 kJ/(kg•℃);
r0 ——0℃时水的汽化热,取 2500 kJ/(kg•℃);
对空气-水系统有
cpH = cpg + cpv H I = (1.01 + 1.88H )t + 2500H
方向 推动力
传热 从气相到固体
温度差
传质 从固体到气相
水汽分压差
(2)干燥过程进行的必要条件: ①湿物料表面水汽压力大于干燥介质水汽分压; ②干燥介质将汽化的水汽及时带走。
-1-
1
为确定干燥过程所需空气用量、热量消耗及干燥时间,而这些问题均与湿空气的性质有关。为此,以下介 绍湿空气的性质。
-2-
2
汽量,单位是 kg/kg 干气,即
式中 p 为总压。
H = M 水 • p水汽 = 0.622 p水汽
M 气 p − p水汽
p − p水汽
第十四章 固体干燥-第一节-概述

西北大学化工原理
2、湿度H:每千克干空气所带有的水汽量。
湿空气中蒸汽量 H = 湿空气中干空气量 = M H 2O ⋅ n w M g ⋅ ng
18 p w p = ⋅ = 0 .622 29 p g P− p
p H = 0.622 P− p
H也叫绝对湿度或湿含量 。
西北大学化工原理
3、相对湿度:指在一定温度及总压下, 湿空气的水汽分压p与饱和空气中水汽分压ps 之比的百分数。
西北大学化工原理 西北大学化工原理
西北大学化工学院化工原理教学组
西北大学化工原理
第一节
概述
一、固体去湿方法和干燥过程 1、干燥的应用 在化工生产过程中,为使物料便于 加工、运输、储藏和使用等,需要从含 有水分的固体中除去水分。 把固体物料中多余的湿分去掉的操 作过程称作去湿或干燥。
西北大学化工原理
西北大学化工原理
8、湿球温度tw:即大量空气与少量水长时 间接触后的水面温度。
tw = t − kH
α
rw ( H w − H ) 温度不太高、
对空气 − − 水系统,当被测气流的 rw =t− (H w − H ) 1 . 09
流速大于 5 m / s , α / k H = 1 . 09 KJ / Kg ⋅ tw
西北大学化工原理
2、平衡蒸汽压曲线
p e=p
s
p
e
0
Xt
物料中只要有非结合水 存在,不论其数量多少,其 平衡蒸汽压不会变化.在干 燥过程中,首先除去的是非 结合水,其次除去的是结合 较弱的水。此时,蒸汽压逐 渐开始下降。 结论:测定平衡蒸汽压曲 线就可知道固体中有多少水 分属结合水,多少水分属非 结合水。
p ϕ = ⋅ 100 % ps
固体干燥 化工原理

14.2.1 湿空气的状态参数
5 焓-湿度图 I-H图
H-I
图
等I线群 0~680
等t线群 0~250
等φ线群 356/2%2~100%
蒸 汽 分 压 线 群
等H线群
14.2.1 湿空气的状态参数
①等H线 等湿度线 等H线为一系列平行于纵轴的直线, ②等t线 等温线 等t线为一系列平行于横轴的直线,
14.2.1 湿空气的状态参数
讨论:
①绝干空气 = 0 饱和时 =1
我们讨论的是0 < <1的空气
② 愈小,表空气距饱和愈远,则表该空气的载湿能力愈 大,t增大,则ps增大,则 减小,则吸湿能力愈大
如 = 1 ,则该空气已饱和,不可再吸收水分,
③ 值随水蒸汽分压和温度而变, = f
④由此
2 湿度 湿含量 H 定义:为每kg干空气所带有的水汽量, 单位是kg/kg干气,即:
H=
Kg水汽 Kg绝干空气
=
nvMv na Ma
