第6章抽样调查
自考-市场调查与预测-第6章-抽样方法

1 定义总体 确定调查对象全体:从抽样元素、抽样 单位、抽样范围、抽样时间角度考虑 例如…
2 确定抽样框架 抽样总体中,抽样元素的表现形式。总体中 的每一个元素都在抽样框架中出现一次,且 仅出现一次。如户籍簿。 适用性、完整性。 3 确定抽样单位 容纳总体的基本单位,大于等于样本元素。 取决于抽样框架和调查方法。 电话调查——电话号码 邮寄调查——地址或姓名
B 平均值估计 C 百分比估计样本容量
根据允许误差大小估计样本量
不同抽样方法样本容量的确定 影响因素: 调查目的;总体大小;总体构成;抽样方式 计算公式:见表6-4
其它调查方法介绍
2、自愿样本
被调查者自愿参加,成为样本中的一分子,向
调查人员提供有关信息
–
例如,参与报刊上和互联网上刊登的调查问
第6章 抽样方法
普查与抽样调查 抽样程序
常用抽样方法
样本容量的确定
6.1普查与抽样调查
抽样设计的重要性 案例6-1 普查的相关概念和案例 P159 抽样调查的概念 抽样是通过抽取总体中的部分单位,收集 这些单位的信息,从而对总体进行推断的 一种手段。 抽样调查的含义 P163 抽样调查的适用范围
第一节 抽样方法
6.3 常用抽样方法
1 简单随机抽样 2 分层随机抽样 3 分群随机抽样 4 等距随机抽样 5 任意抽样 6 判断抽样 7 配额抽样 8 滚雪球抽样
1 简单随机抽样 1、抽样方法 根据研究目的选定总体,首先对总体中所 有的观察单位编号,遵循随机原则,采用不放 回抽取方法,从总体中随机抽取一定数量观察 单位组成样本。 2、具体方法 ①抽签法
第6章抽样设计

第四节 抽样误差与样本量
• 一、调查误差的概念与种类 • 调查误差是指调查的结果和客观实际情况的出入和差数。
一般有两种误差存在, 即非抽样误差和抽样误差。 • 非抽样误差是基于抽样之外的许多其它原因而产生的误差。
• 抽样误差是指一个样本的测定值与对该变量真值之间的差 异,抽样误差无特定偏向,其误差大小主要受以下三个因 素影响:
• 单位顺序的排列方式有两种: 一种是排列顺 序与调查项目无关。另一种是按与调查项 目有关标志排队。
• 三、分层抽样
• 分层抽样又叫类型抽样, 它是先将总体 所有单位按某一重要标志进行分类(层), 然后再各类(层)中采用简单随机抽样或 等距抽样方式抽取样本单位的一种抽样方 式。
• 分层抽样比简单随机抽样和机械抽样更 为精确, 能够通过对较少的抽样单位的调查, 得到比较准确的推断结果, 特别是当总体较 大、内部结果复杂时, 分层抽样常能取得令 人满意的效果。同时, 分层抽样在对总体推 断的同时, 还能获得对每层的推断。
• (二)特点
• 与全面调查相比,抽样调查具有以下三个 显著特点:
• 1、经济
• 与全面调查相比,抽样调查的样本量大大 减少,从而可以显著地节约人力、物力和 财力。
• 2、高效
• 由于抽样调查只对总体中少量单位进行调 查,故能十分迅速地得到调查讨论。
• 3.准确
• 抽样调查是调查部分总体单位,数目较少,
• 第一,被研究总体各单位标志值的变异程度。 • 第二,抽样的样本量。 • 第三,抽样调查的组织方式。
• 二、样本量 • 在开始组织抽样调查之前,确定抽多少样本单位是个很重
要的问题。 • (一)影响样本量的因素 • 抽样调查的样本量取决于以下几个因素: • 1、被调查对象标志的差异程度 • 2、允许误差数值的大小 • 3、调查结果的可靠程度 • 4、抽样的方法 • 5.抽样的组织形式
市场调查-第六章抽样技术

