最新全国各地中考数学试题分类汇编3

合集下载

湖北省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类②

湖北省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类②

湖北省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类②一.一次函数综合题(共1小题)1.(2023•鄂州)如图1,在平面直角坐标系中,直线l⊥y轴,交y轴的正半轴于点A,且OA =2,点B是y轴右侧直线l上的一动点,连接OB.(1)请直接写出点A的坐标;(2)如图2,若动点B满足∠ABO=30°,点C为AB的中点,D点为线段OB上一动点,连接CD.在平面内,将△BCD沿CD翻折,点B的对应点为点P,CP与OB相交于点Q,当CP⊥AB时,求线段DQ的长;(3)如图3,若动点B满足=2,EF为△OAB的中位线,将△BEF绕点B在平面内逆时针旋转,当点O、E、F三点共线时,求直线EB与x轴交点的坐标;(4)如图4,OC平分∠AOB交AB于点C,AD⊥OB于点D,交OC于点E,AF为△AEC 的一条中线.设△ACF,△ODE,△OAC的周长分别为C1,C2,C3.试探究:在B点的运动过程中,当=时,请直接写出点B的坐标.二.二次函数综合题(共5小题)2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B (2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN ⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P 和点Q的坐标;若不存在,请说明理由.3.(2023•十堰)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.(1)求抛物线的解析式;(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.4.(2023•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点F(0,)的距离PF,始终等于它到定直线l:y=﹣的距离PN(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为FH的中点,FH=2OF=.例如,抛物线y=2x2,其焦点坐标为F(0,),准线方程为l:y=﹣,其中PF=PN,FH=2OF=.【基础训练】(1)请分别直接写出抛物线y=x2的焦点坐标和准线l的方程: , ;【技能训练】(2)如图2,已知抛物线y=x2上一点P(x0,y0)(x0>0)到焦点F的距离是它到x轴距离的3倍,求点P的坐标;【能力提升】(3)如图3,已知抛物线y=x2的焦点为F,准线方程为l.直线m:y=x﹣3交y轴于点C,抛物线上动点P到x轴的距离为d1,到直线m的距离为d2,请直接写出d1+d2的最小值;【拓展延伸】该兴趣小组继续探究还发现:若将抛物线y=ax2(a>0)平移至y=a(x﹣h)2+k(a>0).抛物线y=a(x﹣h)2+k(a>0)内有一定点F(h,k+),直线l过点M(h,k﹣)且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离PP1始终等于点P到点F的距离(该结论不需要证明).例如:抛物线y=2(x﹣1)2+3上的动点P到点F(1,)的距离等于点P到直线l:y=的距离.请阅读上面的材料,探究下题:(4)如图4,点D(﹣1,)是第二象限内一定点,点P是抛物线y=x2﹣1上一动点.当PO+PD取最小值时,请求出△POD的面积.5.(2023•湖北)已知抛物线与x轴交于A,B(4,0)两点,与y轴交于点C(0,2).点P为第一象限抛物线上的点,连接CA,CB,PB,PC.(1)直接写出结果;b= ,c= ,点A的坐标为 ,tan∠ABC= ;(2)如图1,当∠PCB=2∠OCA时,求点P的坐标;(3)如图2,点D在y轴负半轴上,OD=OB,点Q为抛物线上一点,∠QBD=90°.点E,F分别为△BDQ的边DQ,DB上的动点,且QE=DF,记BE+QF的最小值为m.①求m的值;②设△PCB的面积为S,若,请直接写出k的取值范围.6.(2023•宜昌)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=﹣2x上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是 三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx﹣4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.三.四边形综合题(共1小题)7.(2023•十堰)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF= ;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b,请直接用含a,b的式子表示DF 的长.四.圆的综合题(共2小题)8.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB =4,PB=3.(1)填空:∠PBA的度数是 ,PA的长为 ;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.9.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.五.几何变换综合题(共1小题)10.(2023•湖北)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图1,当m=1时,直接写出AD,BE的位置关系: .(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=,AB=4,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.六.相似形综合题(共2小题)11.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.12.(2023•宜昌)如图,在正方形ABCD中,E,F分别是边AD,AB上的点,连接CE,EF,CF.(1)若正方形ABCD的边长为2,E是AD的中点.①如图1,当∠FEC=90°时,求证:△AEF∽△DCE;②如图2,当tan∠FCE=时,求AF的长;(2)如图3,延长CF,DA交于点G,当GE=DE,sin∠FCE=时,求证:AE=AF.湖北省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类②参考答案与试题解析一.一次函数综合题(共1小题)1.(2023•鄂州)如图1,在平面直角坐标系中,直线l⊥y轴,交y轴的正半轴于点A,且OA =2,点B是y轴右侧直线l上的一动点,连接OB.(1)请直接写出点A的坐标;(2)如图2,若动点B满足∠ABO=30°,点C为AB的中点,D点为线段OB上一动点,连接CD.在平面内,将△BCD沿CD翻折,点B的对应点为点P,CP与OB相交于点Q,当CP⊥AB时,求线段DQ的长;(3)如图3,若动点B满足=2,EF为△OAB的中位线,将△BEF绕点B在平面内逆时针旋转,当点O、E、F三点共线时,求直线EB与x轴交点的坐标;(4)如图4,OC平分∠AOB交AB于点C,AD⊥OB于点D,交OC于点E,AF为△AEC 的一条中线.设△ACF,△ODE,△OAC的周长分别为C1,C2,C3.试探究:在B点的运动过程中,当=时,请直接写出点B的坐标.【答案】(1)(0,2);(2)﹣1;(3)(4,0)或(,0);(4)(,2).【解答】解:(1)∵OA=2,点A位于y轴的正半轴,∴点A坐标为(0,2),(2)∵∠ABO=30°,直线∥y轴,OA=2,∴OB==4,AB=OB•cos∠ABO=4•cos30°=2,∵点C为AB的中点,∴BC=,又∵CP⊥AB,∴QB==2,由折叠可知:∠PCD=∠BCD,∠PCD=∠BCD=45°,如图2,过点D作DH⊥AB,∴CH===DH,BH==DH,∴BC=BH+CH=DH+DH,即DH+DH=,∴DH=,∴DB===3﹣,∴DQ=BQ﹣BD=2﹣(3﹣)=﹣1,(3)∵=2,OA=2,∴AB=4,又∵EF为△OAB的中位线,∴BE=2,EF=1,EF∥OA,∴∠BEF=90°,I.如图,将△BEF绕点B在平面内逆时针旋转90°,到如图所示位置时∵BE⊥l,直线l⊥y轴,∴BE∥OA,又∵BE=OA=2,∴四边形OABE是矩形,∴点E、F恰好落在x轴,OE=AB=4,此时直线EB与x轴交点的坐标为(4,0),II.如图3,将△BEF绕点B在平面内逆时针旋转到点O、E、F三点共线时,如图所示位置时延长EB交x轴于点K,∵∠BEF=∠OAB=90°,BE=OA=2,OB=OB,∴Rt△OAB≌Rt△BEO(HL),∴∠ABO=∠BOE,OE=AB=4,∴OR=RB,AR=AB﹣RB=4﹣RB,在Rt△OAR中,OA2+AR2=OR2,即:22+(4﹣RB)2=RB2.解得:RB=,∴AR=,∴cos∠ARO=,∵直线l⊥y轴,直线l∥x轴,∴∠ARO=∠EOK,在Rt△OEK中,OK=,∴OK===,∴此时直线EB与x轴交点的坐标为(,0),综上所述:将△BEF绕点B在平面内逆时针旋转,当点O、E、F三点共线时,直线EB与轴交点的坐标为(4,0)或(,0);(4)∵直线l⊥y轴,AD⊥OB于点D,∴∠AOC+∠ACO=90°,∠EOD+∠OED=90°,又∵OC平分∠AOB交AB于点C,即:∠AOC=∠DOE,∴∠ACO=∠OED.又∵∠AEC=∠OED,∴∠AEC=∠ACO.∴AE=AC,∵AF为△AEC的一条中线.∴AF⊥EC,即:∠AFC=90°,∵∠ACO=∠OED=∠ACO,∠OAC=∠ODE=∠AFC=90°,∴△OAC∽△ODE∽△AFC,∴设△ACF,△ODE,△OAC的周长分别为C1,C2,C3.∴,,∵,∴,∴2AF+OD=OA=,∴2AF=﹣OD,延长AF交OB于H点,如图4,∵∠ACO=∠OED,AFO=∠HFO=90°,OF=OF,∴△AFO≌△HFO(ASA),∴OH=OA=2,AF=FH,∴AH=2AF=﹣OD,DH=OH﹣OD=2﹣OD,∵AD2=OA2﹣OD2,AD2=AH2﹣DH2,∴22﹣OD2=(﹣OD)2﹣(2﹣OD)2,解得:OD1=﹣(不合题意,舍去),OD2=,∴AD==,∴tan∠AOD==,∴AB=OA•tan∠AOB=,所以点B坐标为(,2).二.二次函数综合题(共5小题)2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B (2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN ⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P 和点Q的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式:y=﹣x2+x+2,直线BC:y=﹣x+2.(2)m=1或m=或m=2.(3)P(),Q(0,)或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0),∴抛物线的表达式为y=a(x+1)(x﹣2),将点C(0,2)代入得,2=﹣2a,∴a=﹣1,∴抛物线的表达式为y=﹣(x+1)(x﹣2),即y=﹣x2+x+2.设直线BC的表达式为y=kx+t,将B(2,0),C(0,2)代入得,,解得,∴直线BC的表达式为y=﹣x+2.(2)∵点M在直线BC上,且P(m,n),∴点M的坐标为(m,﹣m+2),∴OC=2∴CM2=(m﹣0)2+(﹣m+2﹣2)2=2m2,OM2=m2+(﹣m+2)2=2m2﹣4m+4,当△OCM为等腰三角形时,①若CM=OM,则CM2=OM2,即2m2=2m2﹣4m+4,解得m=1;②若CM=OC,则CM2=OC2,即2m2=4,解得或m=﹣(舍去);③若OM=OC,则OM2=OC2,即2m2﹣4m+4=4,解得m=2或m=0(舍去).综上,m=1或m=或m=2.(3)∵点P与点C相对应,∴△POQ∽△CBN或△POQ∽△CNB,①若点P在点B的左侧,则,当△POQ∽△CBN,即∠POQ=45°时,直线OP的表达式为y=x,∴﹣m2+m+2=m,解得或m=﹣(舍去),∴,即OP=2,∴,即,解得OQ=,∴,当△POQ∽△CNB,即∠PQO=45°时,,∴,即,解得m=1±(舍去).当△POQ∽△CNB,即∠PQO=45°时,PQ=,OQ=m﹣(﹣m2+m+2)=m2﹣2,∴,即,解得m=,(负值舍去),∴P(),Q(0.).②若点P在点B的右侧,则∠CBN=135°,BN=m﹣2,当△POQ∽△CBN,即∠POQ=135°时,直线OP的表达式为y=﹣x,∴﹣m2+m+2=﹣m,解得m=1+或m=1﹣(舍去),∴,∴,即,解得OQ=1,∴,当△POQ∽△CNB,即∠PQO=135°时,PQ=,OQ=|﹣m2+m+2+m|=m2﹣2m﹣2,∴,即,解得m=1+或m=1﹣(舍去),∴,综上,P(),Q(0,)或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).3.(2023•十堰)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.(1)求抛物线的解析式;(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.【答案】(1)y=﹣x2+x+8;(2)D(6﹣2,8);(3)0<m≤.【解答】解:(1)∵抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),∴,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)∵抛物线y=﹣x2+x+8与y轴交于点A,当x=0时,y=8,∴A(0,8),则OA=8,∵B(4,8),∴AB∥x轴,AB=4,∵点F是OA的中点,∴F(0,4),∴AB=AF=4,设直线BC的解析式为y=kx+b,∵B(4,8),C(8,4),∴,解得:,∴直线BC的解析式为y=﹣x+12,设E(m,﹣m+12)(4<m<8),如图1,过点E作EG⊥AB交AB的延长线于G,则∠G=90°,∴G(m,8),∴GE=8﹣(﹣m+12)=m﹣4,BG=m﹣4,∴BG=GE,∴△BGE是等腰直角三角形,设D(t,8),则AD=t,DG=m﹣t,∵DE⊥FD,∴∠FDE=90°,∵∠FAD=∠G=∠FDE=90°,∴∠AFD=90°﹣∠ADF=∠GDE,∴△AFD∽△GDE,∴=,即=,∴t(m﹣t)=4(m﹣4),即(t﹣4)m=(t﹣4)(t+4),∵m>4,∴m=t+4,即m﹣t=4,∴DG=AF,∴△AFD≌△GDE(ASA),∴DF=DE,又∵DE⊥DF,∴△DEF是等腰直角三角形,∴S△DEF=DF2,∵S△ADF=AD•AF,当△DEF面积是△ADF面积的3倍时,即DF2=3×AD•AF,∴DF2=12AD,在Rt△ADF中,DF2=AD2+AF2=t2+42,∴AD2+AF2=12AD,∴t2+42=12t,解得:t=6﹣2或t=2+6(舍去),∴D(6﹣2,8);(3)∵∠GBP=∠HGP=∠BOH,又∠OGH+∠HGP=∠GBP+∠BPG,∴∠OGH=∠BPG,∴△OGH∽△BPG,∴=,设BP交x轴于点S,过点B作BT⊥x轴于点T,如图2,∵∠GBP=∠BOH,∴SB=SO,∵OT=4,BT=8,∴OB==4,设BS=k,则TS=k﹣4,在Rt△TBS中,SB2=ST2+BT2,∴k2=(k﹣4)2+82,解得:k=10,∴S(10,0),设直线BS的解析式为y=ex+f,则,解得:,∴直线BS的解析式为y=﹣x+,联立,解得:或,∴P(,﹣),∴PB==,∵=,设OG=n,则BG=OB﹣OG=4﹣n,∴=,整理得:m=﹣=﹣n2+n=﹣(n﹣2)2+,∵点G在线段OB上(与点O,B不重合),∴0<OG<4,∴0<n<4,∴当n=2时,m取得的最大值为,∴0<m≤.4.(2023•鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点F(0,)的距离PF,始终等于它到定直线l:y=﹣的距离PN(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为FH的中点,FH=2OF=.