=
18nv 28.9na
nv:湿空气中水汽的摩尔数,kmol; na:湿空气中绝干空气的摩尔数,kmol; Mv:水汽的分子量,kg/kmol; Ma:空气的平均分子量, kg/kmol,
相为被干燥的物料,气相为干燥介质 ,在去湿过程中,湿分 发生相变,耗能大、费用高,但湿分去除较为彻底, 工业干燥操作多是用热空气或其它高温气体为介质,使之 掠过物料表面,介质向物料供热并带走汽化的湿分,此种干 燥常称为对流干燥,
14.1.1 固体去湿方法和干燥过程
干燥过程分类: a 按操作压力可分为常压干燥、真空干燥, b 按操作方式可分为连续式干燥、间歇式干燥, c 按照热能供给湿物料的方式可分为传导干燥、
化工原理固体干燥

第七章固体干燥第—节概述第二节湿空气的性质与湿度图第三节干燥过程的物料衡算和热量衡算第四节物料的平衡含水量与干燥速率第五节干燥设备第—节概述固体物料去湿方法二、湿物料的干燥方法三、对流干燥过程的传热与传质、固体物料去湿方法去湿 湿分从物料中去除的过程。
去湿目的;1)工艺要求;2)贮存;3)运输。
X 物理去湿加热去湿(F 燥)去湿的方法 '机械去湿二、湿物料的干燥方法(1)热传导干燥法(2)对流传热干燥法(3)红外线辐射干燥法(4)微波加热干燥法(5)冷冻干燥法干燥过程的分类:按操作压力分]警瓷I真空干燥1•传热、传质同时, 但方向相反;2 •介质是热载体, 有是湿载体。
1•物料表面水汽压力大于干燥介质中水汽分压; 三、对流干燥过程的传热与传质干燥过程进行必要条件:1 ■鼓风机;2■预热器; 5■螺旋加料器;6■旋风分离器;2•干燥介质要将汽化的水分及时带走。
第二节湿空气的性质与湿度图—、湿空气的性质湿空气的湿度图及其应用—、湿空气的性质(一)湿空气中湿含量的表示方法1.湿空气中水汽分囲Vp v =py2.相对湿度(P定义:一定T、P, Pv与同温度下Ps之比的百分数。
0 =生xlOO%Ps饱和空气,Py二Ps , 0=1,不可作为干燥介质; 3.湿度(湿含量)H 定义:山£干空气所携带的水汽质量。
惑水汽 Kg 干空气不饱和空气, 內〈Ps ,卩〈1,可作为干燥介质。
l&02〃v28.95/1叫 PgP-PvH J8・02—0.622』28.95〃OP - Pv当P为一定值时,Pv琨时,H=化即:H s = fit, P)H = f(p v)H s = 0.622 PsP - PsH与卩的关系:H表示空气中水汽含量的绝对任,而卩反映湿空气水气含量的曲对大小,不饱和程度, 吸收水汽的能力,(P I〜能力f o(二)湿空气的比体积、比热容和焙1・湿空气的比体积如[nP 湿空气/kg 干气]O H =u g +u v Ho =22^X273^X10L33=0773X X X10L33 g29 273 P 273 P22-41 273 + f 101-33 . nxx T 101-33 u v = ---- x ----- x ----- = 1.244 -- x -----H = 0.622 (PPsP-(PPs・•・(p = f(H, t)定义:1kgv 18 273 P273 PT 101.33 j = (0.773+1.244H)——x―—H273 PP—定,U H=W' H)2.湿空气的比热容C H定义:在常压下,将lkg干空气和其所带有的Hkg水汽升高温度1K所需的热量。
化工原理 第八章 固体干燥.

