大型变电站接地网优化设计
110 kV全户内智能变电站接地网优化设计方案

110kV全户内智能变电站接地网优化设计方案摘要:全户内智能变电站占地面积小,入地短路电流高,虽然城区土壤电阻率相对较低,但接地电阻和地电位升仍难以降低。
以某110kV全户内变电站土壤模型为例,对新一代智能变电站典型设计方案110-A2-X1的接地网进行优化设计。
优化设计时,通过分析设计规范对接地参数的要求,适当放宽接地网地电位升高的限值;基于CDEGS接地分析软件,分析不同面积和网孔尺寸的双层地网的降阻效果,以及不同数量和长度深井接地极的降阻效果,并对应用了双层地网和深井接地极的优化方案进行安全性评估和经济性比较。
结果表明,与双层地网相比,接地深井虽然成本较高,但降阻效果良好,对于无人值守的110kV全户内智能变电站,选取6口55m的接地深井的降阻方式形成其接地网优化方案可满足各项安全性要求。
关键词:全户内智能变电站双层接地网接地参数接地深井优化设计引言接地网是变电站安全可靠运行的重要保证,它不仅为站内电气设备提供一个公共的参考地,而且能确保故障情况下,运行人员和电气设备的安全[1-2]。
在能源互联网和智能电网建设的新形势下,电网容量急剧扩大,系统短路电流故障水平越来越高,国家电网公司为提升电网智能化水平,对新一代智能变电站技术进行深入研究并形成具有重要指导意义的新一代智能变电站典型设计方案[3-4]。
接地网的设计需要考虑变电站基本情况、站址土壤电阻率和土壤特性等因素,因此在该典型设计方案中并没有给出接地网的典型设计方案[5-7]。
全户内GIS智能变电站因占地面积小、噪音小和工作寿命长等优势在城市变电站建设中越来越多地被采用。
变电站面积的减小和入地故障电流的增加给接地网设计造成困难,单层接地网难以使接地电阻和地电位升(grounding potential rise,GPR)等参数满足文献[8]的要求,扩网又受到征地面积的限制。
近年来,在变电站接地网工程改造中发现,除了深井接地极在降阻方面有显著效果外,双层结构的接地网能有效降低跨步电位差和接触电位差。
变电站接地网优化设计

变电站接地网优化设计摘要本文针对变电站接地网的优化设计进行讨论,旨在提高接地网的接地性能和可靠性。
首先介绍了接地网的作用,然后分析了目前接地网存在的问题,包括地电位差大、接地电阻高、接地网的布置不合理等因素。
接着,本文提出了一些优化设计的措施,比如增加接地极的数量、加密接地极之间的连接、采用更优的接地材料等,以提高接地网的接地性能。
最后,文章对接地网的运行和维护进行了简要介绍,为实际操作提供了参考。
引言接地网是变电站电气设备中的重要组成部分,它主要起到保护人身安全和电气设备的作用。
接地网的优化设计对于保证变电站的安全运行、缩短停电时间、提高电网运行质量等方面都具有重要意义。
因此,接地网优化设计是变电站电气设备建设和运行中不可忽视的一环,也是实现安全、稳定、可靠运行的重要保障之一。
接地网的作用接地网是将电气设备接地的一个重要组成部分,它的主要作用如下:1.保护人身安全。
在电气事故中,接地网可以将漏电电流引至地面,避免对人身产生危害。
同时,接地网也可以保护电气设备,避免因为漏电电流过大而导致设备的损坏和停电。
2.提高电气设备的可靠性。
接地网可以对设备进行静电放电和雷电保护,避免因为外界环境影响导致电气设备受损,进而影响电力系统的可靠性。
3.接地电阻的监测。
接地电阻是接地网的重要指标之一,通过对接地电阻的实时监测,可以及时发现和处理接地网中的问题,提高运行可靠性。
接地网存在的问题接地网作为电气设备的保护系统,存在较多的问题,如下:1.地电位差过大。
地电位差是接地网的重要指标之一,指的是在不同地点测量到的地电位差异。
通常,地电位差应小于0.5V,若过大则可能损害电气设备,对人身产生危害。
2.接地电阻过高。
接地电阻是指接地网与地之间的电阻值,相当于接地网的电阻。
接地电阻过高会使得接地网的接地性能下降,应小于10欧。
过高的接地电阻可能导致漏电流过大,使电气设备不能正常运行。
3.接地网布置不合理。
接地网的布置与安装方式直接影响其接地效果和可靠性。
110kV变电站接地网的优化设计

110kV变电站接地网的优化设计摘要:在国家电网建设过程中,变电站是其重要的组成部分,变电站作为电力系统的枢纽,其接地网的设计运行对于电力系统的健康运行和变电站工作人员的人身安全起着至关重要的作用。