例如,抛物线y=2x2,其焦点坐标为F(0,),准线方程为l:y=﹣,其中PF=PN,FH=2OF=.【基础训练】(1)请分别直接写出抛物线y=x2的焦点坐标和准线l的方程: (0,1) , y=﹣1 ;【技能训练】(2)如图2,已知抛物线y=x2上一点P(x0,y0)(x0>0)到焦点F的距离是它到x 轴距离的3倍,求点P的坐标;【能力提升】(3)如图3,已知抛物线y=x2的焦点为F,准线方程为l.直线m:y=x﹣3交y 轴于点C,抛物线上动点P到x轴的距离为d1,到直线m的距离为d2,请直接写出d1+d2的最小值;【拓展延伸】该兴趣小组继续探究还发现:若将抛物线y=ax2(a>0)平移至y=a(x﹣h)2+k(a>0).抛物线y=a(x﹣h)2+k(a>0)内有一定点F(h,k+),直线l过点M(h,k﹣)且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离PP1始终等于点P到点F的距离(该结论不需要证明).例如:抛物线y=2(x﹣1)2+3上的动点P到点F(1,)的距离等于点P到直线l:y=的距离.请阅读上面的材料,探究下题:(4)如图4,点D(﹣1,)是第二象限内一定点,点P是抛物线y=x2﹣1上一动点.当PO+PD取最小值时,请求出△POD的面积.【答案】(1)(0,1),y=﹣1;(2)(,);(3)﹣1;(4).【解答】解:(1)∵抛物线y=x2中a=,∴=1,﹣=﹣1,∴抛物线y=x2的焦点坐标为F(0,1),准线l的方程为y=﹣1,故答案为:(0,1),y=﹣1;(2)由(1)知抛物线y=x2的焦点F的坐标为(0,1),∵点P(x0,y0)到焦点F的距离是它到x轴距离的3倍,∴=3y0,整理得:=8+2y0﹣1,又∵y0=,∴4=8+2y0﹣1,解得:y0=或y0=﹣(舍去),∴x0=,∴点P的坐标为(,);(3)过点P作PE⊥直线m交于点E,过点P作PG⊥准线l交于点G,结合题意和(1)中结论可知PG=PF=d1+1,PE=d2,如图:若使得d1+d2取最小值,即PF+PE﹣1的值最小,故当F,P,E三点共线时,PF+PE﹣1=EF﹣1,即此刻d1+d2的值最小;∵直线PE与直线m垂直,故设直线PE的解析式为y=﹣2x+b,将F(0,1)代入解得:b=1,∴直线PE的解析式为y=﹣2x+1,∵点E是直线PE和直线m的交点,令﹣2x+1=x﹣3,解得:x=,故点E的坐标为(,﹣),∴d1+d2=﹣1.即d1+d2的最小值为﹣1.(4)∵抛物线y=x2﹣1中a=,∴=1,﹣=﹣1,∴抛物线y=x2﹣1的焦点坐标为(0,0),准线l的方程为y=﹣2,过点P作PG⊥准线l交于点G,结合题意和(1)中结论可知PG=PF,则PO+PD=PG+PD,如图:若使得PO+PD取最小值,即PG+PD的值最小,故当D,P,G三点共线时,PO+PD=PG+PD=DG,即此刻PO+PD的值最小;如图:∵点D的坐标为(﹣1,),DG⊥准线l,∴点P的横坐标为﹣1,代入y=x2﹣1解得y=﹣,即P(﹣1,﹣),OP=+=,则△OPD的面积为××1=.5.(2023•湖北)已知抛物线与x轴交于A,B(4,0)两点,与y轴交于点C(0,2).点P为第一象限抛物线上的点,连接CA,CB,PB,PC.(1)直接写出结果;b= ,c= 2 ,点A的坐标为 (﹣1,0) ,tan∠ABC = ;(2)如图1,当∠PCB=2∠OCA时,求点P的坐标;(3)如图2,点D在y轴负半轴上,OD=OB,点Q为抛物线上一点,∠QBD=90°.点E,F分别为△BDQ的边DQ,DB上的动点,且QE=DF,记BE+QF的最小值为m.①求m的值;②设△PCB的面积为S,若,请直接写出k的取值范围.【答案】(1),2,(﹣1,0),;(2)(2,3);(3)①;②13≤k<17.【解答】解:(1)∵抛物线经过点B(4,0),C(0,2),∴,解得:,∴抛物线解析式为:,∵抛物线与x轴交于A、B(4,0)两点,∴y=0时,,解得:x1=﹣1,x2=4,∴A(﹣1,0),∴OB=4,OC=2,在Rt△COB中,.故答案为:,2,(﹣1,0),;(2)过点C作CD∥x轴,交BP于点D,过点P作PE∥x轴,交y轴于点E,∵AO=1,OC=2,OB=4,∴,由(1)可得,,即tan∠OCA=tan∠ABC,∴∠OCA=∠ABC,∵∠PCB=2∠OCA,∴∠PCB=2∠ABC,∵CD∥x轴,EP∥x轴,∴∠ACB=∠DCB,∠EPC=∠PCD,∴∠EPC=ABC,又∵∠PEC=∠BOC=90°∴△PEC∽△BOC,∴,设点P坐标为,则EP=t,,∴,解得:t=0 (舍),t=2,∴点P坐标为(2,3);(3)①如图2,作DH⊥DQ,且使DH=BQ,连接FH,∵∠BQD+∠BDQ=90°,∠HDF+∠BDQ=90°,∴∠BQD=∠HDF,∵QE=DF,DH=BQ,∴△BQE≌△HDF(SAS),∴BE=FH,∴BE+QF=FH+QF≥QH,∴Q,F,H共线时,BE+QF的值最小.作QG⊥AB于点G,∵OB=OD,∠BOD=90°,∴∠OBD=45°,∵∠QBD=90°,∴∠QBG=45°,∴QG=BG.设G(n,0),则,∴,解得n=1 或n=4 (舍去),∴Q(1,3),∴QG=BG=4﹣1=3,∴,∴m=QH==2;②如图3,作PT∥y轴,交BC于点T,∵BC解析式为,设,,则,∵点P在第一象限,∴0<S≤4,∴,∴0<17﹣k≤4,∴13≤k<17.6.(2023•宜昌)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=﹣2x上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是 等腰直角 三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx﹣4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.【答案】(1)等腰直角三角形;(2)见解析;(3)①t=3;②t=6;③D(,).【解答】(1)解:∵A(0,2),B(2,0),∴OA=OB=2,∠AOB=90°,∴△AOB是等腰直角三角形,故答案为:等腰直角;(2)证明:∵∠EOD=90°,∠AOB=90°,∴∠AOB﹣∠AOD=∠DOE﹣∠AOD,∴∠AOE=∠BOD,∵AO=OB,OD=OE,∴△AOE≌△BOD(SAS);(3)解:①设直线AC的解析式为y=kx+b,∵A(0,2),C(t,0),∴,∴∴y AC=﹣x+2,将C(t,0),B(2,0)代入抛物线,得,,解得,∴,∵直线与抛物线有唯一交点,∴联立解析式组成方程组解得x2﹣(t+3)x+3t=0,∴Δ=(t+3)2﹣4×3t=(t﹣3)2=0,∴t=3;②∵抛物线向左平移2个单位得到y2,∴抛物线,∴抛物线y2的顶点,将顶点代入t2﹣6t=0,解得t1=0,t2=6,∵t>2,∴t=6;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N.∴∠EMO=∠OND=90°,∵∠DOE=90°,∴∠EOM+∠MEO=∠EOM+∠NOD=90°,∴∠MEO=∠NOD,∵OD=OE,∴△ODN≌△EOM(AAS),∴ON=EM,DN=OM,∵OE的解析式为y=﹣2x,∴设EM=2OM=2m,∴DN=OM=m,∵EM⊥x轴,∴OA∥EM,∴△CAO∽△CEM,∴OC:CM=OA:EM,∴,∴,∴,,∴D(,),∵抛物线y2再向下平移个单位,得到抛物线y3,∴抛物线,∴D(,),代入抛物线,∴3t2﹣19t+6=0 解得t1=,t2=6,由t>2,得t=6,∴,∴D(,).三.四边形综合题(共1小题)7.(2023•十堰)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF= 20° ;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b,请直接用含a,b的式子表示DF 的长.【答案】(1)20°;(2);(3)或或.【解答】解:(1)如图,连接CE,DE,∵点C关于直线DP的对称点为点E,∴CD,ED关于DP对称,∠CDP=∠EDP=25°,CD=ED,∵四边形ABCD是正方形,∴AD=CD,∴AD=ED,∴.故答案为:20°;(2)结论:.理由:如图,连接DE,CE,AC,CF.由轴对称知,CF=EF,CD=DE=AD,∠DEF=∠DCF,而∠DEF=∠DAF,∴∠DAF=∠DCF.∵∠FAC+∠FCA=∠FAC+∠DAF+∠DCA=90°,∴∠AFC=180°﹣(∠FAC+∠FCA)=90°,在Rt△ACF中,AC2=AF2+CF2=AF2+EF2,在Rt△ACD中,AD2+CD2=AC2,2CD2=AF2+EF2,即;(3)∵∠AFC=90°,CF=EF=b,∴,∵,∴.如图,当点F在D,H之间时,,如图,当点D在F,H之间时,,如图,当点H在F,D之间时,.四.圆的综合题(共2小题)8.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB =4,PB=3.(1)填空:∠PBA的度数是 90° ,PA的长为 5 ;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.【答案】(1)90°,5;(2);(3).【解答】解:(1)∵AB是⊙O的直径,PB是⊙O的切线,∴∠PBA的度数为90°,∵AB=4,PB=3,∴PA===5,故答案为:90°,5;(2)∵AB是直径,∴∠ACB=90°,∵S△ABP=×AP•BC=AB•BP,∴BC=,∴AC===,∴S△ABC=×AC•BC=××=;(3)∵CD⊥AB,∴∠ADC=90°=∠ACB,∴∠ACD+∠BCD=90°=∠ABC+∠BCD,∴∠ACD=∠ABC,∵四边形ABCE是圆的内接四边形,∴∠ABC+∠AEC=180°,∵∠ACD+∠ACF=180°,∴∠AEC=∠ACF,又∵∠EAC=∠FAC,∴△EAC∽△CAF,∴,∵AE=5EC,AC=,∴CF=,∵∠ADC=90°=∠ACB,∠BAC=∠DAC,∴△ADC∽△ACB,∴=,∴AD==,∴CD=,DB=,∴DF=CD+CF==AD,∴△ADF是等腰直角三角形,∴AF=,∴=,∴AE=2,∴EF=AF﹣AE=,∵DF∥BG,∴,∴=,∴FG=,∴==.9.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.【答案】(1)证明见解析;(2)证明见解析;(3).【解答】(1)证明:如图1,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴DA∥OC,∵CD⊥DA,∴OC⊥CD,∴CD是⊙O的切线;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵AC平分∠DAB,∴∠DAC=∠BAC,∵∠DAC=∠PBC,∴∠BAC=∠PBC,又∵∠ACB=∠BCP,∴△ACB∽△BCP,∴=,∴AC•PC=BC2;(3)解:如图2,过P作PE⊥AB于点E,由(2)可知,AC•PC=BC2,∵BC2=3FP•DC,∴AC•PC=3FP•DC,∵CD⊥DA,∴∠ADC=90°,∵AB为⊙O的直径,∴∠BCP=90°,∴∠ADC=∠BCP,∵∠DAC=∠CBP,∴△ACD∽△BPC,∴=,∴AC•PC=BP•DC,∴BP•DC=3FP•DC,∴BP=3FP,∵AB为⊙O的直径,∴∠AFB=90°,∴PF⊥AD,∵AC平分∠DAB,PE⊥AB,∴PF=PE,∵==,∴===.五.几何变换综合题(共1小题)10.(2023•湖北)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图1,当m=1时,直接写出AD,BE的位置关系: AD⊥BE .(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=,AB=4,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.【答案】(1)BE⊥AD;(2)成立,理由见解析过程;(3)BE=6或4.【解答】解:(1)如图1,延长BE交AC于点H,交AD于N,当m=1时,DC=CE,CB=CA,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠DAC=∠CBE,∵∠CAB+∠ABE+∠CBE=90°,∴∠CAB+∠ABE+∠DAC=90°,∴∠ANB=90°,∴AD⊥BE,故答案为:AD⊥BE;(2)(1)中的结论成立,理由如下:如图2,延长BE交AC于点H,交AD于N,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,又∵,∴△DCA∽△ECB,∴∠DAC=∠CBE,∵∠CAB+∠ABE+∠CBE=90°,∴∠CAB+∠ABE+∠DAC=90°,∴∠ANB=90°,∴AD⊥BE,(3)如图3,当点E在线段AD上时,连接BE,∵△DCA∽△ECB,∴=m=,∴BE=AD=(4+AE),∵AD⊥BE,∴AB2=AE2+BE2,∴112=AE2+3(4+AE)2,∴AE=2或AE=﹣8(舍去),∴BE=6,当点D在线段AE上时,连接BE,∵△DCA∽△ECB,∴=m=,∴BE=AD=(AE﹣4),∵AD⊥BE,∴AB2=AE2+BE2,∴112=AE2+3(AE﹣4)2,∴AE=8或AE=﹣2(舍去),∴BE=4,综上所述:BE=6或4.六.相似形综合题(共2小题)11.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.【答案】问题探究(1)45°;(2)∠GCF=α﹣90°;问题拓展:.【解答】解:问题探究(1)如图(2)中,在BA上截取BJ,使得BJ=BE.∵四边形ABCD是正方形,∴∠B=∠BCD=90°,BA=BC,∵BJ=BE,∴AJ=EC,∵∠AEC=∠AEF+∠CEF=∠BAE+∠B,∠AEF=∠B=90°,∴∠CEF=∠EAJ,∵EA=EF,∴△EAJ≌△FEC(SAS),∴∠AJE=∠ECF,∵∠BJE=45°,∴∠AJE=180°﹣45°=135°,∴∠ECF=135°,∴∠GCF=∠ECF﹣∠ECD=135°﹣90°=45°;(2)结论:∠GCF=α﹣90°;理由:在AB上截取AN,使AN=EC,连接NE.∵∠ABC+∠BAE+∠AEB=∠AEF+∠FEC+∠AEB=180°,∠ABC=∠AEF,∴∠EAN=∠FEC.∵AE=EF,∴△ANE≌△ECF(SAS).∴∠ANE=∠ECF.∵AB=BC,∴BN=BE.∵∠EBN=α,∴,∴∠GCF=∠ECF﹣∠BCD=∠ANE﹣∠BCD=;问题拓展:过点A作CD的垂线交CD的延长线于点P,设菱形的边长为3m.,∴DG=m,CG=2m.在Rt△ADP中,∠ADC=∠ABC=120°,∴∠ADP=60°,∴m,,∴α=120°,由(2)知,,∵∠AGP=∠FGC,∴△APG∽△FCG.∴,∴=,∴,由(2)知,,∴.∴.12.(2023•宜昌)如图,在正方形ABCD中,E,F分别是边AD,AB上的点,连接CE,EF,CF.(1)若正方形ABCD的边长为2,E是AD的中点.①如图1,当∠FEC=90°时,求证:△AEF∽△DCE;②如图2,当tan∠FCE=时,求AF的长;(2)如图3,延长CF,DA交于点G,当GE=DE,sin∠FCE=时,求证:AE=AF.【答案】(1)①证明见解析部分;②;(2)证明见解析部分.【解答】(1)①证明:如图1中,∵四边形ABCD是正方形,∴∠A=∠D=90°,∵∠CEF=90°,∴∠AEF+∠CED=90°,∠ECD+∠CED=90°,∴∠AEF=∠ECD,∴△AEF∽△DCE;②解:如图2中,延长DA交CF的延长线于点G,过点G作GH⊥CE交CE的延长线于点H.∴△GEH∽△CED,∴=,∵CD=2,AE=ED=1,∴GH=2HE,设EH=m,GH=2m.∵CE===,∴CH=m+,∵tan∠ECF==,∴=,∴m=,∴EH=,GH=,∴EG===,∴AG=EG﹣AE=﹣1=,DG=EG+DE=+1=,∵AF∥CD,∴=,∴=,∴AF=;(3)证明:如图3中,过点G作GH⊥CE交CE的延长线于点H.设AD=CD=a,GE=DE=t,EH=x,GH=y,CE=n,∵∠H=∠D=90°,∠GEH=∠CED,∴△GEH∽△CED,∴==∴==,∴x=,y=,在Rt△CGH中,sin∠ECF==,∴CG=3GH,CH=2GH,∴=,∴2y=x+n,∴2×=+n,∴2at=t2+n2,在Rt△CDE中,n2=t2+a2,∴2at=2t2+a2,∴a=t,∵AF∥CD,∴=,∴=,∴AF==a﹣=a﹣t,∵AE=a﹣t,∴AE=AF.。