第八章固体干燥第一节概述§8.1.1、固体去湿方法和干燥过程在化学工业,制药工业,轻工,食品工业等有关工业中,常常需要从湿固体物料中除去湿分(水或其他液体),这种操作称为”去湿”.例如:药物,食品中去湿,以防失效变质,中药冲剂,片剂,糖,咖啡等去湿(干燥) 塑料颗粒若含水超过规定,则在以后的注塑加工中会产生气泡,影响产品的品质. 其他如木材的干燥,纸的干燥.一、物料的去湿方法1、机械去湿:压榨,过滤或离心分离的方法去除湿分,能耗底,但湿分的除去不完全。
2、吸附去湿:用某种平衡水汽分压很低的干燥剂(如CaCl2,硅胶,沸石吸附剂等)与湿物料并存,使物料中水分相续经气相转入到干燥剂内。
如实验室中干燥剂中保有干物料;能耗几乎为零,且能达到较为完全的去湿程度,但干燥剂的成本高,干燥速率慢。
3、供热干燥:向物料供热以汽化其中的水分,并将产生的蒸汽排走。
干燥过程的实质是被除去的湿分从固相转移到气相中,固相为被干燥的物料,气相为干燥介质。
工业干燥操作多半是用热空气或其他高温气体作干燥介质(如过热蒸汽,烟道气)能量消耗大,所以工业生产中湿物料若含水较多则可先采用机械去湿,然后在进行供热干燥来制得合格的干品。
二、干燥操作的分类1、按操作压强来分:1)、常压干燥:多数物料的干燥采用常压干燥2)、真空干燥:适用于处理热敏性,易氯化或要求产品含湿量很低的物料2、按操作方式来分:1)、连续式:湿物料从干燥设备中连续投入,干品连续排出特点:生产能力大,产品质量均匀,热效率高和劳动条件好。
2)、间歇式:湿物料分批加入干燥设备中,干燥完毕后卸下干品再加料如烘房,适用于小批量,多品种或要求干燥时间较长的物料的干燥。
3、按供热方式来分:1)、对流干燥:使干燥介质直接与湿物料接触,介质在掠过物料表面时向物料供热,传热方式属于对流,产生的蒸汽由干燥介质带走。
如气流干燥器,流化床,喷雾干燥器。
2)、传导干燥:热能通过传热壁面以传导方式加热物料,产生的蒸汽被干燥介质带走,或是用真空泵排走(真空干燥),如烘房,滚筒干燥器。
化工原理知识点总结干燥

化工原理知识点总结干燥干燥是指将含水物质中的水分除去的过程,广泛应用于化工、冶金、食品、药品、农业等行业中。
干燥工艺可以提高产品质量,延长产品保存期限,增加产品附加值。
本文将从干燥的基本原理、传热传质机理、常见的干燥设备和干燥过程中的控制因素等方面对干燥做出总结。
一、基本原理1.1水分除去过程干燥的基本原理是将物质中的水分除去,水分从物质中逸出,物质变得更干燥。
水分除去的方式分为蒸发和挥发两种。
蒸发是指物质表面的水分被热能所吸收,转化为水蒸气散发出去;挥发是指水分通过物质内部的孔隙、裂缝等介质被蒸发并逸出。
1.2干燥速率干燥速率是指在干燥过程中,单位时间内从物质中脱除的水分量。
干燥速率受温度、湿度、空气流速等因素的影响。
1.3干燥曲线干燥曲线是指在干燥过程中,物质含水量随着时间变化的曲线。
常见的干燥曲线有初始下降期、常速期和末速期。
二、传热传质机理2.1传热机理干燥中传热主要通过对流传热和辐射传热两种方式实现。
对流传热是指通过对流换热将热量传递给物质表面,将水分蒸发出去;辐射传热是指通过辐射换热将热能传递给物质表面,促使水分蒸发。
2.2传质机理干燥中传质主要通过扩散传质实现,即水分从物质内部向外部扩散传递。
传质速率受物质的性质、温度、湿度、压力等因素的影响。
三、常见的干燥设备3.1流化床干燥流化床干燥是指将物料通过气体流化,使得气体均匀地穿透物质,从而提高传热传质效率。
流化床干燥适用于颗粒状、粉末状的物料。
3.2喷雾干燥喷雾干燥是指通过将液态物料雾化成细小颗粒,然后与热空气接触,使得水分蒸发,从而实现干燥。
喷雾干燥适用于液态物料的干燥。
3.3真空干燥真空干燥是指在低压条件下进行的干燥过程。
通过减压降低水的沸点,从而实现水分的除去。
真空干燥适用于对热敏感物料的干燥。
3.4离心干燥离心干燥是指将物料通过高速旋转的离心机,使得水分被甩出物料的表面,从而达到干燥的目的。
