测试信号分析与处理考试及答案

合集下载

信号分析与处理14~15上期末试卷A答案

信号分析与处理14~15上期末试卷A答案

浙江大学宁波理工学院2014–2015学年第一学期《信号分析与处理》课程期末考试试卷A 答案一、选择题(共10分,每空2分)1、一信号⎩⎨⎧><=2/1||02/1||1)(t t t x ,,,则其傅立叶变换为 C 。

A.ωsin B.ω2sin C.)2/sin(ω D.πωsin 23A –4A.5 A.1、(2、(78/π=Ω 3分742=Ωπ为有理数,分母为其基波周期,即N=7 4分 3、(10分)求出下列信号的拉氏反变换。

236512-<<-+++}Re{s s s s (反变换) 解:21326512+-+=+++=s s s s s S X )( 5分根据收敛域的双边情况,可求出反变换为双边信号如下:[])()()()(t u e t u e S X L t x t t -+==---2312 5分4、(15分)已知2112523)(---+--=zz z z X ,试问,)(n x 在以下三种收敛域下,哪一种是左边序列?哪一种是右边序列?哪一种是双边序列?并求出各对应的)(n x 。

(1)2||>z ; (2)5.0||<z ; (3)2||5.0<<zX ( ((2(35、(15分)已知)(t5(tx-的波形,要求画出分阶段变换的步骤x的波形如下,试画出)2下面画出6、(10分)求周期矩形脉冲信号的傅立叶级数(指数形式),并大概画出其频谱图。

解:指数级傅里叶展开如下 8分k c 的谱线图如下,只要绘制出趋势图即可2分四.论述题(25分)1、(10分)阐述拉普拉斯变换和傅立叶变换的关系,并用适当的公式加以说明。

答:1)傅立叶变换到拉氏变换:信号的傅立叶变换需满足狄立赫利收敛条件,不满足该条件的信号不存在傅立叶变换,对于部分不满足收敛条件的信号)(t x ,乘以衰减因子t e δ-后只要δ满足一定范围,t e t x δ-)(的傅立叶变换是存在的。

信号分析与处理习题

信号分析与处理习题

一、选择题:1、下列哪个系统不属于因果系统( )。

A 、]1[][][+-=n x n x n yB 、12()(0)2(0)3()y t x x f t =+-C 、[][]nk y n x k =-∞=∑ D 、()()(1)y t cf t df t =+-2、设激励为f 1(t )、f 2(t )时系统产生的响应分别为y l (t )、y 2(t ),并设a 、b 为任意实常数,若系统具有如下性质:af 1(t )+bf 2(t )↔ay l (t )+by 2(t ),则系统为( )。

A 、线性系统 B 、因果系统 C 、非线性系统D 、时不变系统3、右图所示f (t )的表达式为(C )。

A 、[]()(1)(1)t t t t εεε--+- B 、[]()(1)t t t εε--- C 、[](1)()(1)t t t εε---- D 、[]()(2)t t t εε--4、结构组成和元件参数不随时间变化的系统称为( )系统。

A 、时变 B 、时不变 C 、线性 D 、非线性5、积分f (t )=13-⎰(2t 2+1)δ(t -2)dt 的结果为( )。

A 、1B 、3C 、0D 、9 6、积分55(4)()t t dt δ--⎰等于( )。

A 、-4B 、4C 、3D 、-37、已知信号()f t 的最高频率0f Hz ,则对信号(/2)f t 取样时,其频谱不混叠的最大取样间隔max T 等于( )。

A 、02f B 、 01f C 、012f D 、014f 8线性常系数微分方程()2()3()2()()y t y t y t x t x t ''''++=+表征的LTI 系统,其单位冲激响应h (t )中( )。

A 、包括()t δ项B 、不包括()t δ项C 、不能确认D 、包括()t δ'项 9、以下分别是4个信号的拉普拉斯变换,其中(C )不存在傅里叶变换?A 、1sB 、1C 、12s -D 、12s +10、周期信号的频谱特点是( )。

信号分析与处理_绝密模拟试卷1_(2)

信号分析与处理_绝密模拟试卷1_(2)

以下面题目来复习,考个好成绩很容易一、选择题(10分,每题2分)1. 若f (t) 是已录制在磁带的声音信号,则下列表述错误的是 Ba) f (−t) 表示将磁带倒转播放产生的信号b) f (2t) 表示将磁带以二倍速度播放的信号c)f (2t) 表示将磁带速度降低一半播放的信号d) 2 f (t) 表示将磁带音量放大一倍播放的信号2.一个理想低通滤波器由h(t) = sin c( Bt) 冲激响应描述。