专题01 实数-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

专题01 实数-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

专题01 实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于( )A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,进行求解即可.【详解】解:实数9的相反数是-9,故选A.【点睛】本题主要考查了相反数的定义,熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图,数轴上点E对应的实数是( )A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·0,1-,2这四个实数中,最大的数是()A.0B.1-C.2D【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵20>-1,∴0,-1,2这四个实数中,最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中,结果正确的是( )A .22423x x x +=B .()325x x =C 2=-D 2=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定.【详解】解:A.22223x x x +=,故该选项不正确,不符合题意;B.()326x x =,故该选项不正确,不符合题意;2=-,故该选项正确,符合题意;2=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键.5.(2021·A .±3B .3C .±9D .9【解析】【分析】【详解】解:,9的平方根是±3,±3,故选:A .【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中,为无理数的是( )A .-2B .0CD .3.14【答案】C【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可解答.【详解】解:-2,0是整数,属于有理数;3.14是有限小数,属于有理数C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.7.(2021·贵州毕节)下列运算正确的是( )A .()031p -=-B 3=±C .133-=-D .()236a a -=【答案】D【分析】直接计算后判断即可.【详解】()031p -=3=;1133-=;()236a a -=.故选D 【点睛】本题考查了零指数幂、算数平方根,负整数指数幂和幂的运算,关键是掌握概念和运算规则.8.(2020·贵州黔南)已知1a ,a 介于两个连续自然数之间,则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a <<【答案】C【解析】【分析】的范围,即可得出答案.【详解】解:∵45<<,∴314<,1在3和4之间,即34a <<.故选:C .【点睛】9.(2020·山东东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )A .2-B .2C .2±D .4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.=,2故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.10.(2022·的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】=,从而判定即可.6【详解】=6,∴43,∴910<,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.+W的“W”中添上一种运算符号(在+,-,×,÷中选择)后,11.(2020·湖北荆州)若x为实数,在)1x其运算的结果是有理数,则x不可能的是()A1B1C.D.1【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】A.))110-=,结果为有理数;B.))112×= ,结果为有理数;C.无论填上任何运算符结果都不为有理数;D.)(112+=,结果为有理数;故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a ,b 在数轴上的位置如图所示,则 ( )A .a b=B .a b >C .a b<D .a b>【答案】C【解析】【分析】根据数轴上点的位置,可得11a b -<<<,进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置,可得11a b -<<<,\a b <,故选C .【点睛】本题考查了实数与数轴,根据数轴上点的位置判断实数的大小,数形结合是解题的关键.13.(2022·广东广州)下列运算正确的是( )A 2=B .11a a a a +-=(0a ≠)C =D .235a a a ×=【答案】D 【解析】根据求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,逐项分析判断即可求解.【详解】A. 2=-,故该选项不正确,不符合题意;B.111aa a+-=(0a≠),故该选项不正确,不符合题意;C. =D.235a a a×=,故该选项正确,符合题意;故选D【点睛】本题考查了求一个数的立方根,分式的加减,二次根式的加法,同底数幂的乘法运算,正确的计算是解题的关键.14.(2021·的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25,∴4<5,的值应在4和5之间.故选:C.【点睛】的取值范围是解题关键.15.(2021·之间的是()A.3B.4C.5D.6【答案】C【分析】=,即可得出结果.>>5=<<6【详解】Q<<5=,45\<<,又Q<<6=,\56<<,\<<<<,456故选:C.【点睛】本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.16.(2021·山东日照)下列命题:的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是( )A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:,故原命题错误,是假命题;②菱形既是中心对称图形又是轴对称图形,正确,是真命题;②天气预报说明天的降水概率是95%,则明天下雨可能性很大,但不确定是否一定下雨,故原命题错误,是假命题;④若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故原命题错误,是假命题;真命题有1个,【点睛】本题考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识,难度不大.17.(2020·广西贵港)下列命题中真命题是( )A 2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)°´-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是2222216(22)(02)(32)(22)(32)55éù-+-+-+-+-=ëû,故B 正确;C. 正六边形的内角和为180(62)720°´-=°,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础18.(2020·内蒙古赤峰)估计( ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(=,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算,按键操作不正确的是()A.按键即可进入统计计算状态BC.计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D.计算器显示结果为13时,若按键,则结果切换为小数格式0.333333333【答案】B 【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的,故选项A 不符合题意;B ,故选项B 符合题意;C 、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C 不符合题意;D 、计算器显示结果为13时,若按键,则结果切换为小数格式0.333333333是正确的,故选项D 不符合题意;故选:B .【点睛】本题考查了科学计算器,熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A .有一个实根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根【答案】B【解析】【分析】将x k *按照题中的新运算方法展开,可得()()1x k x k x k *=+--,所以x k x *=可得()()1x k x k x +--=,化简得:2210x x k ---=,()()222141145k k D =--´×--=+,可得0D >,即可得出答案.【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--,则x k x *=即为221x k x --=,整理得:2210x x k ---=,则21,1,1a b c k ==-=--,可得:()()222141145k k D =--´×--=+20k ³Q ,2455k \+³;0\D >,\方程有两个不相等的实数根;故答案选:B.【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D【解析】【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.22.(2021·广东)设6a ,小数部分为b ,则(2a b 的值是( )A .6B .C .12D .【答案】A【解析】【分析】的整数部分可确定a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b +=´+=+=-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( )A .23-B .13C .12-D .23【答案】D【解析】【分析】当13a =时,计算出23421,,3,32a a a ==-=××××××,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=××××××,会发现是以:213,,32-,循环出现的规律,202136732=´+Q ,2021223a a \==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b ,则log ab =m (a >0),例如23=8,则log 28=3.运用以上定义,计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A【解析】【分析】先根据乘方确定53=125,34=81,根据新定义求出log 5125=3,log 381=4,再计算出所求式子的值即可.【详解】解:∵53=125,34=81,∴log 5125=3,log 381=4,∴log 5125﹣log 381,=3﹣4,=﹣1,故选:A .【点睛】本题考查新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,掌握新定义对数函数运算,仔细阅读题目中的定义,找出新定义运算的实质,解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=´+´=※.若关于x 的方程[]21,52,0x x k k éùëû+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k £C .54k £且0k ≠D .54k ³【答案】C【解析】【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴()()21520k x k x ++-=.整理得,()2520kx k x k +-+=.∵方程有两个实数根,∴判别式0³V 且0k ≠.由0³V 得,()225240k k --³,解得,54k £.∴k 的取值范围是54k £且0k ≠.故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm【答案】B【解析】【分析】由圆锥的圆锥体底面半径是6cm,高是6cm,可得CD=DE,根据园锥、圆柱体积公式可得液体的体积为63πcm3,圆锥的体积为72πcm3,设此时“沙漏”中液体的高度AD=x cm,则DE=CD=(6-x)cm,根据题意,列出方程,即可求解.【详解】解:如图,作圆锥的高AC,在BC上取点E,过点E作DE⊥AC于点D,则AB=6cm,AC=6cm,∴△ABC为等腰直角三角形,∵DE∥AB,∴△CDE∽△CAB,∴△CDE 为等腰直角三角形,∴CD =DE ,圆柱体内液体的体积为:233763cm p p ´´=圆锥的体积为2316672cm 3p p ´´=,设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,∴21(6)(6)72633x x p p p ×-×-=-,∴3(6)27x -=,解得:x =3,即此时“沙漏”中液体的高度3cm .故选:B .【点睛】本题考查圆柱体、圆锥体体积问题,解题的关键是掌握圆柱体、圆锥体体积公式,列出方程解决问题.27.(2020·湖南长沙)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②p 是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A.【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.二、填空题28.(2022·1-,p,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数,再除以总个数.【详解】,p是无理数,P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数,熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算,若输出y的值是2,则输入x的值是_____.【答案】1【解析】【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∴上一步计算为121x=+或221x =-解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件故答案为:1【点睛】本题考查了解分式方程,理解题意是解题的关键.30.(2021·______.【答案】10【解析】【分析】根据1011【详解】解:即1011,10,故答案为:10.【点睛】本题主要考查无理数的估算,解题的关键是确定无理数位于哪两个整数之间.31.(2021·()10120213p -æö-+-=ç÷èø___________.【答案】-4【解析】【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解.【详解】解:原式=()213-++-51=-+4=-.故答案为:-4【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点,熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是________________.【答案】 5- 2±【解析】【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2【详解】第1空:∵385-+=,则其相反数为:5-第2空:4=,则其平方根为:2±故答案为:5-,2±.【点睛】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020数有_____个.【答案】3【解析】【分析】根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π这3个,故答案为:3.【点睛】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)2,则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11【解析】【分析】根据平方的非负性,算术平方根的非负性求得,a b 的值,进而根据等腰三角形的定义,分类讨论,根据构成三角形的条件取舍即可求解.【详解】解:∵(a ﹣3)2,∴3a =,5b =,当3a =为腰时,周长为:26511a b +=+=,当5b =为腰时,三角形的周长为231013a b +=+=,故答案为:11或13.【点睛】本题考查了等腰三角形的定义,非负数的性质,掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x 的值为 _____.【答案】56【解析】【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1,等式两边同时乘以2(21)x -得,2212(21)x x -+=-,解得:56x=,经检验,x=56是原方程的根,∴x=56,故答案为:56.【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.36.(2022·湖北随州)已知m为正整数,是整数,==可知m有最小值3721´=.设n1的整数,则n的最小值为______,最大值为______.【答案】 3 75【解析】【分析】根据n为正整数,1的整数,先求出n的值可以为3、12、75,3001的整数来求解.=1的整数,∵n为正整数∴n的值可以为3、12、75,n的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1,它介于整数n和1n+之间,则n的值是______.【答案】1【解析】【分析】1即可完成求解.【详解】解:2.236»;1 1.236»;因为1.236介于整数1和2之间,所以1n =;故答案为:1.【点睛】该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x ,则称1x ,2x ,3x ,…,n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y ,3y …n y 其中n y 是这个数列中第n 个位置上的数,1n =,2,…k 且111101n n n n n x x y x x -+-+=ì=í≠î并规定0n x x =,11n x x +=.如果数列A 只有四个数,且1x ,2x ,3x ,4x 依次为3,1,2,1,则其“伴生数列”B 是__________.【答案】0,1,0,1【解析】【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3,可得x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,根据定义其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1即可.【详解】解:∵1x ,2x ,3x ,4x 依次为3,1,2,1,∴x 0=x 4=1,x 5=x 1=3,∴x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,∵x 0=2x =1,y 1=0;x 1≠x 3,y 2=1;2x =4x =1,y 3=0;3x ≠x 5,y 4=1;∴其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1.故答案为:0, 1, 0, 1.【点睛】本题考查新定义数列与伴生数列,仔细阅读题目,理解定义,抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键.39.(2020·上海)已知f (x )=21x -,那么f (3)的值是____.【答案】1.【解析】【分析】根据f (x )=21x -,将3x =代入即可求解.【详解】解:由题意得:f (x )=21x -,∴将3x =代替表达式中的x ,∴f (3)=231-=1.故答案为:1.【点睛】本题考查函数值的求法,解答本题的关键是明确题意,利用题目中新定义解答.40.(2020·浙江衢州)定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果为_____.【答案】x 2﹣1【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【详解】解:根据题意得:(x ﹣1)※x =(x ﹣1)(x +1)=x 2﹣1.故答案为:x 2﹣1.【点睛】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键.41.(2020·青海)对于任意不相等的两个实数a ,b ( a > b )定义一种新运算,如12※4=______【解析】【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.42.(2022·这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=L _______.【答案】5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:=1ab =\,1112211112a b a b a b b b a b S a a ++++=+===+++++++Q ,222222222222222222221112a b a b S a b a b a b a b++++=+=´=´=+++++++,…,10010010010010010010010010010010011100100111a b S a b a b a b +++=+=´=+++++\12100S S S +++=L 121005050++¼¼+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号)①724.②外角为60°且边长为2③把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-.④新定义运算:2*21m n mn n =--,则方程1*0x -=有两个不相等的实数根.【答案】①③④【解析】【分析】①;先判断出正多边形为正六边形,再求出其内切圆半径即可判断②;根据直线的平移规律可判断③;根据新定义运算列出方程即可判断④.【详解】解:①∵161725<<,∴45<∴54-<<-∴273<∴72,小数部分为5①错误;②外角为60°的正多边形的边数为:36060=6°¸°∴这个正多边形是正六边形,设这个正六边形为ABCDEF ,如图,O 为正六边形的中心,连接OA ,过O 作OG ⊥AB 于点G ,∵AB =2,∠BAF =120°∴AG =1,∠GAO =60°∴OG =,即外角为60°且边长为2②正确;③把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-,故③错误;④∵新定义运算:2*21m n mn n =--,∴方程21*(1)210x x x -=-´--=,即2210x x ++=,∴2=24110D -´´=∴方程1*0x -=有两个相等的实数根,故④错误,∴错误的结论是①③④帮答案为①③④.【点睛】此题主要考查了无理数的估算,正多边形和圆,直线的平移以及根的判别式,熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率p 精确到小数点后第七位的人,他给出p 的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507p <<,则利用一次“调日法”后可得到p 的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457p »<,再由17922577p <<,可以再次使用“调日法”得到p 的更为精确的近似分数……现已知7352<<,则使用两次“调日法”______.【答案】1712【解析】【分析】根据“调日法”的定义,第一次结果为:107,所以71057<<,根据第二次“调日法”进行计算即可.【详解】解:∵7352<<∴第一次“调日法”,结果为:7+310=5+27∵10 1.42867»>∴71057<< ∴第二次“调日法”,结果为:7+1017=5+712 故答案为:1712【点睛】本题考查无理数的估算,根据定义,严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【解析】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是,即可求解.【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16´´=x x设第三行第一个数为y ,则3´=y ,解得y =∴2个空格的实数之积为xy ==故答案为:.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 45p -+o 【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:0(1)4sin 45p -+o=143+=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:112-æö-ç÷èø4sin 60°.【答案】2【解析】【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:114sin 602-æöç÷°ç÷èø4´2=+2=【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.48.(2021·湖南张家界)计算:2021(1)2-+-°+【解析】【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.【详解】解:2021(1)2-+-°11222=-+-´+=【点睛】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.49.(2020·山东济南)计算:0112sin 3022p -æöæö-°ç÷ç÷èøèø.【答案】4【解析】【分析】分别计算零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,再合并即可得到答案.【详解】解:原式112222=-´++。