离心干燥适用于颗粒状、液态的物料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章 固体干燥
知识要点
干燥是指向物料供热以汽化其中的湿分的操作。
本章主要讨论以空气为干燥介质、湿分为水的对流干燥过程。
学习本章应重点掌握湿空气的性质参数与湿度图、湿物料中的水分性质、干燥过程的物料衡算与热量衡算。
一般掌握干燥过程的速率与干燥时间的计算。
了解干燥器的类型与适用场合,提高干燥过程的热效率与强化干燥过程的措施。
本章主要知识点间的联系图如下图所示。
图14-1 干燥一章主要知识点联系图
1. 概述
对流干燥的特点:热、质反向传递过程 传热:固相←气相 推动力:温度差 传质:固相→气相 推动力:水汽分压差 2. 干燥静力学
(1) 湿空气的状态参数
① 空气中水分含量的表示方法 a . 绝对湿度(湿度)
0.622
p H p p =-水汽
水汽
b . 饱和湿度
0.622
s
s s
p H p p =- c . 相对湿度
p ϕ=
水汽
一定温度、压力下空气中水汽分压可能达到的最大值
s ()
p p ≤s /p p 水汽s ()
p p >/p p 水汽=
② 湿空气温度的表示方法
a . 干球温度t :简称温度,指空气的真实温度,可直接用普通温度计测量。
b . 露点温度t d :在总压不变的条件下,不饱和湿空气等湿降温....至饱和状态时的温度。
c . 绝热饱和温度t as : 指少量空气与大量水经长时间绝热接触后达到的稳定温度。
d . 湿球温度t w :指大量空气与少量水经长时间绝热接触后达到的稳定温度。
e . 湿空气的四种温度间的关系
不饱和湿空气:()d W as t t t t >>
饱和湿空气:()d W as t t t t ==
③ 湿空气的比热容(湿比热容)c pH :将1kg 干空气和其所带的H kg 水汽的温度升高1℃所需的热量,单位 kJ/(kg ∙℃)。
pH 1.01 1.88c H =+
④ 湿空气的焓I :指1kg 干气及所带的H kg 水汽所占的总体积,单位m 3/kg 干气。
(1.01 1.88) 2 500I H t H =++ ⑤ 湿空气的比体积:指1kg 干气及所带的H kg 水汽所占的总体积,单位m 3/kg 干气。
常压下温度为t ℃、湿度为H 的湿空气的比体积为
)273)(1056.41083.2(33H +⨯+⨯=--t H v
(2) 湿度图
湿空气的各种性质之间存在着一定的函数关系,这些关系除了可用前面介绍的公式表示外,还可用湿空气的性质图来表示。
在总压一定时,湿空气仅有两个独立的性质参数。
从形式上看,常用的有焓I —湿度H 图、温度t —湿度H 图。
(3) 水分在气固两相间的平衡 ① 湿物料中水分含量的表示方法
湿基含水量
w =
湿物料中水分的质量
湿物料总质量
kg 水/kg 湿料
干基含水量
量
湿物料中绝干物料的质湿物料中水分的质量=
X kg 水/kg 绝干料
二者关系
X X w +=
1 w
w
X -=1 ② 相对湿度曲线
1.0
相对湿度φ
X max
X X t
图14-2 相对湿度曲线
③ 平衡水分、自由水分、结合水分、非结合水分间的差异(表14-1)
3. 干燥速率与干燥过程计算 (1) 物料在定态条件下的干燥速率
① 干燥速率: 指单位时间、单位面积(气固接触界面)被汽化的水量,即
τ
τAd dX G Ad dW
N c A -==
式中 c G ——试样中绝对干燥物料的质量,kg ;
A ——试样暴露于气流中的表面积,m 2;
X ——物料的自由含水量,*X X X t -=,kg 水/kg 干料;
W ——汽化的水分量,kg 。
② 干燥速率曲线
干燥速率N A (k g .m -2.s -1)
图14-3 干燥速率曲线
③ 各阶段特点 a . 恒速段 )()()(H H k t t r N w H w w
C A -=-=
α
=常量
物料表面温度等于..