N = 721, n = 10, 721/10≈72
K =
用随机数表法,如果第一个确定的数字为102,则 各样本单元编号依次为:102,174,246,318, 390,462,534,606,678,29。其中最后一个编 号应为678 + 72 = 750。因大于N,故减去721,实 际编号取为750- 721 = 29。
多级随机抽样是先把总体划分为 若干一级单元,再把各个一级单 元划分为若干个二级单元,直至 不再划分的个体单元。在抽样时, 先用简单随机抽样方法抽取部分 一级单元,再在抽中的一级单元 中抽取部分二级单元,依次操作, 直到抽得个体单元为止。
多级随机抽样——demo
我国城市住户调查采用的就是多 级抽样,先从全国各城市中抽取 若干城市,再在城市中抽选街道, 然后在各街道中抽选居民会,最 后在各居委会中抽选居民户。
低收入 20%
高收入 20%
中收入 60%
高收入 中收入 低收入
分层比例抽样法
高收入层抽取的样本单元数为: 200×20%=40(户) 中收入层抽取的样本单元数为: 200×60%=120(户) 低收入层抽取的样本单元数为: 200×20%=40(户)
在各层抽样时,只需采 用简单随机抽样法即可。
2、分层最佳抽样法
二、分层随机抽样
分层随机抽样是先将总体所有单位按 某一重要标志进行分层(类),然后在 各层(类)中采用简单随机抽样方式抽 取样本单位的一种抽样技术形式。在 划分层次时应注意,各层次内部保持 确定的同质性,而各层次之间又应有 明显的异质性。
分层比例抽样法 分层最佳抽样法
1、分层比例抽样法
分层比例抽样法,指各层 抽取的样本单元数是按各 层单元数占总体单元数的 比例加以确定。
第六章抽样调查习题答案

第六章抽样调查习题答案一、单项选择题1、 C2、 A3、 D4、 D5、C6、 D7、 C8、 A9、 D 10、A11、 D 12、C 13、B 14、 A 15、A16、 B 17、 B 18、D 19、 A 20、A21、 A 22、 D 23、 D 24、 B 25、A二、判断题1、CD2、AE3、BCD4、ABDE5、ABD6、AB7、ABCD8、AC9、ABCD三、判断题1、×2、√3、√4、√5、√6、×7、√8、×9、√10、√11、×12、√13、√14、×15、×16、√17、√18、×四、填空题1、随机、部分、总体2、计算、控制3、重复、不重复4、大于5、点估计、区间估计6、增加到4倍、减少三分之二、减少四分之三7、大样本、小样本8、正、反五、复习思考题1、影响抽样误差的主要因素有哪些?答:影响抽样误差大小的因素主要有:(1)总体单位的标志值的差异程度。
差异程度愈大则抽样误差愈大,反之则愈小。
(2)样本单位数的多少。
在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。
(3)抽样方法。
抽样方法不同,抽样误差也不相同。
一般说,重复抽样比不重复抽样,误差要大些。
(4)抽样调查的组织形式。
抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。
2、什么是抽样调查?它有哪些特点?答:抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。
它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。
(1)只抽取总体中的一部分单位进行调查。
(2)用一部分单位的指标数值去推断总体的指标数值(3)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
统计学原理-第六章 抽样调查(复旦大学第六版)

2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学第六章 抽样法

第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
第六章抽样调查练习及答案

第 六章 抽样调查一、填空题1.抽选样本单位时要遵守 原则,使样本单位被抽中的机会 。
2.常用的总体指标有 、 、 。
3.在抽样估计中,样本指标又称为 量,总体指标又称为 。
4.全及总体标志变异程度越大,抽样误差就 ;全及总体标志变异程度越小,抽样误差 。
5.抽样估计的方法有 和 两种。
6.整群抽样是对被抽中群内的 进行 的抽样组织方式。
7.误差分为 和代表性误差;代表性误差分为________和偏差;偏差是____________________________,也称为________________。
8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下: ;不重复抽样条件下: 。
9.误差范围△,概率度t 和抽样平均误差μ之间的关系表达式为 。
10.抽样调查的组织形式有: 。
二、单项选择题1.所谓大样本是指样本单位数在( )及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.是非标志方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.总体平均数和样本平均数之间的关系是( )A 总体平均数是确定值,样本平均数是随机变量B 总体平均数是随机变量,样本平均数是确定值C两者都是随机变量 D两者都是确定值6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。
A 95.45%B 99.7396C 68.27%D 90%7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( )A 扩大为原来的3倍B 扩大为原来的2/3倍C 扩大为原来的4/9倍D 扩大为原来的2.25倍8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50%一等品产品比重的抽样平均误差为 ( )A 甲企业大B 两企业相同C 乙企业大D 无法判断9.是非标志的平均数是( )A -P)1P(B P(1-P)C pD (1-P)210.重复抽样的误差一定( )不重复抽样的误差。
胡德华版统计学第六章