但是,在实际的110kV 变电站接地网的设计运行,还存在着一些问题影响着变电站接地网抗干扰能力,为此,我们需要对此进行有效的优化处理,从而使接地网抗干扰能力变强,更能满足在任何环境下都安全稳定运行的要求。
基于此,本文将对110kv变电站接地网的优化设计进行详细的分析和探究,希望能给需要的人士提供一定的参考价值。
关键词:110kv变电站;接地网;设计优化人们的生活越来越离不开对于电能的使用,为了电力输送的安全,同时也为了建立高效且应用能力更强的电力系统,推动电力行业健康发展,我们就需要不断的对电力系统中110kv变电站接地网进行优化设计。
接地网是变电站可靠运行的有力保障,其作为变电站内的重要系统,是可以提高整个变电站防雷性能的,同时也可以保护和维持变电站正常运行,接地网若是能够被优化设计,将可以提升其安全性与可靠性,进而保障变电站设备与工作人员的人身安全,更能保证整个电力系统的健康运行。
1、变电站接地网的重要性及影响其安全性的因素变电站接地网作为变电站内输送电力的重要系统,它对于设计的需求是非常大的,需要满足不同安全规范的要求,并且还要建立一个具有低阻抗对地通道的接地系统。
接地网的设计若是良好,将可以使整个变电站中防雷接地、保护接地和工作接地三者进行有机统一。
为此,优化变电站的接地网,将使其同时做到防雷、保护及工作的要求,且满足一、二次系统电磁兼容的要求,对于提高变电站弱电设备的抗干扰能力有着积极的作用。
优化接地网设计还可以提高变电站的地网技术水平,保证变电站内的一次设备、二次设备和微机自控装置的安全稳定运行。
造成接地网不能正常运行的因素有很多,其中组主要的因素是接地网电阻过大,影响接地网电阻的因素主要有以下几个方面:a.施工工艺。
特高压变电站接地优化设计

特高压变电站接地优化设计摘要:接地网的优化设计就是合理布置接地网中的水平导体,得以均匀导体的电流散流密度以及接地网地表的电位分布,提高导体的利用率,更好地确保人身和设备安全。
本文基于特高压变电站接地优化设计展开论述。
关键词:特高压变电站;接地;优化设计引言随着我国特高压电网建设的不断推进,“八交八直”的特高压电网框架逐步形成,大量的特高压变电站也将投产运行。
特高压系统的电压等级高、容量大,因此接地短路电流将相当大。
为保证电力系统的安全可靠运行,对接地系统的要求将更加严格。
特高压变电站接地系统的设计应充分考虑特高压电网的特点,在满足安全和经济的原则上对接地设计不断优化。
1防雷接地特高压交流输电是指交流1000kV及以上电压等级的输电技术,与常规500kV交流输电相比,1000kV交流输电线路自然输送功率为4~5倍,输电距离为2~3倍,输送相同容量时的损耗只有1/3~1/4、走廊宽度只有1/2~1/3,具有大容量、远距离、低损耗、省占地的突出优势。
特高压交流输电线路杆塔的高度和宽度均较超高压输电线路增加较多,因此线路遭雷击的概率也会增加。
通过研究,交流特高压输电线路的防雷保护应以防雷电绕击为主。
采用电气几何模型法等方法对特高压线路的雷击跳闸率进行了计算研究,得出合理的地线保护角,有效降低雷电绕击率。
全线架设双地线,地线保护角取值:双回路线路保护角,在平原丘陵地区不宜大于3°,在山区不宜大于5°;单回路线路保护角,平原丘陵地区不宜大于6°,在山区不宜大于4°;耐张塔地线对跳线保护角,平原单回路不大于6°,山区单回路和双回路不大于0°;变电站2km进出线段地线保护角不宜大于4°,单回路采用三地线方案加强对中相的保护。
2水平接地网分析变电站接地网的埋置很有讲究,不仅要结合要求来布置接地网,还要考虑接地网的布置对工作人员人身安全的影响。
实践证明,特高压变电站接地网应该埋在冻土层以下,通常为地表以下1.0m以下。
变电站接地网安全分析与优化设计 贾楠

变电站接地网安全分析与优化设计贾楠摘要:接地是为了电力系统安全运行而将电力系统及其电气设备的某些部件与地中的接地装置相连接。
接地网是变电站安全运行的重要保证,能够在系统发生故障时将故障电流迅速排泄,限制地电位升高,保证人身及设备安全,其接地性能一直受到设计和生产运行部门的重视。
良好的接地系统可以有效的保护人身安全,使电气设备免受损害,对设计方案进行评价、接地网工程设计具有较好的借鉴价值。