由于这个h(t) 在t<0时不为零,且s in c 函数不是绝对可积的,故 Ca) 该滤波器物理上不可实现,但它是稳的。

b) 该滤波器物理上可实现,但它不稳定。

c) 该滤波器物理上可实现,也是稳定的。

d) 该滤波器物理上不可实现,也不稳定。

3. z 变换的收敛域决定了序列x(n) 的性质。

在下列关于序列x(n) 的性质的表述中,错误的是a) 有限长序列x(n) 的z 变换X( z) 的收敛域是整个z 平面,有时要除去z= 0 或z为无穷。

b) 右边序列x(n) 的z变换X( z) 的收敛域位于以最大极点的模为半径的圆外部分c) 左边序列x(n) 的z变换X( z) 的收敛域位于以最大极点的模为半径的圆内部分d) 双边序列x(n) 的z变换X( z) 的收敛域是以最大和最小极点半径为界的环形4.周期性非正弦连续时间信号的频谱,其特点为( A) 。

(a) 频谱是连续的,收敛的(b) 频谱是离散的,谐波的,周期的(c) 频谱是离散的,谐波的,收敛的(d) 频谱是连续的,周期的5. 如某一因果线性时不变系统的系统函数H(S) 的所有极点的实部都小于零,则( C) 。

(a) 系统为非稳定系统(b)|h(t)|< ∞(c) 系统为稳定系统(d) |h(t)| =03)IIR数字滤波的基本网络结构有直接型、级联型、并联型FIR数字滤波的基本网络结构有直接型、级联型、线性型。

4)计算积分的结果为 8 。

测试信号分析与处理考试及答案

测试信号分析与处理考试及答案

一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 10 。

2.线性时不变系统的性质有交换律、结合律、分配律.3.因果序列x (n),在Z →∞时,X (Z)=x (0)。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为k N j e Z π2=。

5.序列x (n )=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为{0,3,1,-2; n=0,1,2,3}。

6.设LTI 系统输入为x(n ) ,系统单位序列响应为h(n),则系统零状态输出()()()y n x n h n =*。

7.对4()()x n R n =的Z 变换为:,其收敛域为: 411,01z z z --->-二、单项选择题(每题2分, 共20分)1.δ(n )的Z 变换是A.1 B 。

δ(ω) C 。

2πδ(ω) D 。

2π2.序列x 1(n)的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是A 。

3 B. 4 C. 6 D 。

73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 A 。

y (n —2) B 。

3y (n —2) C 。

3y (n) D 。

y (n )4.下面描述中最适合离散傅立叶变换DFT 的是A 。

时域为离散序列,频域为连续信号B 。

时域为离散周期序列,频域也为离散周期序列C 。

时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器6.下列哪一个系统是因果系统A 。

y (n)=x (n+2) B. y (n )= cos (n+1)x (n ) C. y(n)=x (2n) D 。

《测试信号分析与处理》复习题资料

《测试信号分析与处理》复习题资料

1) A2 sin( 2t
2 ) ,求信号的
2、 求频率相同的单位方波和正弦波的互相关函数。
参考答案 第一章 信号及其描述
(一) 1、信号; 2、时间( t),频率( f );3、离散性,谐波
性,收敛性; 4、准周期,瞬态非周期; 5、均值 x ,
均方值 x 2 ,方差 x 2; 6、偶,奇;
(二) 1、√; 2、√; 3、╳; 4、╳; 5、√;
(四)略
第四章 信号调理、处理和记录
(一) 1、电压或电流; 2、激励电压; 3、桥臂数; 4、相乘,
相乘; 5、鉴频; 6、幅值,频率; 7、幅频特性曲线
降为最大值的 1 倍时对应的频率为截止频率;
2
B fc2
; fc1
f c2
2 f c1 , 8、大;
(二)(1)(1)(3)( 2)(4)
(三)√ ╳ ╳ √
(三)
1、 2x0

x0
;2、 0,
2
x0

1
2
2
x0 cos( t
; 3、 A ;
)
a j2 f
4 、 T sin c (2 f 0 )T T sin c ( 2 f 0 )T ;
5、
; 0
a2 4 2 f 2
2 0
j 4 fa
第二章 测试装置的基本特性 (一) 1、 1/2, 1/ 2 , 45 ; 2、 123; 3、傅立叶变换法,滤