6.2.2 机械抽样
机械抽样又称等距抽样或系统抽样, 机械抽样又称等距抽样或系统抽样,就是将总体的各单位按某一标 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔, 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔,然后 按照相同的间隔等距抽取样本的一种抽样方式。 按照相同的间隔等距抽取样本的一种抽样方式。 根据总体单位排列方法,等距抽样可分为两类: 根据总体单位排列方法,等距抽样可分为两类:一是按有关标志排 二是按无关标志排队。 队;二是按无关标志排队。 所谓有关标志就是指与调查问题直接相关的标志。 所谓有关标志就是指与调查问题直接相关的标志。 采用等距抽样法,主要应解决以下两个问题: 采用等距抽样法,主要应解决以下两个问题: 一是要计算抽样间隔, 代表抽样间隔, 代表总体单位数 代表总体单位数, 代 一是要计算抽样间隔,若K代表抽样间隔,N代表总体单位数,n代 代表抽样间隔 表抽取的样本单位数, 表抽取的样本单位数,则K=N / n 。 二是要确定起点样本,即第一个样本。 二是要确定起点样本,即第一个样本。通常的方法可采取在第一组 1-K个样本单位中随机抽取的方法,也可以在第一组 个样本单位中随机抽取的方法, 个样本单位中随机抽取的方法 也可以在第一组1-K个样本单位中采 个样本单位中采 用取中间值的方法,然后,每隔K个单位抽取一个样本 个单位抽取一个样本, 用取中间值的方法,然后,每隔 个单位抽取一个样本,直到抽够样本 为止。 为止。 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 因而使样本具有更高的代表性,减少了抽样误差; 因而使样本具有更高的代表性,减少了抽样误差;采用机械顺序抽取样 简单易行,便于操作。但是,在应用等距抽样方法时, 本,简单易行,便于操作。但是,在应用等距抽样方法时,要注意抽样 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 等距随机抽样方法比较适合于同质性较高的总体。 等距随机抽样方法比较适合于同质性较高的总体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(72,76) x3 74 3 72.67
x6.524 42 4.5 1 6
组内误 x1 24 0 4.9 1 1、总体各类全面调查
10
2、组内单位抽样调查
第六章 区间估计
STAT
人: A B C D E F G H I J
x x i 8 .2 5 9 .5 0 8 .5 0 9 .0 0 8 .7 5 8 .8
r
5
2 (x i x )2 ( 8 .2 8 5 .8 )2 ( 8 .7 8 5 .8 )2 0 .23
r 1
5 1
x
2Rr
rR1
0.236 050.21 56 01
p ˆ p ˆi 2 .0 % 1 .6 % 2 .4 % 1 .9 % 2 .1 % 2 %
r
5
p 2 (p ˆr i 1 p ˆ)2(2 % 2 % 2 5 ) 1 (2 .1 % 2 % 2 ) 0 .000
p ˆ rp 2 R R 1 r 0.05 00 6 6 0 0 0 0 1 5 8 0.5 12 %6
n
总体 i2: N i2N i 样s本 i2 sn : i2ni
第六章 区间估计
STAT
(四)区间估计(与SRS样本的不同点)
1、的估计
(1)全样本平均 x 数 xi: ni n
( 2)平均组 i2 内 si2方 sn i2n差 i : x
2 i n
2、P的估计
第六章 区间估计
STAT
[例]10人年龄资料如下。N=10 n=3。
人: A B C D E F G H I J
年龄:5 8 12 40 42 46 48 70 72 76
分类: N1=3
N2=4
N3=3 N=10
1=2.87
2=3.16
3=2.49 =8.52
n1=?
n2=?
n3=?
2、估计P
( 1)全样本比例 :pˆ( 成 pˆiM数 p ) ˆi rM r
( 2 )组间 p 2 (p ˆr 方 i 1 p ˆ)2差 p ˆ : rp 2 R R 1 r
第六章 区间估计
STAT
[例]某乡播种某种农作物3000亩,分布在60块地段上,每块 地段50亩。现抽取5块地,其平均亩产为8.25、9.50、8.50、 9.00和8.75百斤;受灾面积为2.0、1.6、1.4、1.9和2.1%。要 求以95%的置信水平估计其平均亩产及受灾面积的区间。
STAT
(2)按有关标志排队 A、职工家庭生活水平调查:按职工的工资水平排队; B、耕地农产量调查:按往年平均亩产的高低进行排队。 (二)区间估计:按SRS样本推断。
第六章 区间估计
STAT
第四节 必要样本容量的确定
一、必要样本容量
1、决定样本容量的因素
2、必要样本容量:在估计精度(费用限制)的前提下,必
p ˆ Zp ˆ 1 .9 0 6 .1% 2 0 6 .2% 5(p ˆp ˆ)(1.7% 52.2,% 5 )
第六章 区间估计
STAT
三、等距(机械、系统)抽样(systematic sampling) (一)抽样方法(P129、170) 1、定义:先排序,然后等间隔抽样。
第六章 区间估计
STAT
第三节 其他抽样方式下的区间估计