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 组和第 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 名学生,其中选择“C家用器具使用与维护”的女生有 名,“D烹饪与营养”的男生有 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】见试题解答内容【解答】解:(1)设A型充电桩的单价为x万元,则B型充电桩的单价少(x+0.3)万元,根据题意得=,解得x=0.9,经检验x=0.9是原方程的解,x+0.3=1.2.答:A型充电桩的单价为0.9万元,则B型充电桩的单价为1.2万元;(2)设购买A型充电桩m个,则购买B型充电桩(25﹣m)个,根据题意,得:,解得:≤m≤.∵m为整数,∴m=14,15,16.∴该停车场有3种购买机床方案,方案一:购买14个A型充电桩、11个B型充电桩;方案二:购买15个A型充电桩、10个B型充电桩;方案三:购买16个A型充电桩、9个B型充电桩.∵A型机床的单价低于B型机床的单价,∴购买方案三总费用最少,最少费用=16×0.9+1.2×9=25.2(万元).二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.【答案】(1)反比例函数为y=﹣,B(4,﹣1),一次函数为y=﹣x+3;(2)n=﹣.【解答】解:(1)反比例函数y=的图象过A(﹣1,4),B(a,﹣1)两点,∴m=﹣1×4=a•(﹣1),∴m=﹣4,a=4,∴反比例函数为y=﹣,B(4,﹣1),把A、B的坐标代入y=kx+b得,解得,∴一次函数为y=﹣x+3;(2)∵A(﹣1,4),B(4,﹣1),P(n,0),BQ∥AP,BQ=AP,∴四边形APQB是平行四边形,∴点A向左平移﹣1﹣n个单位,向下平移4个单位得到P,∴点B(4,﹣1)向左平移﹣1﹣n个单位,向下平移4个单位得到Q(5+n,﹣5),∵点Q在y=﹣上,∴5+n=,解得n=﹣.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.【答案】(1)一次函数的表达式为y=x﹣1,该函数的图象见解答;(2)x<﹣2或0<x<4;(3)点P的坐标为(0,)或(0,﹣).【解答】解:(1)∵反比例函数y=的图象经过A(m,1),B(﹣2,n)两点,∴1=,n==﹣2,解得:m=4,∴A(4,1),B(﹣2,﹣2),将A(4,1),B(﹣2,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为y=x﹣1,该函数的图象如图所示:(2)由图可得,不等式kx+b﹣<0的解集范围是x<﹣2或0<x<4;(3)设直线AB交x轴于C,交y轴于D,在y=x﹣1中,当x=0时,y=﹣1,∴D(0,﹣1),当y=0时,得x﹣1=0,解得:x=2,∴C(2,0),∴OC=2,∵P(0,a),A(4,1),∴PD=|a+1|,∵S△APC=,∴|a+1|•(4﹣2)=,解得:a=或﹣,∴点P的坐标为(0,)或(0,﹣).四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+3x+4;(2)当m为时,四边形CDNP是平行四边形;(3)存在这样的m值,使MN=2ME,此时m的值为或.【解答】解:(1)在直线y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,∴点B(4,0),点C(0,4),设抛物线的解析式为,把点B(4,0),点C(0,4)代入可得:,解得:,∴抛物线的解析式为y==﹣x2+3x+4;(2)由题意,P(m,﹣m2+3m+4),∴PN=﹣m2+3m+4,当四边形CDNP是平行四边形时,PN=CD,∴OD=﹣m2+3m+4﹣4=﹣m2+3m,∴D(0,m2﹣3m)N(m,0),设直线MN的解析式为,把N(m,0)代入可得,解得:k1=3﹣m,∴直线MN的解析式为y=(3﹣m)x+m2﹣3m,又∵过点P作x轴的平行线交抛物线于另一点M,且抛物线对称轴为,∴M(3﹣m,﹣m2+3m+4),∴(3﹣m)2+m2﹣3m=﹣m2+3m+4,解得m1=(不合题意,舍去),m2=;∴当m为时,四边形CDNP是平行四边形;(3)存在,理由如下:∵对称轴为x=,设P点坐标为(m,﹣m2+3m+4),∴M点横坐标为:×2﹣m=3﹣m,∴N(m,0),M(3﹣m,﹣m2+3m+4),①如图1,∵MN=2ME,即E是MN的中点,点E在对称轴x=上,∴E(,),又点E在直线BC:y=﹣x+4,代入得:=﹣+4,解得:m=或(舍去),故此时m的值为.②如图2,设E点坐标为(n,﹣n+4),N(m,0),M(3﹣m,﹣m2+3m+4),∵MN=2ME,∴0﹣(﹣m2+3m+4)=2(﹣m2+3m+4+n﹣4)①,∴3﹣m﹣m=2(n﹣3+m)②,联立①②并解得:m=(舍去)或,综上所述,m的值为或.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵∠B=∠AED=∠C,∠AEC=∠B+∠BAE=∠AED+∠CED,∴∠BAE=∠CED,在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,∴∠EAD=∠EDA;(2)解:∵∠AED=∠C=60°,AE=ED,∴△AED为等边三角形,∴AE=AD=ED=4,过A点作AF⊥ED于F,∴EF=ED=2,∴AF=,∴S△AED=ED•AF=.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.【答案】(1)S=(0≤x≤4),(2)当x=2时,S有最大值,最大值为2.【解答】解:(1)如图,过点A作AG⊥OC于点G,连接AC,∵顶点A的坐标为(2,2),∴OA=,OG=2,AG=2,∴cos∠AOG==,∴∠AOG=60°,∵四边形OABC是菱形,∴∠BOC=∠AOB=30°,AC⊥OB,AO=OC,∴△AOC是等边三角形,∴∠ACO=60°,∵DE⊥OB,∴DE∥AC,∴∠EDO=∠ACO=60°,∴△EOD是等边三角形,∴ED=OD=x,∵DF∥OB,∴△CDF∽△COB,∴,∵A(2,2),AO=4,则B(6,2),∴OB=,∴=,∴DF=(4﹣x),∴S==,∴S=(0≤x≤4),(2)∵S==(0≤x≤4),∴当x=2时,S有最大值,最大值为2.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.【答案】(1)见解析;(2)15﹣3.【解答】(1)证明:连接OE,∵OD=OE,∴∠OED=∠ODE,∵DE平分∠ADC,∴∠CDE=∠ODE,∴∠OED=∠CDE,∴OE∥CD,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∴AC是⊙O的切线;(2)解:过D作DF⊥AB,∵AD平分∠BAC,DF⊥AB,∠ACB=90°,∴CD=DF,∵CD=12,tan∠ABC=,∴BF==16,∴BD==20,∴BC=CD+BD=32,∴AC=BC•tan∠ABC=24,∴=12,∵OE∥CD,∴△AEO∽△ACD,∴,∴,解得EO=15﹣3,∴⊙O的半径为15﹣3.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)【答案】见解答.【解答】(1)解:过点F作FH⊥AC,FG⊥AB,垂足分别为H、G,如图:∵点E是△ABC的内心,∴AD是∠BAC的平分线,∵FH⊥AC,FG⊥AB,∴FG=FH,∵S△ABF,S△ACF,∴S△ABF:S△ACF=AB:AC.(2)证明:过点A作AM⊥BC于点M,如图,∵S△ABF=,S△ACF=,∴S△ABF:S△ACF=BF:FC,由(1)可得S△ABF:S△ACF=AB:AC.∴AB:AC=BF:FC,(3)证明:连接DB、DC,如图,∵,,∴∠ACF=∠BDF,∠FAC=∠FBD,∴△BFD∽△AFC,∴BF•CF=AF•DF,∵,∴∠FBA=∠ADC,又∠BAD=∠DAC,∴△ABF∽△ADC,∴,∴AB•AC=AD•AF,∴AB•AC=(AF+DF)•AF=AF2+AF•DF,∴AF2=AB•AC﹣BF•CF.(4)连接BE,如图,∵点E是△ABC的内心,∴BE是∠ABC的平分线,∴∠ABE=∠FBE,∵∠CAB=∠CAD=∠BAD,∠ADB=∠BDF,∴△ABD∽△BFD,∴,∴DB2=DA•DF,∵∠BED=∠BAE+∠ABE=+,∠DBE=∠DBC+∠FBE=∠DAC+∠FBE=+,∴∠BED=∠DBE,∴DB=DE,∴DE2=DA•DF,九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)【答案】(1)见解答;(2)见解答.【解答】解:(1)如图:Rt△ABC即为所求;(2)已知:Rt△ABC,∠ACB=90°,CE是AB边上的中线,求证:CE=AB,证明:延长CE到D,使得DE=CE,∵CD是AB边上的中线,∴BE=AE,∴四边形ACBD是平行四边形,∵∠BCA=90°,∴四边形ABCD是矩形,∴AB=CD,∴CE=CD=AB.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)【答案】明珠大剧院到龙堤BC的距离约为1320m.【解答】解:如图,过P作PE⊥BC于E,过A作AD⊥PE于D,则四边形ADEB是矩形,∴DE=AB=520m,设PD=xm,在Rt△APD中,∵∠PAD=68.2°,∴AD=≈m,∴BE=AD=m,∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200﹣)m,在Rt△PCE中,tan C=tan56.31°=,解得x=800,∴PD=800m,∴PE=PD+DE=800+520=1320(m),答:明珠大剧院到龙堤BC的距离约为1320m.一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 ③ 组和第 ③ 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 28% ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 560 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.【答案】(1)③,③,28%,560;(2)估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).【解答】解:(1)∵第③组的人数最多,∴一周课外经典阅读的平均时间的众数落在第③组;∵抽取100名进行调查,第50名、51名学生均在第③组,∴一周课外经典阅读的平均时间的中位数落在第③组;由题意得:(20+8)÷100×100%=28%,∴一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为28%;2000×28%=560(人),即估计全校一周课外经典阅读的平均时间达到4小时的学生有560人;故答案为:③,③,28%,560;(2)由题意可知,每组的平均阅读时间分别为1.5小时,2.5小时,3.5小时,4.5小时,5.5小时,∴=3.4(小时),答:估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)一周课外经典阅读的平均时间达到4小时的学生的人数的百分比为28%,∵28%<40%,∴此次开展活动不成功;建议:①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 20 名学生,其中选择“C家用器具使用与维护”的女生有 2 名,“D烹饪与营养”的男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20;2;1;(2)见解答;(3).【解答】解:(1)3÷15%=20(名),所以本次调查中,一共调查了20名学生,“C家用器具使用与维护”的女生数为25%×20﹣3=2(名),“D烹饪与营养”的男生数为20﹣3﹣10﹣5﹣1=1(名);故答案为:20;2;1;(2)选择“D烹饪与营养”的人数所占的百分比为:×100%=10%,补全上面的条形统计图和扇形统计图为:(3)画树状图为:共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果数为12,所以所选的学生恰好是一名男生和一名女生的概率==.。

浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②

浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②

浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②一.实数的运算(共1小题)1.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.二.解二元一次方程组(共1小题)2.(2023•台州)解方程组:.三.一次函数的应用(共2小题)3.(2023•金华)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.4.(2023•台州)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.四.反比例函数与一次函数的交点问题(共1小题)5.(2023•杭州)在直角坐标系中,已知k1k2≠0,设函数y1=与函数y2=k2(x﹣2)+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是﹣4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y轴的垂线,在第四象限交于点D.求证:直线CD经过原点.五.勾股定理的逆定理(共1小题)6.(2023•金华)如图,为制作角度尺,将长为10,宽为4的矩形OABC 分割成4×10的小正方形网格,在该矩形边上取点P ,来表示∠POA 的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB 上取点P 1,使CP 1=4.∠P 1OA =45°,点P 1表示45°.②以O 为圆心,8为半径作弧,与BC 交于点P 2.∠P 2OA =30°,点P 2表示30°.③分别以O ,P 2为圆心,大于OP 2长度一半的长为半径作弧,相交于点E ,F ,连接EF 与BC相交于点P 3.…④以P 2为圆心,OP 2的长为半径作弧,与射线CB 交于点D ,连结OD 交AB 于点P 4.…(1)分别求点P 3,P 4表示的度数.(2)用直尺和圆规在该矩形的边上作点P 5,使该点表示37.5°(保留作图痕迹,不写作法).六.三角形综合题(共1小题)7.(2023•金华)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.七.四边形综合题(共1小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.9.(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).九.解直角三角形的应用(共1小题)10.(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)一十.统计量的选择(共1小题)11.(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.浙江省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类②参考答案与试题解析一.实数的运算(共1小题)1.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.【答案】7.【解答】解:(﹣2023)0+﹣2sin30°+|﹣5|=1+2﹣2×+5=1+2﹣1+5=7.二.解二元一次方程组(共1小题)2.(2023•台州)解方程组:.【答案】.【解答】解:,①+②得3x=9,解得x=3,把x=3代入①,得3+y=7,解得y=4,∴方程组的解是.三.一次函数的应用(共2小题)3.(2023•金华)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分,图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.(1)求哥哥步行的速度.(2)已知妹妹比哥哥迟2分钟到书吧.①求图中a的值;②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.【答案】(1)100m/min.(2)①a=6.②能,追上时兄妹俩离家300米远.【解答】解:(1)由A(8,800)可知哥哥的速度为:800÷8=100(m/min).(2)①∵妹妹骑车到书吧前的速度为200米/分,∴妹妹所用时间t为:800÷200=4(min).∵妹妹比哥哥迟2分钟到书吧,∴a=8+2﹣4=6.②由(1)可知:哥哥的速度为100m/min,∴设BC所在直线为s1=100t+b,将B(17,800)代入得:800=100×17+b,解得b=﹣900.∴BC所在直线为:s1=100t﹣900.当s1=1900时,t哥哥=28.∵返回时妹妹的速度是哥哥的1.6倍,∴妹妹的速度是160米/分.∴设妹妹返回时得解析式为s2=160t+b,将F(20,800)代入得800=160×20+b,解得b=﹣2400,∴s2=160t﹣2400.令s1=s2,则有100t﹣900=160t﹣2400,解得t=25<28,∴妹妹能追上哥哥,此时哥哥所走得路程为:800+(25﹣17)×100=1600(米).兄妹俩离家还有1900﹣1600=300(米),即妹妹能追上哥哥,追上时兄妹俩离家300米远.4.(2023•台州)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.【答案】任务1:﹣1,﹣0.9,﹣1.1,﹣1.2;任务2:h=﹣0.1t+30;任务3:(1)0.05,(2)0.038.任务4:见解析.【解答】解:任务1:变化量分别为:29﹣30=﹣1(cm);28.1﹣29=﹣0.9(cm);27﹣28.1=﹣1.1(cm);25.8﹣27=﹣1.2(cm),∴每隔10min水面高度观察值的变化量为:﹣1,﹣0.9,﹣1.1,﹣1.2.任务2:设水面高度h与流水时间t的函数解析式为h=kt+b,∵t=0 时,h=30;t=10时,h=29;∴,解得:,∴水面高度h与流水时间t的函数解析式为h=﹣0.1t+30;任务3:(1)w=(30﹣30)2+(29﹣29)2+(28﹣28.1)2+(27﹣27)2+(26﹣25.8)2=0.05.(2)设:h=kt+30,∴w=(0•k+30﹣30)2+(10k+30﹣29)2+(20k+30﹣28.1)2+(30k+30﹣27)2+(40k+30﹣25.8)2=3000(k+0.102)2+0.038,∴当k=﹣0.102时,w的最小值为0.038.任务4:将零刻度放在水位最高处,在容器外壁每隔1.02cm标记一次刻度,这样水面每降低一个刻度,就代表时间经过了10分钟.四.反比例函数与一次函数的交点问题(共1小题)5.(2023•杭州)在直角坐标系中,已知k1k2≠0,设函数y1=与函数y2=k2(x﹣2)+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是﹣4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y轴的垂线,在第四象限交于点D.求证:直线CD经过原点.【答案】(1)k1=10,k2=2;(2)答案见解析.【解答】(1)解:∵点A的横坐标是2,∴将x=2代入y2=k2(x﹣2)+5=5,∴A(2,5),∴将A(2,5)代入得:k1=10,∴,∵点B的纵坐标是﹣4,∴将y=﹣4代入得,,∴B(﹣,﹣4).∴将B(﹣,﹣4)代入y2=k2(x﹣2)+5得:,解得:k2=2.∴y2=2(x﹣2)+5=2x+1.(2)证明:如图所示,由题意可得:C(,5),D(2,﹣4),设CD所在直线的表达式为y=kx+b,∴,解得:,∴CD所在直线的表达式为y=﹣2x,∴当x=0时,y=0,∴直线CD经过原点.五.勾股定理的逆定理(共1小题)6.(2023•金华)如图,为制作角度尺,将长为10,宽为4的矩形OABC分割成4×10的小正方形网格,在该矩形边上取点P,来表示∠POA的度数,阅读以下作图过程,并回答下列问题:作法(如图)结论①在CB上取点P1,使CP1=4.∠P1OA=45°,点P1表示45°.②以O为圆心,8为半径作弧,与BC交于点P2.∠P2OA=30°,点P2表示30°.…③分别以O,P2为圆心,大于OP2长度一半的长为半径作弧,相交于点E,F,连接EF与BC相交于点P3.④以P2为圆心,OP2的长为半径作弧,与射线…CB交于点D,连结OD交AB于点P4.(1)分别求点P3,P4表示的度数.(2)用直尺和圆规在该矩形的边上作点P5,使该点表示37.5°(保留作图痕迹,不写作法).【答案】(1)点P3表示60°,点P4表示15°;(2)见解析.【解答】解:①∵四边形OABC是矩形,∴BC∥OA,∴∠OP2C=∠P2OA=30°,由作图可知,EF是OP2的中垂线,∴OP3=P3P2;∴∠P3OP2=∠P3P2O=30°,∴∠P3OA=∠P3OP2+∠P2OA=60°,∴点P3表示60°;②作图可知,P2D=P2O,∴∠P2OD=∠P2DO,∵CB∥OA,∴∠P2DO=∠DOA;∴,∴点P4表示15°;答:点P3表示60°,点P4表示15°;(2)作∠P3OP4的角平分线交BC于P5,点P5即为所求作的点,如图:∵点P3表示60°,点P4表示15°,∴∠P3OP4=60°﹣15°=45°,∴∠P3OP4+∠P4OA=22.5°+15°=37.5°,∴P5表示37.5°.六.三角形综合题(共1小题)7.(2023•金华)问题:如何设计“倍力桥”的结构?图1是搭成的“倍力桥”,纵梁a,c夹住横梁b,使得横梁不能移动,结构稳固.图2是长为l(cm),宽为3cm的横梁侧面示意图,三个凹槽都是半径为1cm的半圆,圆心分别为O1,O2,O3,O1M=O1N,O2Q=O3P=2cm,纵梁是底面半径为1cm的圆柱体,用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.探究1:图3是“桥”侧面示意图,A,B为横梁与地面的交点,C,E为圆心,D,H1,H2是横梁侧面两边的交点,测得AB=32cm,点C到AB的距离为12cm,试判断四边形CDEH1的形状,并求l的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形H1H2H3…H12,求l的值;②若有n根横梁绕成的环(n为偶数,且n≥6),试用关于n的代数式表示内部形成的多边形H1H2H3…H n的周长.【答案】(1)CDEH1为菱形,l=22cm;(2)①l=(16+6)cm,②()cm.【解答】解:探究1:①四边形CDEH1是菱形,理由如下:由图1可知,CD∥EH1,ED∥CH1,∴CDEH1为平行四边形,∵桥梁的规格是相同的,∴桥梁的宽度相同,即四边形CDEH1每条边上的高相等,∵平行四边形CDEH1的面积等于边长乘这条边上的高,∴CDEH1每条边相等,∴CDEH1为菱形.②如图1,过点C作CM⊥AB于点M.由题意,得CA=CB,CM=12cm,AB=32cm,∴AM=AB=16cm,在Rt△CAM中,CA2=AM2+CM2,∴CA=20(cm),∴l=CA+2=22(cm),故答案为:l=22cm.探究2:①如图2,过点C作CN⊥H1H2于点N,由题意,得∠H1CH2=120°,CH1=CH2,CN=3cm,∴∠CH1N=30°,∴CH1=2CN=6cm,H1N=cm,又∵四边形CDEH1是菱形,∴EH1=CH1=6cm,∴l=2(2+6+3)=(16+6)cm,故答案为:l=(16+6)cm.②如图3,过点C作CN⊥H1H2于点N.由题意,形成的多边形为正n边形,∴外角∠CH1H2=,在Rt△CNH1中,H1N=(cm),又∵CH1=CH2,CN⊥H1H2,∴H1H2=2H1N=cm,∴形成的多边形的周长为()cm.故答案为:()cm.七.四边形综合题(共1小题)8.(2023•绍兴)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D',①如图2,当C'落在射线CA上时,求BP的长;②当△AC'D'是直角三角形时,求BP的长.【答案】(1)8;(2)①;②6 或8±.【解答】解:(1)在▱ABCD中,BC=AD=10,在Rt△BCH中,HC=BC sin B=.(2)①如图,作CH⊥BA于点H,由(1)得,BH===6,作C'Q⊥BA交BA延长线于点Q,则∠CHP=∠PQC'=90°,∴∠C'PQ+∠PC'Q=90°,∵∠C'PQ+∠CPH=90°,∴∠PC'Q=∠CPH,由旋转知PC'=PC,∴△PQC′≌△CHP(AAS).设BP=x,则PQ=CH=8,C′Q=PH=6﹣x,QA=PQ﹣PA=x﹣4.∵C′Q⊥AB,CH⊥AB,∴C′Q∥CH,∴△AQC′∽△AHC,∴,∴,∴x=,∴BP=,②由旋转得△PCD≌△PC′D′,CD=C'D'CD⊥CD'又∵AB∥CD,∴C'D'⊥AB情况一:当以C′为直角顶点时,如图.∵C'D'⊥AB,∴C′落在线段BA延长线上.∵PC⊥PC',∴PC⊥AB,由(1)知,PC=8,∴BP=6.情况二:当以A为直角顶点时,如图,设C'D'与射线BA的交点为T,作CH⊥AB于点H.∵PC⊥PC',∴∠CPH+∠TPC'=90°,∵点C,D同时绕点P按逆时针方向旋转90°得点C',D',∴∠CPD=∠C'PD'=90°,PC=PD,PC'=PD',∴∠CPD=∠C'PD',∴△PCD≌△PC'D'(SAS),∴∠PCD=∠PC'D',∵AB∥CD,∴∠BPC=∠PCD=∠PC'D',∵∠C'PT+∠CPB=90°,∴∠C'PT+∠PC'T=90°,∴∠PTC'=90°=∠CHP,∴△CPH≌△PC′T(AAS),∴C′T=PH,PT=CH=8.设C′T=PH=t,则AP=6﹣t,∴AT=PT﹣PA=2+t.∵∠C'AD'=90°,C'D'⊥AB,∴△ATD′∽△C′TA,∴,∴AT2=C'T⋅TD',∴(2+t)2=t(12﹣t),化简得t2﹣4t+2=0,解得,∴BP=BH+HP=8±,情况三:当以D'为直角顶点时,点P落在BA的延长线上,不符合题意.综上所述,BP=6 或8±.②方法二:动静互换:将C、D看成静止的,点A绕P点顺时针旋转90°,∴△APA1是等腰直角三角形,∴A点轨迹是在∠BAE=45°的射线AE上,当△A1CD为直角三角形时,(i)当∠A1CD=90°时,∴∠BP1A1=90°,∴BP1==6;(ii)当点A为直角时,以CD为直径作圆O交AE于点A2、A3.如图所示,则△AOE为等腰直角三角形,∵AO=8,∴AE=8,OF=4,∴A2F=A3F=2,AF=4,∴AA2=4+2,∴AP2=4+BP2=12﹣(4+)=8﹣,(iii)AA3=4﹣2,∴AA3=4﹣,∴BP3=12﹣(4﹣)=8+,综上所述:BP=6 或8±.八.作图—复杂作图(共1小题)9.(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【答案】(1)证明见解析部分;(2)作图见解析部分.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∠A=∠C,∴180°﹣(∠ADB+∠A)=180°﹣(∠CBD+∠C),即∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:如图,四边形BEDF就是所求作的菱形.九.解直角三角形的应用(共1小题)10.(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)【答案】AC的长约为80cm.【解答】解:在Rt△ABC中,AB=120cm,∠BAC=90°,∠B=33.7°,∴tan B=,∴AC=AB•tan33.7°≈120×0.67=80.4≈80(cm),∴AC的长约为80cm.一十.统计量的选择(共1小题)11.(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)50、46;(2)B班成绩好于A班成绩,理由见解答;(3)张老师新的教学方法效果较好,理由见解答.【解答】解:(1)A班的人数:28+9+9+3+1=50(人),B班的人数:25+10+8+2+1=46(人),答:A,B两班的学生人数分别是50人,46人.(2)==9.1,=≈12.9,从平均数看,B班成绩好于A班成绩.从中位数看,A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,B 班成绩好于A班成绩.从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.(3)前测结果中:,.4,从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从中位数看,两班前测中位数均在0<x≤5这一范围,后测A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A班15分上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.。