产生变化。
( 1)固有频率 (2)阻尼比 ( 3)灵敏度 (4)压电
常数
7、 在测量位移的传感器中,符合非接触测量,而且不受
油污等介质影响的是
传感器。
( 1)电容式

信号分析与处理A试题A卷.doc

信号分析与处理A试题A卷.doc

A u(n) = Z$(n - k)k=O C u(n)= ^J(n-k)k=-©oooBu(n) = £3(n -k) k=08D u(n) = £^(n -k)信号分析与处理A 期中试题一、选择题(每题3分,共30分)1. x(n) = 2cos(—-—),该序列是() 3 6A.非周期序列B.周期N = ^/6C.周期N = 6勿D.周期N = 2勿2. 序列x(n) = -a nu(-n-l),则X(z)的收敛域为()A. z < aB. z < aC. z > aD. z > a 3若一线性移不变系统当输入为x(n) = ^(n)时输出为y(n) = R3(n),则当输入为 u(n)-u(n-2)时输出为 ()A. R 3(n)B. R 2(n)C. RJn) + RJn-l)D. R 2(n) + R.(n-1) 4.己知序列Z 变换的收敛域为Izlvl,则该序列为 ()A.有限长序列B.右边序列C.左边序列D.双边序列 5.设系统的单位抽样响应为h(n),则系统因果的充要条件为()A.当 n>0 时,h(n)=0B.当 n>0 时,h(n)尹0C.当 n<0 时,h(n)=OD.当 n<0 时,h(n)KO6下列哪一个单位抽样响应所表示的系统不是因果系统?()A.h(n)=6(n)B.h(n)=u(n)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1) 7.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括()A.单位圆B.原点C.实轴D.虚轴 9设系统的单位抽样响应为h(n)=6(n-1)+6(n+l),其频率响应为()A. H(e 」'")=2cos 刃B. H(e J<y )= 2sin69C. H(e 」”)=cos 刃D. H(e 均)=sin6910下列关系正确的是()。

信号处理分析试卷及解答

信号处理分析试卷及解答

信号分析试卷一、 (1))1(21)()1(21)(-++=n n n n δδδχ求)(jw e χ 解: ()jwe χ=11((1)()(1))22jwn jwnn n n e n e δδδ+∞--=-∞++-∑=12jw e - (2))()]([jw e n X FT χ=求)(0n n X -的FT解答:根据傅立叶变换的平移性,可知:FT[0()x n n -]=0()jwn jw eX e -(3)设系统由差与方程描述)1()2()1()(-+-+-=n x n y n y n Y求系统的系统函数H (Z )并画出零极点分布图解答:同时对方程两边做Z 变换:)()()1()()()()(121121z x z z y z z z x z z y z z y z z y ------=--++=则系统函数:112()()()122Y z z H z X z z z---===--收敛域1||2z >=可见系统函数零点在极点在12z =二、}1,1,1,0,2,1{)(=n χ(1)求X (Z ) (2)求X (K )解答:(1)X (Z )=()nn n zχ+∞-=-∞∑=1*0z -+2* 1z -+0+1* 3z -+1*4z -+1*5z -根据公式:X(K)=∑-=-10/2)(N n Nkn j en x π,可得:X(0)=1*1+2*1+0*1+1*1+1*1+1*1=6; X(1)=1+2**2*/6j eπ-+*2**3/6*2**4/6*2**5/60j j j ee e πππ---+++=1+2*/3j eπ-⨯**2*/3**5/3j j j e e e πππ---+++);X (2)=1+2/328/310/320j j j j ee e e ππππ-⨯-⨯⨯-⨯⨯-⨯⨯⨯++++X (3)=1+*2j e π-⨯32450j j j j e e e e ππππ-⨯⨯-⨯⨯-⨯-⨯⨯+++++;X (4)=1+24/3j e π-⨯⨯⨯416/320/30j j j e e e πππ-⨯⨯-⨯⨯-⨯⨯++++;X(5)=1+5/32j eπ-⨯⨯⨯520/325/30j j j e e e πππ-⨯⨯-⨯⨯-⨯⨯++++三 、对某实信号进行谱分析,要求频率分辩F=2HZ ,信号的上限频率fm=1KHZ (1)确定采样频率s f ,采样间隔s T (2)采样长度p T 和点数N解答:(1)s f ≥2fm=2 KHZs T ≤1sf =0.5310-⨯s (2)N=sf F =1000 p T =1F=0.5s四、某系统由方程描述)1(21)()1(21)(-++-=n x n x n y n y 设系统是因果的。