湿空气的湿球温度t w ; 恒速干燥阶段为表面汽化控制; 在该阶段除去的水分为非结合水分;
恒速干燥阶段的干燥速率与空气的状态有关,与物料的种类无关。
b . 降速段
随着干燥时间的延长,干基含水量X 减小,干燥速率降低,物料表面温度逐渐升高; 物料表面温度大于湿空气的湿球温度; 除去的水分既有非结合水,也有结合水;
降速干燥阶段的干燥速率与物料种类、结构、形状及尺寸有关,而与空气状态关系
不大。
④ 临界含水量
由恒速阶段转为降速阶段的点称为临界点,所对应湿物料的含水量称为临界含水量; 降低物料厚度,临界含水量X c ↓; 物料越细,X c ↑;
等速干燥阶段的干燥速率(N A )C 越大,X c ↑。
(2) 间歇干燥过程的计算
恒速段 11()c c
A C G X X A N τ-=
⋅ 降速段
2c c 2A
d X X G X A N τ=-⎰
降速段的近似计算法
*
2*c X c 2ln X X X X AK G --=τ (X ——干基含水量) A X *c
()C
N K X X =- c c 2X 2ln G X AK X τ=
(X ——自由含水量) A X c
()
C N K X = (3) 干燥过程的物料衡算与热量衡算
V ,t ,H 2,I 2产品
G c ,X 1,θ1,G c ,X 2,θ2,干燥器
1I '
2
I '
图14-4 干燥流程示意图
① 物料衡算 绝干物料量
c 1122(1)(1)G G w G w =-=-
或
12
c 12
11G G G X X =
=++
蒸发水分量 c 12112212()W G X X G w G w G G =-=-=- 或
2120()()W V H H V H H =-=-
干空气质量流量 0
212H H W
H H W V -=-=
比空气用量 2120
11V l W H H H H =
==-- 实际空气(新鲜空气)质量流量
0'(1)V V H =+ kg 湿空气/s
273101.3
(0.773 1.244)
273V H t q Vv V H p
+==+⨯ m 3湿空气/s 式中t 、H 是风机所在位置空气的干球温度与湿度。
干燥产品质量流量 )1/()1(2112w w G G --=
② 预热器的热量衡算
1P 10pH 10()()Q V I I Vc t t =-=-
11112500)88.101.1(H t H I ++= 00002500)88.101.1(H t H I ++=
1H H =,
1p p H H c c =
③干燥器的热量衡算
L c Q I G VI Q I G VI +'+=+'+2c 2D 1
1 或
121p,1D 2c ,2c X p X L VI G c Q VI G c Q θθ++=++
式中c p,X ——湿物料的比热容,kJ/(kg 干物料.℃) p,X p,s p,L c c c X =+,对于水c p,L =4.18 kJ/(kg.℃)
④ 理想干燥过程,又称为等焓干燥过程,即21I I = ⑤ 干燥系统的热量衡算
L D P Q I I G I I V Q Q +'-'+-=+)()(12
c 12
D P Q Q +加入干燥
系统的热量
气耗热Q 3物料升温耗热Q 2蒸发水分耗热Q 1Q L 20%~30%
5%~30%
15%~40%
8%~30%
⑥ 干燥过程的热效率 D
p 2
1Q Q Q Q ++=
η
忽略热损失
33
P D P D 1P D Q Q Q Q Q Q Q Q η+-=
=-++
a . 理想干燥过程
12
10
t t t t η-=
- b . 提高热效率的措施
降低废气的温度t 2,但t 2应比空气的湿球温度高20~50℃,以避免干燥的产品返潮。
提高空气的预热温度t 1,但以考虑热源能位的限制与物料的耐高温性。
对不能经受高温的物料,采用中间加热的方式。
减少干燥过程的各项热损失。
采用部分废气循环操作,一般废气循环量为总气量的20%~30%。
(1) 常用干燥器:厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等
(2) 几种干燥器的特点
①喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。
②气流干燥器:颗粒在管内的停留时间很短,一般仅2s左右。
在加料口以上1m左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。
③流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。