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 ,众数是 ;在统计图中B组所对应的扇形圆心角是 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 名学生,在扇形统计图中A所对应圆心角的度数为 ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= ,C等级对应扇形的圆心角的度数为 ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类③参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)不能,理由见解答.【解答】解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.二.解一元一次不等式组(共1小题)2.(2023•菏泽)解不等式组.【答案】x≤.【解答】解:,解不等式①,得:x<2.5,解不等式②,得:x≤,∴该不等式组的解集是x≤.三.反比例函数与一次函数的交点问题(共1小题)3.(2023•菏泽)如图,已知坐标轴上两点A(0,4),B(2,0),连接AB,过点B作BC⊥AB,交反比例函数y=在第一象限的图象于点C(a,1).(1)求反比例函数y=和直线OC的表达式;(2)将直线OC向上平移个单位,得到直线l,求直线l与反比例函数图象的交点坐标.【答案】(1);;(2)或(2,2).【解答】解:(1)如图,过点C作CD⊥x轴于点D,∴∠BDC=90°,∵∠AOB=90°,∴∠BDC=∠AOB,∵BC⊥AB,∴∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBD=∠BAO,∴△CBD∽△BAO,∴,∵A(0,4),B(2,0),C(a,1),∴AO=4,BO=2,CD=1,∴,∴BD=2,∴OD=BO+BD=4,∴a=4,∴点C的坐标是(4,1),∵反比例函数过点C,∴k=4×1=4,∴反比例函数的解析式为;设直线OC的解析式为y=mx,∵其图象经过点C(4,1),∴4m=1,解得,∴直线OC的解析式为;(2)将直线OC向上平移个单位,得到直线l,∴直线l的解析式为,由题意得,,解得,,∴直线l与反比例函数图象的交点坐标为或(2,2).四.二次函数综合题(共1小题)4.(2023•菏泽)已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),其对称轴为x=﹣.(1)求抛物线的表达式;(2)如图1,点D是线段OC上的一动点,连接AD,BD,将△ABD沿直线AD翻折,得到△AB′D,当点B'恰好落在抛物线的对称轴上时,求点D的坐标;(3)如图2,动点P在直线AC上方的抛物线上,过点P作直线AC的垂线,分别交直线AC,线段BC于点E,F,过点F作FG⊥x轴,垂足为G,求FG+FP的最大值.【答案】(1)y=﹣x2﹣3x+4;(2)D(0,);(3).【解答】解:(1)抛物线与y轴交于点C(0,4),∴c=4,∵对称轴为,∴,b=﹣3,∴抛物线的解析式为y=﹣x2﹣3x+4;(2)如图,过B'作x轴的垂线,垂足为H,令﹣x2﹣3x+4=0,解得:x1=1,x2=﹣4,∴A(﹣4,0),B(1,0),∴AB=1﹣(﹣4)=5,由翻折可得AB′=AB=5,∵对称轴为x=﹣,∴AH=﹣﹣(﹣4)=,∴AB'=AB=5=2AH,∴∠AB'H=30°,∠B'AB=60°,∴∠DAB=∠B'AB=30°,在Rt△AOD中,,∴D(0,);(3)如图2,PF交x轴于Q,设BC所在直线的解析式为y1=k1x+b1,把B、C坐标代入得:,解得:,∴y1=﹣4x+4,∵OA=OC,∴∠CAO=45°,∵∠AEF=90°,∴直线PE与x轴所成夹角为45°,即∠PQO=45°,设P(m,﹣m2﹣3m+4),设PE所在直线的解析式为:y2=﹣x+b2,把点P代入得b2=﹣m2﹣2m+4,∴y2=﹣x﹣m2﹣2m+4,令y1=y2,则﹣4x+4=﹣x﹣m2﹣2m+4,解得:x=,∴FG=y F=+4,PF==••(x F﹣x P)=,∴FG+FP=+4+=+,∵点P在直线AC上方,∴﹣4<m<0,∴当m=时,FG+FP的最大值为.五.平行四边形的性质(共1小题)5.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.【答案】证明见解析.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠BCD,∵AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F,∴∠BAE=∠FCD,在△ABE与△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.六.切线的判定与性质(共1小题)6.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.【答案】(1)证明见解答;(2)的长是.【解答】(1)证明:连接OD,则OD=OB,∴∠ODB=∠B,∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC于点E,∴∠ODE=∠CED=90°,∵OD是⊙O的半径,DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,CD=2,∴BD=CD=2,∵∠B=∠C=30°,∴AD=BD•tan30°=2×=2,∵OD=OA,∠AOD=2∠B=60°,∴△AOD是等边三角形,∴OD=AD=2,∵∠BOD=180°﹣∠AOD=120°,∴==,∴的长是.七.圆的综合题(共1小题)7.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.【答案】(1)见解答;(2)tan∠BPC=;(3)7.【解答】(1)证明:∵D是的中点,∴,∵DE⊥AB且AB为⊙O的直径,∴,∴,∴BC=DE;(2)解:连接OD,∵,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的根,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;(3)解:如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴.八.作图—基本作图(共1小题)8.(2023•济宁)如图,BD是矩形ABCD的对角线.(1)作线段BD的垂直平分线(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)设BD的垂直平分线交AD于点E,交BC于点F,连接BE,DF.①判断四边形BEDF的形状,并说明理由;②若AB=5,BC=10,求四边形BEDF的周长.【答案】(1)见解答;(2)①四边形BEDF是菱形,理由见解答;②25.【解答】解:(1)如图,直线MN就是线段BD的垂直平分线,(2)①四边形BEDF是菱形,理由如下:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∵∠BEF=∠BFE,∴BE=BF,∴BF=DF,∴BE=ED=DF=BF,∴四边形BEDF是菱形;②∵四边形ABCD是矩形,BC=10,∴∠A=90°,AD=BC=10,由①可设BE=ED=x,则AE=10﹣x,∵AB=5,∴AB2+AE2=BE2,即25+(10﹣x)2=x2,解得x=6.25,∴四边形BEDF的周长为:6.25×4=25.九.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P 在同一平面内),求大楼的高度BC(结果保留根号).【答案】30m.【解答】解:如图所示:过P作PH⊥AB于H,过C作CG⊥PH于Q,而CB⊥AB,则四边形CQHB是矩形,∴QH=BC,BH=CQ,由题意可得:AP=80,∠PAH=60°,∠PCQ=30°,AB=70,∴PH=AP sin60°=80×=40,AH=AP cos60°=40,∴CQ=BH=70﹣40=30,∴PQ=CQ•tan30°=10,∴BC=QH=40﹣10=30,∴大楼的高度BC为30m.一十.频数(率)分布直方图(共1小题)10.(2023•菏泽)某班学生以跨学科主题学习为载体,综合运用体育、数学、生物学等知识,研究体育课的运动负荷.在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟),分为如下五组:A组:50≤x<75,B组:75≤x<100,C组100≤x<125,D组:125≤x<150,E组:150≤x<175.其中A组数据为:73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A组数据的中位数是 69 ,众数是 74 ;在统计图中B组所对应的扇形圆心角是 54 度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜心率为100≤x<150(次/分钟),学校共有2300名学生,请你依据此次跨学科研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解答;(3)1725名.【解答】解:(1)把A组数据从小到大排列为:56,65,66,68,70,73,74,74,故A组数据的中位数是:=69,众数是74;由题意得,样本容量为:8÷8%=100,在统计图中B组所对应的扇形圆心角是:360°×=54°.故答案为:69,74,54;(2)C组频数为:100﹣8﹣15﹣45﹣2=30,补全学生心率频数分布直方图如下:(3)2300×(30%+)=1725(名),答:估计大约有1725名学生达到适宜心率.一十一.列表法与树状图法(共2小题)11.(2023•东营)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了 24 名学生,在扇形统计图中A所对应圆心角的度数为 30° ;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.【答案】(1)24,30°;(2)图形见解析;(3)估计选择研学基地C的学生人数约为120名;(4).【解答】解:(1)在本次调查中,一共抽取的学生人数为:12÷50%=24(名),在扇形统计图中A所对应圆心角的度数为:360°×=30°,故答案为:24,30°;(2)C的人数为:24×25%=6(名),∴D的人数为:24﹣12﹣6﹣2=4(名),将条形统计图补充完整如下:(3)480×25%=120(名),答:估计选择研学基地C的学生人数约为120名;(4)学基地D的学生中恰有两名女生,则有2名男生,画树状图如下:共有12种等可能的结果,其中所选2人都是男生的结果有2种,∴所选2人都是男生的概率为=.12.(2023•济宁)某学校为扎实推进劳动教育,把学生参与劳动教育情况纳人积分考核.学校抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A x≥904B80≤x<90mC70≤x<8020D60≤x<708E x<603请根据图表信息,解答下列问题:(1)统计表中m= 15 ,C等级对应扇形的圆心角的度数为 144° ;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144°;(2)估计该学校“劳动之星”大约有760人;(3).【解答】解:(1)抽取的学生人数为:8÷16%=50(人),∴m=50﹣4﹣20﹣8﹣3=15,C等级对应扇形的圆心角的度数为:360°×=144°,故答案为:15,144°;(2)2000×=760(人),答:估计该学校“劳动之星”大约有760人;(3)画树状图如下:共有12种等可能的结果,其中恰好抽取一名男同学和一名女同学的结果有8种,∴恰好抽取一名男同学和一名女同学的概率为=.。

北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.待定系数法求一次函数解析式(共1小题)1.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.二.一次函数的应用(共1小题)2.(2023•北京)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为 个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C 0.990(填“>”“=”或”<”).三.二次函数的性质(共3小题)3.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.4.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.5.(2021•北京)在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y =ax 2+bx (a >0)上.(1)若m =3,n =15,求该抛物线的对称轴;(2)已知点(﹣1,y 1),(2,y 2),(4,y 3)在该抛物线上.若mn <0,比较y 1,y 2,y 3的大小,并说明理由.四.二次函数的应用(共1小题)6.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =a (x ﹣h )2+k (a <0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x ﹣h )2+k (a <0);(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系y =﹣0.04(x ﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为d2,则d1 d2(填“>”“=”或“<”).五.平行四边形的判定与性质(共1小题)7.(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=,求BF和AD的长.六.菱形的判定(共1小题)8.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.七.矩形的判定与性质(共1小题)9.(2023•北京)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.八.圆内接四边形的性质(共1小题)10.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.九.圆的综合题(共2小题)11.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C 是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是 ;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t 的取值范围.12.(2021•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C 的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是 ;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A 为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.一十.作图—应用与设计作图(共1小题)13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA= ,D是CA的中点,∴CA⊥DB( )(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.一十一.旋转的性质(共1小题)14.(2023•北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.一十二.频数(率)分布直方图(共1小题)15.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.待定系数法求一次函数解析式(共1小题)1.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.【答案】(1)C(3,4);(2)2.【解答】解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=x+n的值大于函数y=x+1的值且小于4,所以当y=x+n过点(3,4)时满足题意,代入(3,4)得:4=×3+n,解得:n=2.二.一次函数的应用(共1小题)2.(2023•北京)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0 x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x1+x211.810.010.38.98.17.77.87.08.09.112.5 C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为 4 个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约 11.3 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C < 0.990(填“>”“=”或”<”).【答案】(Ⅰ)答案见解析;(Ⅱ)4;(1)11.3;(2)<.【解答】解:(Ⅰ)表格如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5C0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19﹣7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C<0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.三.二次函数的性质(共3小题)3.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.【答案】(1);(2)t≤.【解答】解:(1)∵对于x1=1,x2=2,有y1=y2,∴a+b+c=4a+2b+c,∴3a+b=0,∴=﹣3.∵对称轴为x=﹣=,∴t=.(2)∵0<x1<1,1<x2<2,∴,x1<x2,∵y1<y2,a>0,∴(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,∴>t,即t≤.4.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【答案】(1)t=2;抛物线与y轴交点的坐标为(0,2).(2)<t<2;x0的取值范围2<x0<3.【解答】解:(1)法一、将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).法二、当m=n时,点A(1,m),B(3,n)的纵坐标相等,由抛物线的对称性可得,抛物线的对称轴为x=,∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.由题意可知,点(x0,m)与点(1,m)关于x=t对称;∴t=;当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.综上,t的取值范围为:<t<2;x0的取值范围2<x0<3.5.(2021•北京)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【答案】(1)直线x=﹣1.(2)y2<y1<y3.【解答】解:(1)∵m=3,n=15,∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)代入y=ax2+bx得:,解得,∴y=x2+2x=(x+1)2﹣1,∴抛物线对称轴为直线x=﹣1.(2)∵y=ax2+bx(a>0),∴抛物线开口向上且经过原点,当b=0时,抛物线顶点为原点,x>0时y随x增大而增大,n>m>0不满足题意,当b>0时,抛物线对称轴在y轴左侧,同理,n>m>0不满足题意,∴b<0,抛物线对称轴在y轴右侧,x=1时m<0,x=3时n>0,即抛物线和x轴的2个交点,一个为(0,0),另外一个在1和3之间,∴抛物线对称轴在直线x=与直线x=之间,即<﹣<,∴点(2,y2)与对称轴距离2﹣(﹣)<,点(﹣1,y1)与对称轴距离<﹣﹣(﹣1)<,点(4,y3)与对称轴距离<4﹣(﹣)<∴y2<y1<y3.解法二:∵点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上,∴a+b=m,9a+3b=n,∵mn<0,∴(a+b)(9a+3b)<0,∴a+b与3a+b异号,∵a>0,∴3a+b>a+b,∴a+b<0,3a+b>0,∵(﹣1,y1),(2,y2),(4,y3)在该抛物线上,∴y1=a﹣b,y2=4a+2b,y3=16a+4b,∵y3﹣y1=(16a+4b)﹣(a﹣b)=5(3a+b)>0,∴y3>y1,∵y1﹣y2=(a﹣b)﹣(4a+2b)=﹣3(a+b)>0,∴y1>y2,∴y2<y1<y3.四.二次函数的应用(共1小题)6.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02581114竖直高度y/m 20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1 < d2(填“>”“=”或“<”).【答案】(1)函数关系式为:y=﹣0.05(x﹣8)2+23.20;(2)<.【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴h=8,k=23.20,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当x=0时,y=20.00,代入y=a(x﹣8)2+23.20得:20.00=a(0﹣8)2+23.20,解得:a=﹣0.05,∴函数关系式为:y=﹣0.05(x﹣8)2+23.20;(2)设着陆点的纵坐标为t,则第一次训练时,t=﹣0.05(x﹣8)2+23.20,解得:x=8+或x=8﹣,∴根据图象可知,第一次训练时着陆点的水平距离d1=8+,第二次训练时,t=﹣0.04(x﹣9)2+23.24,解得:x=9+或x=9﹣,∴根据图象可知,第二次训练时着陆点的水平距离d2=9+,∵20(23.20﹣t)<25(23.24﹣t),∴<,∴d1<d2,故答案为:<.五.平行四边形的判定与性质(共1小题)7.(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=,求BF和AD的长.【答案】见试题解答内容【解答】(1)证明:∵∠ACB=∠CAD=90°,∴AD∥CE,∵AE∥DC,∴四边形AECD是平行四边形;(2)解:∵EF⊥AB,∴∠BFE=90°,∵cos B==,BE=5,∴BF=BE=×5=4,∴EF===3,∵AE平分∠BAC,EF⊥AB,∠ACE=90°,∴EC=EF=3,由(1)得:四边形AECD是平行四边形,∴AD=EC=3.六.菱形的判定(共1小题)8.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【答案】见试题解答内容【解答】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴平行四边形ABCD为菱形,∴DB⊥EF,∴平行四边形EBFD是菱形.七.矩形的判定与性质(共1小题)9.(2023•北京)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.【答案】(1)证明见解析;(2)3.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AC=EF,∴平行四边形AECF是矩形;(2)解:∵四边形AECF是矩形,∴∠AEC=∠AEB=90°,∵AE=BE,AB=2,∴△ABE是等腰直角三角形,∴AE=BE=AB=,∵tan∠ACB==,∴EC=2AE=2,∴BC=BE+EC=+2=3,即BC的长为3.八.圆内接四边形的性质(共1小题)10.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.【答案】(1)证明见解析;(2)4.【解答】(1)证明:∵∠BAC=∠ADB,∠BAC=∠CDB,∴∠ADB=∠CDB,∴BD平分∠ADC,∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABD+∠CBD+∠ADB+∠CDB=180°,∴2(∠ABD+∠ADB)=180°,∴∠ABD+∠ADB=90°,∴∠BAD=180°﹣90°=90°;(2)解:∵∠BAE+∠DAE=90°,∠BAE=∠ADE,∴∠ADE+∠DAE=90°,∴∠AED=90°,∵∠BAD=90°,∴BD是圆的直径,∴BD垂直平分AC,∴AD=CD,∵AC=AD,∴△ACD是等边三角形,∴∠ADC=60°∵BD⊥AC,∴∠BDC=∠ADC=30°,∵CF∥AD,∴∠F+∠BAD=90°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=BD,∵BD是圆的直径,∴圆的半径长是4.九.圆的综合题(共2小题)11.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C 是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是 C1,C2 ;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t 的取值范围.【答案】(1)①C1,C2;②OC=;(2)t的取值范围为1≤t≤,.【解答】解:(1)①由关联定义可知,若直线CA、CB中一条经过点O,另一条是⊙O 的切线,则称点C是弦AB的“关联点”,∵点A(﹣1,0),B1(,),点C1(﹣1,1),C2(,0),C3(0,),∴直线AC2经过点O,且B1C2与⊙O相切,∴C2是弦AB1的“关联点”,∵C1(﹣1,1),A(﹣1,0)的横坐标相同,与B1(,)都位于直线y=﹣x 上,∴AC1与⊙O相切,B1C1经过点O,∴C1是弦AB1的“关联点”;故答案为:C1,C2;②∵A(﹣1,0),B2(,),设C(a,b),如图所示,共有两种情况,a、若C1B2与⊙O相切,AC经过点O,则C1B2,AC1所在直线为,解得,∴C1(,0),∴OC1=,b、若AC2与⊙O相切,C2B2经过点O,则直线C2B2,AC2所在直线为,解得,∴C2(﹣1,1),∴OC2=,综上所述,OC=;(2)∵线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”,∵弦PQ随着S的变动在一定范围内变动,且M(0,3),N(,0),OM>ON,∴S共有2种情况,分别位于点M和经过点O的MN的垂直平分线上,如图所示,①当S位于点M(0,3)时,MP为⊙O的切线,作PJ⊥OM,∵M(0,3),⊙O的半径为1,且MP是⊙O的切线,∴OP⊥MP,∵PJ⊥OM,∴△MPO∽△POJ,∴,即,解得OJ=,∴PJ==,Q1J=,∴PQ1==,同理PQ2==,∴当S位于M(0,3)时,PQ1的临界值为和;②当S位于经过点O的MN的垂直平分线上的点K时,∵M(0,3),N(,0),∴MN=,∴=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和,∴在两种情况下,PQ的最小值在1≤t≤内,最大值在,综上所述,t的取值范围为1≤t≤,.12.(2021•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C 的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是 B2C2 ;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A 为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.【答案】(1)B2C2.(2)t=或﹣.(3)OA的最小值为1,此时BC的长为,OA的最大值为2,此时BC的长为.【解答】解:(1)由旋转的性质可知:AB=AB′,AC=AC′,∠BAB′=∠CAC′,由图可知点A到圆上一点的距离d的范围为﹣1≤d≤+1,∵AC1=3>d,∴点C1′不可能在圆上,∴B1C1不是⊙O的以A为中心的“关联线段”,∵AC2=1,AB2=,∴C2′(0,1),B2′(1,0),∴B2C2是⊙O的以A为中心的“关联线段”,∵AC3=2,AB3=,当B3′在圆上时,B3′(1,0)或(0,﹣1),由图可知此时C3′不在圆上,∴B3C3不是⊙O的以A为中心的“关联线段”.故答案为:B2C2.(2)∵△ABC是边长为1的等边三角形,根据旋转的性质可知△AB′C′也是边长为1的等边三角形,∵A(0,t),∴B′C′⊥y轴,且B′C′=1,∴AO为B′C′边上的高的2倍,且此高的长为,∴t=或﹣.(3)OA的最小值为1时,此时BC的长为,OA的最大值为2,此时BC的长为.理由:由旋转的性质和“关联线段”的定义,可知AB′=AB=OB′=OC′=1,AC′=AC=2,如图1,利用四边形的不稳定性可知,当A,O,C′在同一直线上时,OA最小,最小值为1,如图2,此时OA=OB′=OC′,∴∠AB′C=90°,∴B′C′===.当A,B′,O在同一直线上时,OA最大,如图3,此时OA=2,过点A作AE⊥OC′于E,过点C′作C′F⊥OA于F.∵AO=AC′=2,AE⊥OC′,∴OE=EC′=,∴AE===,∵S△AOC′=•AO•C′F=•OC′•AE,∴C′F=,∴OF===,∴FB′=OB′﹣OF=,∴B′C′===.综上OA的最小值为1,此时BC的长为,OA的最大值为2,此时BC的长为.一十.作图—应用与设计作图(共1小题)13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA= BC ,D是CA的中点,∴CA⊥DB( 三线合一 )(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】解:(1)如图,点D即为所求.(2)如图,连接BD.在△ABC中,BA=BC,D是CA的中点,∴CA⊥DB(三线合一),∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.故答案为:BC,三线合一.一十一.旋转的性质(共1小题)14.(2023•北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.【答案】(1)见解答.(2)∠AEF=90°,证明见解答.【解答】(1)证明:由旋转的性质得:DM=DE,∠MDE=2a,∵∠C=a,∴∠DEC=∠MDE﹣∠C=a,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°,证明:如图,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2a,∴∠FCH=2a,∵∠B=∠C=a,∴∠ACH=a,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC设DM=DE=m,CD=n,则CH=2m,CM=m+n,.DF=CD=n,∴FM=DF﹣DM=n﹣m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM﹣FM=m+n﹣(n﹣m)=2m,∴CH=BF,在△ABF和△ACH中,,∴△ABF≌△ACH(SAS),∴AF=AH,∵FE=EH,∴AE⊥FH,即∠AEF=90°,一十二.频数(率)分布直方图(共1小题)15.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1;(2)p1<p2;(3)2200.【解答】解:(1)将甲城市抽取的25家邮政企业4月份的营业额从小到大排列,处在中间位置的一个数是10.1,因此中位数是10.1,即m=10.1;(2)由题意得p1=5+3+4=12(家),由于乙城市抽取的25家邮政企业4月份的营业额的平均数是11.0,中位数是11.5,因此所抽取的25家邮政企业4月份营业额在11.5及以上的占一半,也就是p2的值至少为13,∴p1<p2;(3)11.0×200=2200(百万元),答:乙城市200家邮政企业4月份的总收入约为2200百万元.。