信号分析与处理模拟试卷(答案)

信号分析与处理模拟试卷(答案)

信号分析与处理模拟试卷答案一. 填充题(每小题2分,共20分)1. 指信号能量有限,平均功率为零的信号。

2. ()()nn X z x n z∞-=-∞=∑3. 0()F ωω-4. 极点5. )(s F s n6. 响应信号与激励信号相比,只是响应大小和出现的时间不同,而无波形上的变化。

7. z z a z a-8. 没有外加激励信号的作用,只由起始状态所产生的响应。

9. 冲激响应,()h t 。

10.系统参数不随时间变化的系统。

二. 利用函数或变换性质求函数值(每小题4分,共12分)1. )()(ωωF j dtt df ↔ (1分))()(2)(2)()12()()())(()(ωω-ω'ω-ω-↔-∴ω'ω-ω-=ωωω↔F j F F dtt df t F F F j d dj dt t df t(1分)(2分)2. ()119dF s ds s s =-+ (1分) 91()()()t f t u t e u t -=- (2分)919()()()()1()(1)()t t tf t f t u t e u t f t e u t t---==-=- (1分)3.求函数1()2nu n 的Z 变换。

解:()1zu n z ↔- 1z > (1分)21()(1)z d z z nu n z dz z ⎛⎫ ⎪-⎝⎭↔-=- (2分) 21()22(1)znu n z ↔- 1z > (1分) 三、)(t f 的波形如图所示,请给出变换)22(t f -的步骤,试画出其波形。

(6分) 解:)]1(2[]2[)()(--→-→-→t f t f t f t f (3分)(3分)四.求像函数2()4(1)se F s s s -=+的拉氏反变换。

(12分)解: 1221()()4(1)4(1)s s se F s e F s e s s s s ---===++ 112121()4(1)A B B F s s s s s i s i==++++- (2分) 11211()04(1)4A sF s s s ====+ (2分) 1111()()4()8B s i F s s i s s i =+==-=-- (2分)2111()()4()8B s i F s s i s s i =-===-+ (2分)121111884()4(1)F s s s s s i s i==--++- 111()()cos ()44f t u t tu t =- (2分)11()(1)(1)s e F s f t u t -↔--1()[1cos (1)](1)4f t t t u t =--- (2分)五.已知)(2)(1t u tt f e -=,2()()(1)f t u t u t =--,求)()()(21t f t f t g *= (10分)解:121222212222(1)()()()()()(2)()[()(1)(2)()()()(1)(2)()(1)(2)11(1)()(1)(1)(2)22tt t t g t f t f t f f t d u u t u t d u u t d u u t d d u t d u t u t u t e e e e e e e ττττττττττττττττττττ∞-∞∞--∞∞∞---∞-∞------=*=-=----=----=--=----⎰⎰⎰⎰⎰⎰分分分分分六.已知像函数231)(2+++=z z z z X ,2>z ,求))(n χ (10分)解:12()1(2)2A A X z z z z z z ==+++ (2分) 0,2z z ==- 为单根 (2分)1022()1[]2()1[(2)]2z z X z A zz X z A z z ==-===+=-(2分)1()22(2)z X z z =-+ (2分) 11()()(2)()22n n n u n χδ=-- (2分)七.已知激励信号为)()(t u tt e e-=,求系统的冲激响应23)(-=s ss H ,求系统的零状态响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每空1分, 共10分)
1.序列()sin(3/5)x n n π=的周期为 10 。

2.线性时不变系统的性质有交换律、结合律、分配律。

3.因果序列x(n),在Z →∞时,X(Z)=x(0)。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为k N j e Z π2=。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为{0,3,1,-2; n=0,1,2,3}。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出()()()y n x n h n =*。