关键词:变电站;接地网;安全分析;优化设计1接地网多维度安全参数分析接地网的优化设计主要是针对接地网中的导体进行合理的优化布置,使得导体的泄漏电流密度趋于均匀,从而使地表电位均匀分布,降低电位梯度达到降低地网的接触电压和跨步电压的目的,既保证人身安全不受威胁又保证了设备的安全。
接地网的安全分析主要指标有接地电阻、接触电压和跨步电压,另外还有与电缆安全性能有关的二次电缆芯线屏蔽层电位差。
但是在以往的接地网安全设计过分地追求接地电阻,忽略了地表电位分布和网内电位差的安全性。
接地网网内电位差会直接影响二次电缆屏蔽层安全,过大的网内电位差将会导致大电流烧毁电缆屏蔽层。
因此本文在以往安全指标基础上探索多维度参数接地网安全性和优化设计。
接地系统的安全设计优化主要受两个方面影响,一是接地系统所在位置的土壤模型,二是设计的接地网模型参数,由于常见的土壤为水平双层分布,因此本文分析以水平双层土壤为基础。
根据不等电位模型计算原理通过Matlab编程,并建立以下三个不同的双层土壤计算模型。
接地导体为钢材,钢的电阻率为1.7×10-7×Ω⋅m,相对磁导率636,导体半径为0.0067m,接地网埋深0.6m,10kA故障电流注入点为B点,接地网布置和计算模型数据如图1所示:模型1:上层土壤电阻率为300Ω⋅m,厚度4m,下层土壤电阻率为600Ω⋅m,地网规模100m×100m,导体间距10m。
模型2:上层土壤电阻率为126Ω⋅m,厚度6m,下层土壤电阻率为720Ω⋅m,地网规模200m×200m,导体间距10m。
110kV变电站接地网的优化设计方案探讨

110kV变电站接地网的优化设计方案探讨摘要:随着我国经济的飞速发展,社会中的各行各业都对电力系统的依赖越来越大,没有了电力,很多企业工厂都无法正常运行。
随着电力系统的持续发展,现如今,电力系统的安全性和稳定性更能得到大家的关注。
然而变电站作为电力系统的枢纽,起着至关重要的作用,变电站接地网的设计和运行对于整个电力系统的作用极其关键。
关键词:110kV;变电站;接地网;优化设计方案前言变电站接地网设计需要满足不同安全规范的要求,建立一个具有低阻抗对地通道的接地系统,良好的接地网是整个变电站中防雷接地、保护接地和工作接地三者的统一。
优化变电站的接地网,使其不仅能满足防雷、保护及工作的要求,而且满足一、二次系统电磁兼容的要求,有效提高变电站弱电设备的抗干扰能力,具有重要的意义。
本文结合阜阳滑集110kV变电站接地网设计,在接地系统现状分析的基础上,通过优化接地网设计来提高110kV变电站的地网技术水平,以保证变电站内的一次设备、二次设备和微机自控装置的安全稳定运行。
1 变电站接地网设计原则由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足R≤2000/I是非常困难的。
现行标准与原接地规程有一个很明显的区别是对接地电阻值不再规定要达到0.5Ω,而是允许放宽到5Ω,但这不是说一般情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,即:防止转移电位引起的危害,应采取各种隔离措施;考虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV避雷器不应动作或动作后不应损坏,应采取均压措施,并验算接触电位差和跨步电位差是否满足要求,施工后还应进行测量和绘制电位分布曲线。
变电站接地网设计时应遵循以下原则:①尽量采用建筑物地基的钢筋和自然金属接地物统一连接地作为接地网。
②尽量以自然接地物为基础,辅以人工接地体补充,外形尽可能采用闭合环形。
③应采用统一接地网,用一点接地的方式接地。
2 110kV变电站接地网中存在的问题分析2.1 变电站接地电线的问题一是接地引下线与水平地线截面配合不是很当,如接地引下线截面22mm圆钢时,其接地引下线与地网干线相连的地线截面却往往是12mm圆钢的现象。
变电站接地网安全分析与优化设计

变电站接地网安全分析与优化设计
随着电力系统容量的不断增大,在接地系统发生短路故障时经接地网散流入地的电流也随之增大。
当接地网面积较大时地表电位梯度大、散流不均匀,接地网的不等电位问题突出,导致接地网的接地电阻、接触电压和跨步电压过大,对电力系统运行的安全性产生较大威胁,另外还会影响与二次设备安全有关的电缆芯线屏蔽层电位差,增大了接地网安全设计的难度。