辽宁省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类①

辽宁省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类①

辽宁省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类①一.一元二次方程的应用(共1小题)1.(2023•大连)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求2020﹣2022年买书资金的平均增长率.二.一次函数的应用(共1小题)2.(2023•大连)某学校体育队开展跑步训练,体育老师将队员分成男、女两组.两组队员从同一地点同向先后出发,女子组跑了80m时,男子组恰好跑了50m.此后两组队员开始匀速跑,直到终点.已知男子组匀速跑的速度为4.5m/s.男、女两组队员跑步的路程y (单位:m)与匀速跑的时间x(单位:s)的图象如图所示.(1)此次跑步训练的全程是 m.(2)求男子组追上女子组时,两组队员离终点的路程.三.反比例函数综合题(共1小题)3.(2023•盘锦)如图,在平面直角坐标系中,A(1,0),B(0,3),反比例函数y=(k ≠0)在第一象限的图象经过点C,BC=AC,∠ACB=90°,过点C作直线CE∥x轴,交y轴于点E.(1)求反比例函数的解析式.(2)若点D是x轴上一点(不与点A重合),∠DAC的平分线交直线EC于点F,请直接写出点F的坐标.四.二次函数的应用(共2小题)4.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?5.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.五.三角形的外接圆与外心(共1小题)6.(2023•盘锦)如图,△ABC内接于⊙O,AB为⊙O的直径,延长AC到点G,使得CG=CB,连接GB.过点C作CD∥GB,交AB于点F,交⊙O于点D,过点D作DE∥AB,交GB的延长线于点E.(1)求证:DE与⊙O相切.(2)若AC=4,BC=2,求BE的长.六.作图—复杂作图(共1小题)7.(2023•朝阳)如图1,在▱ABCD中,求作菱形EFGH,使其面积等于▱ABCD的面积的一半,且点E,F,G,H分别在边AD,AB,BC,CD上.小明的作法①如图2,连接AC,BD相交于点O.②过点O作直线l∥AD,分别交AB,CD于点F,H.③过点O作l的垂线,分别交AD,BC于点E,G.④连接EF,FG,GH,HE,则四边形EFGH为所求作的菱形.(1)小明所作的四边形EFGH是菱形吗?为什么?(2)四边形EFGH的面积等于▱ABCD的面积的一半吗?请说明理由.七.解直角三角形的应用(共1小题)8.(2023•大连)图1是小明家在利用车载云梯搬运装修垃圾,将其抽象成如图2所示的示意图.已知AB⊥BE,CE⊥BE,垂足分别为B,E,CD∥EB,测得∠ACD=70°,CE=1.25m,AC=10.4m.求云梯顶端A到地面的距离AB的长.(结果取整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)八.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30°和45°,AB=40m,BD=20m,∠BDF=159°,点A,B,C,D,E,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:≈1.73,sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)九.解直角三角形的应用-方向角问题(共1小题)10.(2023•朝阳)如图,CD是一座东西走向的大桥,一辆汽车在笔直的公路l上由南向北行驶,在A处测得桥头C在北偏东30°方向上,继续行驶500米后到达B处,测得桥头D在北偏东45°方向上.已知大桥CD长300米,求桥头C到公路l的距离.(结果保留根号)一十.折线统计图(共1小题)11.(2023•大连)某射击队进行射击训练,甲、乙、丙三名射击运动员分别射击10次,射击队记录他们的成绩(单位:环),并对数据进行收集、整理、描述和分析,部分信息如下:Ⅰ.甲运动员的射击成绩是:7 9 8 7 8 9 9 9 8 10;Ⅱ.乙运动员的射击成绩是:成绩/环678910次数12223Ⅲ.丙运动员射击成绩的折线统计图为:Ⅳ.分析上述数据,得到下表:平均数众数中位数方差甲8.4a8.50.84乙b10c 1.84丙8.2d8 1.56根据以上信息,回答下列问题:(1)表格中的a= ,b= ,c= ,d= .(2)射击队准备从甲、乙、丙三名运动员中选取一名参加比赛,你认为应该选择哪名运动员参赛?为什么?一十一.列表法与树状图法(共1小题)12.(2023•朝阳)某校在八年级开展了以“争创文明城市,建设文明校园”为主题的系列艺术展示活动,活动项目有“绘画展示”“书法展示”“文艺表演”“即兴演讲”四组(依次记为A,B,C,D).学校要求八年级全体学生必须参加且只能参加其中的一个项目,为了解八年级学生对这几项活动的喜爱程度,随机抽取了部分八年级学生进行调查,并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)本次一共抽样调查了 名学生;(2)将条形统计图补充完整;(3)若该校八年级共有600名学生,请估计该校八年级学生选择“文艺表演”的人数;(4)学校从这四个项目中随机抽取两项参加“全市中学生才艺展示活动”.用列表法或画树状图法求出恰好抽到“绘画展示”和“书法展示”的概率.辽宁省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类①参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2023•大连)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求2020﹣2022年买书资金的平均增长率.【答案】2020年到2022年该校购书费用的年平均增长率为20%.【解答】解:设2020年到2022年该校购书费用的年平均增长率为x,则:5000(1+x)2=7200,解得:x=0.2,或x=﹣2.2(舍去),答:2020年到2022年该校购书费用的年平均增长率为20%.二.一次函数的应用(共1小题)2.(2023•大连)某学校体育队开展跑步训练,体育老师将队员分成男、女两组.两组队员从同一地点同向先后出发,女子组跑了80m时,男子组恰好跑了50m.此后两组队员开始匀速跑,直到终点.已知男子组匀速跑的速度为4.5m/s.男、女两组队员跑步的路程y (单位:m)与匀速跑的时间x(单位:s)的图象如图所示.(1)此次跑步训练的全程是 500 m.(2)求男子组追上女子组时,两组队员离终点的路程.【答案】(1)500;(2)男子组追上女子组时,两组队员离终点的路程为315米.【解答】解:(1)100×4.5+50=500(米),故答案为:500;(2)女子组的速度为:(500﹣80)÷120=3.5m/s,则男子组队员跑步的路程:y=4.5x+50,女子组队员跑步的路程:y=3.5x+80,解,解得:,∴500﹣185=315(米),所以男子组追上女子组时,两组队员离终点的路程为315米.三.反比例函数综合题(共1小题)3.(2023•盘锦)如图,在平面直角坐标系中,A(1,0),B(0,3),反比例函数y=(k ≠0)在第一象限的图象经过点C,BC=AC,∠ACB=90°,过点C作直线CE∥x轴,交y轴于点E.(1)求反比例函数的解析式.(2)若点D是x轴上一点(不与点A重合),∠DAC的平分线交直线EC于点F,请直接写出点F的坐标.【答案】(1)y=;(2)F(2+,2)或(2﹣,2).【解答】解:(1)过C点作MN⊥x轴于M点,过B作BN⊥CM于N点,如图所示:∴∠AMC=∠BNC=90°,设C(m,),∵B(0,3),A(1,0)则CM=,M(m,0),N(m,3),∵AN=m﹣1,CN=3﹣,BN=m,∵∠ACB=90°,∴∠BCN+∠ACM=90°,∵∠ACM+∠MAC=90°,∴∠BCN=∠MAC,又∵AC=BC,∠BCN=∠MAC,∠AMC=∠BNC=90°∴△ACM≌△CBN(AAS),∴CN=AM,BN=CM,∴3﹣=m﹣1,m=,∴k=m2,∴3﹣m=m﹣1,m=2,∴k=4,∴反比例函数的解析式:y=;(2)由(1)可得C(2,2),∵A(1,0),∴AC==,分两种情况:当D在A点右侧时:如(1)中图所示,∵CE∥x轴,∠DAC的平分线交直线EC于点F,∴F点纵坐标为2,∠CAF=∠DAF=∠CFA,∴CF=AC=,∴F点横坐标为2+,∴F(2+,2),当D在A点左侧时,如图:∵CE ∥x 轴,∠DAC 的平分线交直线EC 于点F ,∴F 点纵坐标为2,∠CAF =∠DAF =∠CFA ,∴CF =AC =,∵C (2,2),∴F 点横坐标为2﹣,∴F (2﹣,2),综上所述:F (2+,2)或(2﹣,2).四.二次函数的应用(共2小题)4.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示:销售单价x /元…121314…每天销售数量y /件…363432…(1)直接写出y 与x 之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w (元),当销售单价为多少元时,每天获利最大?最大利润是多少元?【答案】(1)y =﹣2x +60;(2)18元;(3)当销售单价为19元时,每天获利最大,最大利润是198元.【解答】解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),由所给函数图象可知:,解得:,故y与x的函数关系式为y=﹣2x+60;(2)根据题意得:(x﹣10)(﹣2x+60)=192,解得:x1=18,x2=22又∵10≤x≤19,∴x=18,答:销售单价应为18元.(3)w=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600=﹣2(x﹣20)2+200∵a=﹣2<0,∴抛物线开口向下,∵对称轴为直线x=20,∴当10≤x≤19时,w随x的增大而增大,∴当x=19 时,w有最大值,W最大=198.答:当销售单价为19元时,每天获利最大,最大利润是198元.5.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.【答案】(1)y=﹣2x+100;(2)①三月份每件产品的成本是20万元;②四月份最少利润是500万元.【解答】解:(1)在表格取点(30,40)、(32,36),设一次函数的表达式为:y=kx+b,则,解得:,则一次函数的表达式为:y=﹣2x+100;(2)①设三月的成本为m万元,当x=35时,y=﹣2x+100=30,由题意得:450=30(35﹣m),解得:m=20,即三月份每件产品的成本是20万元;②四月份每件产品的成本比三月份下降了14万元,则此时的成本为20﹣14=6,由题意得:w=y(x﹣6)﹣450=(﹣2x+100)(x﹣6)﹣450=﹣2x2+112x﹣1050(25≤x≤30),则抛物线的对称轴为x=28,则x=25时,w取得最小值,此时,w=500,即四月份最少利润是500万元.五.三角形的外接圆与外心(共1小题)6.(2023•盘锦)如图,△ABC内接于⊙O,AB为⊙O的直径,延长AC到点G,使得CG=CB,连接GB.过点C作CD∥GB,交AB于点F,交⊙O于点D,过点D作DE∥AB,交GB的延长线于点E.(1)求证:DE与⊙O相切.(2)若AC=4,BC=2,求BE的长.【答案】(1)答案见解答过程;(2).【解答】(1)证明:连接OD,如图:∵AB为⊙O的直径,∴∠ABC=∠BCG=90°,∵CG=CB,∴△BCG为等腰直角三角形,∴∠G=∠CBG=45°,∵CD∥GB,∴∠ACD=∠C=45°,∠BCD=∠CBG=45°,∴∠AOD=2∠ACD=90°,∵DE∥AB,∴∠ODE=∠AOD=90°,即:OD⊥DE,又点D在⊙O上,∴OD为⊙O的半径,∴DE为⊙O的切线,即:DE与⊙O相切.(2)解:由(1)可知:∠ABC=90°,∠ACD=∠BCD=45°,∠AOD=90°,在Rt△ABC中,AC=4,BC=2,由勾股定理得:,∴,∵CD∥GB,AC=4,BC=CG=2,∴BF:AF=AC:CG=4:2=2:1,设BF=k,AF=2k,∴,∴,∴,∴,在Rt△ODF中,,,由勾股定理得:,∵CD∥GB,DE∥AB,∴四边形DEBF为平行四边形,∴.六.作图—复杂作图(共1小题)7.(2023•朝阳)如图1,在▱ABCD中,求作菱形EFGH,使其面积等于▱ABCD的面积的一半,且点E,F,G,H分别在边AD,AB,BC,CD上.小明的作法①如图2,连接AC,BD相交于点O.②过点O作直线l∥AD,分别交AB,CD于点F,H.③过点O作l的垂线,分别交AD,BC于点E,G.④连接EF,FG,GH,HE,则四边形EFGH为所求作的菱形.(1)小明所作的四边形EFGH是菱形吗?为什么?(2)四边形EFGH的面积等于▱ABCD的面积的一半吗?请说明理由.【答案】(1)是;(2)四边形EFGH的面积等于▱ABCD的面积的一半.【解答】解:(1)小明所作的四边形EFGH是菱形.理由如下:∵四边形ABCD为平行四边形,∴OA=OC,AB∥CD,∴∠OAF=∠OCH,在△AOF和△COH中,,∴△AOF≌△COH(ASA),∴OF=OH,同理可得OE=OG,∴四边形EFGH是平行四边形,∵EG⊥FH,∴四边形EFGH是菱形;(2)四边形EFGH的面积等于▱ABCD的面积的一半.理由如下:∵FH∥AD,AB∥CD,∴四边形AFHD为平行四边形,∴FH=AD,∵菱形EFGH的面积=FH•EG,平行四边形ABCD的面积=AD•EG,∴菱形EFGH的面积=平行四边形ABCD的面积的一半.七.解直角三角形的应用(共1小题)8.(2023•大连)图1是小明家在利用车载云梯搬运装修垃圾,将其抽象成如图2所示的示意图.已知AB⊥BE,CE⊥BE,垂足分别为B,E,CD∥EB,测得∠ACD=70°,CE=1.25m,AC=10.4m.求云梯顶端A到地面的距离AB的长.(结果取整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】11米.【解答】解:延长CD交AB于H,∵AB⊥BE,CE⊥BE,CD∥EB,∴四边形CHBE是矩形,∴BH=CE=1.25m,∵∠ACD=70°,∴AB=BH+AH=BH+AC•sin∠ACD≈1.25+10.4×0.94≈11(m),即云梯顶端A到地面的距离AB的长大约11米.