一、类型(分层)抽样(stratified random sampling) (一)抽样方法(P128,165) [例]10人年龄如下。N=10 n=3,推断总体平均年龄。 人: A B C D E F G H I J 年龄: 5 8 12 40 42 46 48 70 72 76 [简单随机抽样] ( B 、 H、 I ),( C、 D 、 E ),( F 、 G 、 I ) [分层(strata)抽样] ( B 、 E、 I ),( C、 D 、 H ),( A 、 G 、 J) (二)抽样数目的分配
xx12
1 2
0 0
群内无误差 原因 总 群体 内各 单 群 位抽 全样 面调 调查 查
第六章 区间估计
STAT
168, 171, 172, 174, 165, 170, 174, 178; 173, 176, 178, 172
分群: A群
B群
C群
R=3
取样:
样本第一群
n=3
1、等额分配:n1= n2= n3= 1
2、等比例分配:n1/N1= n2/N2= … = n/N(全样本)
∵ n/N =0.3 ∴n1/N1=0.3 n1=0.3×N1=0.3 ×3= 0.9
3、最优分配: ni/Ni=i/
∵ 1/ =2.87/8.52=0.34 ∴ n1/N1=0.34 n1=1.02
n 1 2 , n 2 0 4 , x 1 0 2 , x 2 5 2 , s 1 2 8 1 . 4 , s 2 2 4 0 . 64
xxini 2 520 2 8402( 7 小时)
n
60
(xx)
si2 sn i2 n i 1 .4 4 26 0 0 .0 6 4 4 0 0 .91 (2.67,6 2.72)4
n
1N nx
Z
2
n
1 n N
两边 2 x平 Z 2 n2 方 1 N n Z 2 n2 nN 2Z 2n
n
1000
P(1 P) pˆi (1 pˆi )ni n
pˆ
P(1 P) 1 n
n
N
0.80.23000.150.85700 1.12%
1000
pˆ Zpˆ 2.24%
0.14
2
(pˆ pˆ )(3.2% 63,.6 7% 4 )
第六章 区间估计
总体N 样本 n :抽样间隔K=N/n [例]N=50 n =5,则 K=10
A4、A14、A24、A34、A44; A7、A17、A27、A37、A47。 2、排队方式 (1)按无关标志排队 A、职工工资调查:按职工的姓氏笔划排队; B、产品质量调查:按产品入库顺序排队。
第六章 区间估计
x Z 0 .02x5 1 .9 0 6 .2 1 0 .41(xx)(83, 992)1
第六章 区间估计
STAT
[例]某乡播种某种农作物3000亩,分布在60块地段上,每块 地段50亩。现抽取5块地,其平均亩产为8.25、9.50、8.50、 9.00和8.75百斤;受灾面积为2.0、1.6、1.4、1.9和2.1%。要 求以95%的置信水平估计其平均亩产及受灾面积的区间。
STAT
二、整群抽样(cluster sampling,集团抽样)
(一)抽样方法(P128、168)
1、按某种标志或要求将总体区分为若干群(R),群内单位 数(M)相等;
2、采取不重复抽样方式从R群随机抽出r群,尔后对样本群 进行全面调查以推断总体。
[例]某连某班12名士兵的身高资料如下
168, 171, 172, 174; 165, 170, 174, 178; 173, 176, 178, 172
x1 171 .75
1 171 .75
样本第二群 r =2
x2 174 .75
2 174 .75
总方 2差 组间方 2差 平均组内 i2 方差
x
n
Nn
2
N1 n
N n 2 i2
N 1
r
Rr R1
2 R r
r R 1
总体 2: (i )2M 样本(: xi x)2
RM
r1
第六章 区间估计
STAT
[例]某连某班士兵的身高资料如下
168, 171, 172, 174, 165, 170, 174, 178, 173, 176, 178, 172
分群: A群
B群
C群
R=3
取样:
群 数据 均值
A
1 6 8 ,1 7 1 1 7 2 ,1 7 4
年龄:5 8 12 40 42 46 48 70 72 76
取样: (5,8)
x1 6.5
s
2 1
4.5
(42,46)
x 2 44
s
2 2
8
(72,76)
x 3 74
s
2 3
8
总方 2差 组间方 2差 平均组内 i2 方差
x
n
2 n
2
2 i
n
2 i
第六章 区间估计
STAT
(三)抽样标准差的计算
[例]10人年龄资料如下。N=10n=6,推断总体平均年龄。 人: A B C D E F G H I J
年龄:5 8 12 40 42 46 48 70 72 76
取样: (5,8) x1 6.5
1 8.33
(42,46) x2 44
r 1
(17.715 17.23)52(17.745 17.23)52 21
4.5
第六章 区间估计
STAT
(三)区间估计(与SRS样本的不同点) 1、估计 ( 1)全样本平 x均 xiM 数 : xi
rM r
( 2 )组间 2 (x r 方 i 1 x)2 差 x : r2 R R 1 r
未抽
B
1 6 5 ,1 7 0 1 7 4 ,1 7 8
1 7 1 .7 5
C
1 7 3 ,1 7 6 1 7 8 ,1 7 2