根据场路结合的理论应用节点电压法进行接地网基本参数计算,快速建立和计算分层大地中点电流源在任意场点处的格林函数,全面考虑导体的自阻、自感及导体之间的互感,求得不等电位模型中更加精确、表达式更加简明的接地网参数解析式。
在求取接地网安全参数计算公式的基础上探讨各安全指标的影响因素,研究安全指标随其影响因素的变化规律,并从多维度安全分析角度出发,紧紧抓住接地网安全性主体,针对各影响参数进行详细分析。
本文对各安全指标的影响因素进行探索,并对不同计算模型下优化布置的接地系统进行安全分析,研究了不等间距导体布置时地表电位分布变化,求解最优压缩比并结合算例分析其影响因素,最后讨论了大型接地网的接触电压和跨步电压以及二次电缆芯线屏蔽层电位差,提出了各种优化设计措施。
为了能够更加直观地看出各种影响参数对接地网安全指标的影响,以接地网二次电缆屏蔽层电位差灵敏度计算为例,探究各影响因素对电缆芯线屏蔽层电位差的影响程度,通过Matlab编程将电缆芯线屏蔽层电位差作为目标函数进行参数灵敏度系数计算,最后应用到其他几个接地网安全指标分析中,为整个接地网的安全设计和优化措施提供可靠依据。
大型变电站接地网优化及改造的开题报告

大型变电站接地网优化及改造的开题报告一、选题背景随着国民经济的蓬勃发展和人民生活水平的不断提高,电力需求已经成为国民生活中不可或缺的一部分。
大型变电站是电力系统中的重要环节,其稳定运行对于电力系统的正常运行和全社会经济生活的稳定都具有重要意义。
同时,大型变电站在供电中也时刻面临着各种各样的安全隐患,例如单点接地故障、雷击故障等,并且这些隐患不可避免地会对电力系统的正常运行造成影响。
因此,大型变电站接地网的优化及改造,对于提高电力系统的安全稳定性具有重要意义。
二、选题意义随着科技的发展和人民生产生活水平的提高,电力系统已经成为中国现代化建设的重要组成部分,并且在电力发展中起着至关重要的作用。
大型变电站是电力系统的重要组成部分,接地网的优化及改造对于保证电力系统的安全稳定运行具有重要作用。
同时,在大型变电站接地网优化及改造中,需要深入研究接地网的结构、接地电阻的计算和测量方法、接地网的抗干扰能力等重要问题,并根据不同的需求制定相应的接地网优化及改造方案。
因此,在大型变电站接地网的优化及改造方面进行深入研究,对于推进电力系统的发展,提高电力系统的响应能力,具有重要意义。
三、研究内容本课题将围绕大型变电站接地网优化及改造展开深入的研究。
具体研究内容如下:1. 接地网结构的研究:分析大型变电站接地网的结构特点及其影响因素,包括接地极、接地体、接地网结构等。
2. 接地电阻的计算和测量方法研究:分析大型变电站接地电阻的计算和测量方法,包括测量原理、测量方案确定等重要问题。
3. 接地网抗干扰能力的分析:研究大型变电站接地网的抗干扰能力,分析其受外界干扰的因素,从而提出相应的优化方案。
4. 接地网优化及改造方案的制定:根据大型变电站接地网的实际情况及其需求,制定相应的接地网优化及改造方案。
四、研究方法本课题研究方法采用文献资料法、实地调查法、理论计算法、实验研究法等多种方法相结合,从多个方面进行深入的研究。
具体方法如下:1. 文献资料法:查阅大量文献资料,对大型变电站接地网的相关知识和研究成果进行系统梳理和总结,了解接地网的优化与改造的研究现状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (Ⅰ)第1章:变电站接地网面临的现状··················( 1 )1.1 接地网的概述·······················( 1 )1.2 接电网的现状分析·····················( 1 )第2章:接地网优化设计的合理性··················( 4 )2.1 关于接地短路电流的计算及接地要求·············( 4 )2.2 对接地网优化设计的分析··················( 6 )第3章:城市变电站接地网设计···················( 8 )3.1 三维立体接地网基本原理··················( 8 )3.2 垂直超深钢镀铜接地棒垂直超深钢镀铜接地棒·········( 9 )3.3 城市变电站接地网设计特点·················( 