八.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30°和45°,AB=40m,BD=20m,∠BDF=159°,点A,B,C,D,E,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:≈1.73,sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)【答案】CE的长约为62m.【解答】解:如图:延长AB交CE于点H,过点B作BG⊥DF,垂足为G,由题意得:BG=HE,CM∥AH,∴∠CAH=∠MCA=30°,∠CBH=∠MCB=45°,设BH=xm,∵AB=40m,∴AH=AB+BH=(x+40)m,在Rt△ACH中,CH=AH•tan30°=(x+40)m,在Rt△CBH中,CH=BH•tan45°=x(m),∴x=(x+40),解得:x=20+20,∴CH=(20+20)m,∵∠BDF=159°,∴∠BDG=180°﹣∠BDF=21°,在Rt△BDG中,BD=20m,∴BG=BD•sin21°≈20×0.36=7.2(m),∴BG=EH=7.2m,∴CE=CH+HE=20+20+7.2≈62(m),∴CE的长约为62m.九.解直角三角形的应用-方向角问题(共1小题)10.(2023•朝阳)如图,CD是一座东西走向的大桥,一辆汽车在笔直的公路l上由南向北行驶,在A处测得桥头C在北偏东30°方向上,继续行驶500米后到达B处,测得桥头D在北偏东45°方向上.已知大桥CD长300米,求桥头C到公路l的距离.(结果保留根号)【答案】桥头C到公路l的距离为400(1)米.【解答】解:如图.延长DC交直线l于H,设CH=x米,根据题意得,∠DHA=90°,在Rt△AHC中,∠A=30°,tan30°=,∴AH=x米,∵AB=500米,∴HB=(x﹣500)米,在Rt△BHD中,∠HBD=45°,∴HB=HD,∵HD=(x+300)米,∴x﹣500=x+300,解得x=400(1)米,答:桥头C到公路l的距离为400(1)米.一十.折线统计图(共1小题)11.(2023•大连)某射击队进行射击训练,甲、乙、丙三名射击运动员分别射击10次,射击队记录他们的成绩(单位:环),并对数据进行收集、整理、描述和分析,部分信息如下:Ⅰ.甲运动员的射击成绩是:7 9 8 7 8 9 9 9 8 10;Ⅱ.乙运动员的射击成绩是:成绩/环678910次数12223Ⅲ.丙运动员射击成绩的折线统计图为:Ⅳ.分析上述数据,得到下表:平均数众数中位数方差甲8.4a8.50.84乙b10c 1.84丙8.2d8 1.56根据以上信息,回答下列问题:(1)表格中的a= 9 ,b= 8.4 ,c= 8.5 ,d= 8和9 .(2)射击队准备从甲、乙、丙三名运动员中选取一名参加比赛,你认为应该选择哪名运动员参赛?为什么?【答案】(1)9,8.4,8.5,8和9;(2)应该选择甲参赛,理由见解答.【解答】解:(1)甲10次射击中,9环出现的次数最多,故众数a=9,乙的平均数b=×(6×1+7×2+8×2+9×2+10×3)=8.4,把乙10次射击的成绩从小到大排列,排在中间的两个数分别是8和9,故中位数c==8.5,丙10次射击中,8环和9环出现的次数最多,故众数d=8和9,故答案为:9,8.4,8.5,8和9;(2)应该选择甲参赛,理由如下:因为甲和乙的平均数相同,且比丙的高,所以在甲和乙中选其中一个参赛;又因为甲的方差比乙小,所以甲比乙稳定,故该选择甲参赛.一十一.列表法与树状图法(共1小题)12.(2023•朝阳)某校在八年级开展了以“争创文明城市,建设文明校园”为主题的系列艺术展示活动,活动项目有“绘画展示”“书法展示”“文艺表演”“即兴演讲”四组(依次记为A,B,C,D).学校要求八年级全体学生必须参加且只能参加其中的一个项目,为了解八年级学生对这几项活动的喜爱程度,随机抽取了部分八年级学生进行调查,并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)本次一共抽样调查了 50 名学生;(2)将条形统计图补充完整;(3)若该校八年级共有600名学生,请估计该校八年级学生选择“文艺表演”的人数;(4)学校从这四个项目中随机抽取两项参加“全市中学生才艺展示活动”.用列表法或画树状图法求出恰好抽到“绘画展示”和“书法展示”的概率.【答案】(1)50;(2).【解答】解:(1)12÷24%=50(人),所以本次一共抽样调查了50名学生;故答案为:50;(2)B组人数为50﹣18﹣5﹣12=15(人),条形统计图补充为:(3)600×=60(人),所以估计该校八年级学生选择“文艺表演”的人数60人;(4)画树状图为:共有12种等可能的结果,其中抽到“绘画展示”和“书法展示”的结果数为2,所以恰好抽到“绘画展示”和“书法展示”的概率==.。

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国各地中考数学试题分类汇编32011全国各地中考数学试题分类汇编3平面直角坐标系A一、选择题2. (2011山东济宁,10,3分)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70︒方向到达B地,然后再沿北偏西20︒方向走了500m到达目的地C,此时小霞在营地A的()A. 北偏东20︒方向上B.北偏东30︒方向上C. 北偏东40︒方向上D. 北偏西30︒方向上【答案】C3. (2011山东日照,7,3分)以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()(A)(3,3)(B)(5,3)(C)(3,5)(D)(5,5)【答案】D4. (2011山东泰安,12 ,3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900得到OA',则点A'的坐标为()A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6)【答案】A5. (2011宁波市,5,3分)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3)【答案】C6. (2011浙江绍兴,10,4分)李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的队员线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A B、重合于点P,如图2;建立平面直角坐标系,平移此三角新,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点(,0)N n,如图3.当m=n的值.你解答这个题目得到的n值为()A.4-B.4C.AMA BPxyPMN【答案】A7. (2011台湾台北,17)如图(七),坐标平面上有两直线L、M,其方程式分别为y=9、y=-6。

若L上有一点P,M上有一点Q,PQ与y轴平行,且PQ上有一点R,PR:RQ=1:2,则R点与x轴的距离为何?A.1 B.4 C.5 D.10【答案】B8. (2011台湾全区,15)图(三)的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列何者会经过点(75 , 0)?A. A B. B C. C D. D【答案】B第10题图1 第10题图2 第10题图39. (2011台湾全区,16)已知数在线A 、B 两点坐标分别为-3、-6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离? A . 0 B . 2 C . 4 D 6 【答案】C10.(2011甘肃兰州,8,4分)点M (-sin60°,cos60°)关于x 轴对称的点的坐标是A .(2,12) B .(2-,12-) C .(2-,12)D .(12-,2-)【答案】B11. (2011湖南常德,12,3分)在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 【答案】C12. (2011江苏宿迁,2,3分)在平面直角坐标中,点M (-2,3)在(▲) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B13. (2011四川广安,8,3分)在直角坐标平面内的机器人接受指令“[],A α”(α≥0,0︒<A <180︒)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[]2,60︒后位置的坐标为()A.(1,3-) B.(1,3--) C.(3,1--) D.(3,1-)【答案】C14. (2011四川内江,12,3分)如图,在直角坐标系中,矩形ABCO的边OA 在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为A.(45-,125)B.(25-,135)C.(12-,135)D.(35-,125)【答案】A15. (2011湖南怀化,8,3分)如图4,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)【答案】CABCDEO xy16. (2011湖北武汉市,9,3分)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64. B.49. C.36.D.25.【答案】B17. (2011湖南衡阳,8,3分)如图所示,在平面直角坐标系中,菱形MNPO的顶点P坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)【答案】A18. (2011广东肇庆,6,3分)点M(2-,1)关于x轴对称的点的坐标是A. (2-)-,1-)D. (1,2-)B. (2,1)C.(2,1【答案】A19. (2011湖南永州,16,3分)对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P 1(1,2 )=(3,1-),P 2(1,2 )= P 1(P 1(1,2 ))= P 1(3,1-)=(2,4),P 3(1,2 )= P 1(P 2(1,2 ))= P 1(2,4)=(6,2-).则P 2011(1,1-)=( ) A .(0,21005 ) B .(0,-21005 ) C .(0,-21006) D .(0,21006) 【答案】D .20.(20011江苏镇江,7,2分)在平面直角坐标系中,正方形ABCD 的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y 轴上有一点P(0,2).作点P 关于点A 的对称点1P ,作点1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作点3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作点5P 关于点B 的对称点6P …,按此操作下去,则点2011P 的坐标为( )A.(0,2)B. (2,0)C. (0,-2)D.(-2,0) 答案【D 】21. (2011内蒙古乌兰察布,8,3分)在平面直角坐标系中,已知线段AB 的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB 平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( )A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 【答案】A22. (2011湖北鄂州,14,3分)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D .82【答案】C23. (2011贵州安顺,10,3分)一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O)B.(5,0)C .(0,5)D .(5,5)【答案】B第14题A B CO yx第10题图24. (2011山东枣庄,4,3分)在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B25. (2011山东枣庄,12,3分)如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 【答案】D26. (2010湖北孝感,11,3分)如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA’B’C’的位置.若OB=23,∠C=120°,则点B’的坐标为( )A. (3B. (3,3 C. 6,6 D.6,6-【答案】D27. (2011湖南湘潭市,6,3分)在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为1 2 3 4-1 1 2 xyAA.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)【答案】D28.(2011湖北宜昌,13,3分)如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC 绕点0 旋转180°,旋转后的图形为矩形OA1B1C1,那么点B1的坐标为( ).A. (2,1)B.(-2,l)C.(-2,-l)D.(2,-1)(第13题图)【答案】C二、填空题1.(2011山东德州9,4分)点P(1,2)关于原点的对称点P′的坐标为___________.【答案】(-1,-2)2. (2011山东威海,14,3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点的坐标(0,4),B点的坐标(-3,0),则C点的坐标是 .【答案】(-1,3)3. (2011浙江台州,15,5分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”。

请写出一个“和谐点”的坐标,答:【答案】(2,2)或者(0,0)……4. (2011江西,15,3分)如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 .第14题图【答案】(-1,1)5. (2011湖南邵阳,9,3分)在平面直角坐标系中,点(1,3)位于第________象限。

相关文档
最新文档