7.对4()()x n R n =的Z 变换为:,其收敛域为: 4
11,01z z z --->-
二、单项选择题(每题2分, 共20分)
1.δ(n)的Z 变换是
A.1
B.δ(ω)
C.2πδ(ω)
D.2π
2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是
A. 3
B. 4
C. 6
D. 7
3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为
A. y (n-2)
B.3y (n-2)
C.3y (n )
D.y (n )
4.下面描述中最适合离散傅立叶变换DFT 的是
A.时域为离散序列,频域为连续信号
B.时域为离散周期序列,频域也为离散周期序列
C.时域为离散无限长序列,频域为连续周期信号
D.时域为离散有限长序列,频域也为离散有限长序列
5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完
全不失真恢复原信号
A.理想低通滤波器
B.理想高通滤波器
C.理想带通滤波器
D.理想带阻滤波器
6.下列哪一个系统是因果系统
A.y(n)=x (n+2)
B. y(n)= cos(n+1)x (n)
C. y(n)=x (2n)
D.y(n)=x (- n)
7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括
A. 实轴
B.原点
C.单位圆
D.虚轴
8.已知序列Z 变换的收敛域为|z |>2,则该序列为
A.有限长序列
B.无限长序列
C.反因果序列
D.因果序列
9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频
域抽样点数N 需满足的条件是
A.N≥M
B.N≤M
C.N≤2M
D.N≥2M
10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)=
A.0
B.∞
C. -∞
D.1
三、判断题(本题共10个小题,每小题1分,共10分)
1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

(1)2.x(n)= sin(ω0n)所代表的序列不一定是周期的。

(1)3.FIR离散系统的系统函数是z的多项式形式。

(1)4.y(n)=cos[x(n)]所代表的系统是非线性系统。

(1)5.FIR滤波器较IIR滤波器的最大优点是可以方便地实现线性相位。

(1)6.用双线性变换法设计IIR滤波器,模拟角频转换为数字角频是线性转换。

(0)7.对正弦信号进行采样得到的正弦序列一定是周期序列。

(0)8.常系数差分方程表示的系统为线性移不变系统。

(0)9.FIR离散系统都具有严格的线性相位。

(0)10.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。

(0)四、简答题(每题5分,共20分)
1.用DFT对连续信号进行谱分析的误差问题有哪些?
答:混叠失真;截断效应(频谱泄漏);栅栏效应
2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。

答:
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。

3.简述用双线性法设计IIR数字低通滤波器设计的步骤。

答:确定数字滤波器的技术指标;将数字滤波器的技术指标转变成模拟滤波器的技术指标;按模拟滤波器的技术指标设计模拟低通滤波器;将模拟低通滤波器转换成数字低通滤波器。

4.8点序列的按时间抽取的(DIT)基-2 FFT如何表示?
五、计算题 (共40分)
1.已知2
(),2(1)(2)
z X z z z z =>+-,求x(n)。

(6分)
1.解:由题部分分式展开 ()(1)(2)12
F z z A B z z z z z ==++-+- 求系数得 A=1/3 , B=2/3
所以 2
32131)(-++=z z z z z F 收敛域⎪z ⎪>2,故上式第一项为因果序列象函数,第二项为反因果序列象函数, 则 12()(1)()(2)()33
k k f k k k εε=
-+
2.写出差分方程表示系统的直接型和级联..型结构。

(8分) )1(3
1)()2(81)1(43)(-+=-+--n x n x n y n y n y
3.计算下面序列的N 点DFT 。

(1))0()
()(N m m n n x <<-=δ(4分) (2))
0()(2N m e n x mn N j <<=π (4分) 解:(1) kn N W k X =)(
(2)⎩⎨⎧≠==m
k m k N k X ,0,)( 4.设序列x(n)={1,3,2,1;n=0,1,2,3 },另一序列h(n) ={1,2,1,2;n=0,1,2,3},
(1)求两序列的线性卷积 y L (n); (4分)
(2)求两序列的6点循环卷积y C (n)。

(4分)
(3)说明循环卷积能代替线性卷积的条件。

(2分)
解:(1) y L (n)={1,5,9,10,10,5,2;n=0,1,2…6}
(2) y C (n)= {3,5,9,10,10,5;n=0,1,2,4,5}
(3)c ≥L 1+L 2-1
5.设系统由下面差分方程描述:
)1()2()1()(--+-=n x n y n y n y
(1)求系统函数H (z );(2分)
(2)限定系统稳定..
,写出H (z )的收敛域,并求出其单位脉冲响应h(n)。

(6分) 解:(1) 1
)(2--=z z z z H (2)511522
z -+<< )1()251(51)()251(51)(--+---
=n u n u n h n n。

相关文档
最新文档