11 )第4章:接地网优化设计的方法····················( 13 )4.1 接地网接地电阻计算及量大电阻的确定············( 13 )4.2 减小接地电阻的方法···················( 14 )4.3 工程设计中的几点建议···················( 16 )第5章:变电站接地网优化措施····················( 18 )5.1 改进接地网的技术措施·················( 18 )5.2 接地工程设计实践····················( 21 )第6章:与接地网相关问题······················( 23 )6.1 接地网在设计过程中注意事项···············( 23 )6.2 与城市接地网有关的接地·················( 25 )结束语····························( 27 )致谢····························( 28 )参考文献····························( 29 )I摘要随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。
电力系统的接地是对系统和网上电气设备安全可靠运行,及操作维护人员安全都起着重大的作用。
在110kV、220kV系统采用有效接地方式,系统中的变压器的中性点直接或经消弧线圈(低电阻)接地,而对小电流接地系统的接地则是设备人员安全起着极其重要的作用。
但在所有系统条件下,应使其零序与正序电抗之比(X0/X1)为正值,并且其比值应大于3,而其零序电阻与正序电抗之比(R0/X1)为正值,并且比值不大于是。
接地网的设计是一十分复杂,要求又非常严格,并涉及地质学,电磁理论,电磁屏蔽,地中电流,电气测量,应用化学及钻探技术等多学科,已成为综合性极强的边缘学科。
分析接地网体系结构,就其接地电阻的构成,与诸多因素相关。
接地体的布置,连接,接地体的材质,埋没接地装置区域的地质及气候和化学降阻剂的应用。
从理论分析及在工程实践中去探讨降低接装置电阻的措施,是保证系统安全稳定运行的必要措施。
在以往接地设计中,接地网的均压导体都按 3 m,5 m,7 m,10 m等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。
接地装置是保证电气设备安全运行和人身安全的主要设备。
由于自然条件和施工工艺等原因,变电站的接地装置腐蚀严重,接地电阻不合格,通过实施改造措施,消除隐患,解决接地网不合格问题。
随着城市变电站的小型化,其接地网的面积受到了限制,由于电网的不断扩大,系统短路电流越来越大,因而对接地网的设计提出了新的要求.就城市变电站建设中面临的问题进行了分析,针对城市电网特点,对接地网形式、接地体选择及降低中跨步电势的措施提出了建议。
还对城市变电站避雷带接地方案,与民用建筑结合的接地以及二次设备接地等问题进行了探讨。
同时建设重新测量本地土壤电阻率,以便在接地风设计中合理取值。
本文结合在建工程 220 kV 旗山变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。
关键词:变电站;接地网;接地电阻第1章变电站接地网面临现状1.1 概述随着电力工业的发展,变电站一次设备二次保护对接地装置的要求不断提高。
接地装置是确保电力设备安全运行及其工作人员人身安全的重要设备。
电力系统中对接地装置的要求越来越严格,变电所接地系统直接关系到变电所的正常运行,更涉及到人身与设备的安全。
然而由于接地网设计考虑不全面、施工不精细、测试不准确等原因,近年来,发生了多起地网引起的事故,有的不仅烧毁了一次设备,而且还通过二次控制电缆窜入主控室,造成了事故扩大,故接地网对电力系统的安全稳定运行起到非常重要的作用。
大型枢纽变电站,就因开关室接地与主接地网之间的接地电阻不合格,引发接地网局部地电位升高,造成高电压、大电流窜入直流系统、继电保护系统、击穿保护二次电缆、造成主控楼及保护装置、二次电缆、低压配电设备全部烧毁;150MVA主变压器和220kV、110kV部分高压设备烧毁。
致使多家大型发电厂被迫停机,造成电力系统解裂大面积停电。