电压互感器知识总结
电压互感器基本知识与选型要求

10
2013-8-23
电压互感器基本知识与选型要求
GB1207-1997与IEC60044-2对电压误差和相位差限值如下 相位差 电压误差 准确级 ±% ±(′) ±(crad) 0.1 0.2 0.5 1.0 3.0 3P 6P 0.1 0.2 0.5 1.0 3.0 3 6 5 10 20 40 不规定 120 240 0.15 0.3 0.6 1.2 不规定 3.5 7.0
13
2013-8-23
电压互感器基本知识与选型要求
4、额定电压因数 接地电压互感器的额定电压因数与系统中性点接地方式密切 相关,三相系统的中性点有以下几种不同接地方式: 中性点绝缘系统 除经保护、测量用的高阻抗接地外,中性 点不接地的系统。在这种系统发生单相接地故障时,接地短路电 流也就是对地电容电流很小,系统线电压的对称不被破坏,可以 维持较长时间的运行,以便运行人员寻找故障点并设法消除故障。 中性点经阻抗(例如消弧线圈或适当的阻抗)接地系统 随 着线路的增长和电压的提高,中性点绝缘系统发生单相接地故障 时,接地短路电流增加,接地电弧往往发生重燃,出现过电压。 为此,在系统中性点和地之间接入一消弧线圈以补偿电容电流, 减少流经故障点的电流。中性点经消弧线圈接地的系统又称谐振 接地系统。
电流电压互感器基础知识培训精选全文

七、电流互感器(CT)的基础知识
(一)电流互感器的概述
(二)电流互感器的分类 (三)电流互感器的结构、原理 (四)电流互感器的接线方式及选择 (五)电流互感器的型号含义 (六)电流互感器的技术参数 (七)电流互感器的结构特点 (八)电流互感器充(补)气方法 (九)电流互感器操作、维护 (十)电流互感器的使用、接线中的注意事项 (十一)电流互感器的巡回检查 (十二)电流互感器的事故处理 (十三)电流互感器二次侧开路的原因分析
互感器是一种特殊变压器,是电力系统中一次系统和二 次系统之间的联络元件,用以变换电压或电流,分别为测量 仪表、保护装置和控制装置提供电压或电流信号。
二、互感器的类型及分类
电流互感器(TA)
电压互感器(TV)
互感器的分类
1. 从测量内容:电流互感器和电压互感器; 2. 使用环境:户内型和户外型; 3. 使用对象:仪表用和保护用; 4. 其它分类:绝缘、结构、原理等方面的分类。
电流电压互感器基础知识培训
一、互感器的概述 二、互感器的类型及分类 三、互感器与系统的连接 四、互感器的作用 五、电流互感器的工作特性 六、电压互感器的工作特性 七、电流互感器的基础知识 八、电压互感器的基础知识
一、互感器的概述:
电力系统的一次电压很高,电流很大,且运行的额定参 数千差别,用以对一次系统进行测量、控制的仪器仪表及 保护装置无法直接接入一次系统,一次系统的大电流/高电 压需要使用电流/压互感器进行隔离,使二次的继电保护、 自动装置和测量仪表能够安全准确地获取电气一次回路电流 /压信号。
互感器与系统的连接
四、互感器的作用
1.将一次回路的高电压和大电流变为二次回路标准的低电压(100V)和小电流 (5A或1A),从而使测量仪表和保护装置标准化,小型化,并使其结构轻巧, 价格便宜,便于屏内安装;并可采用小截面电缆进行远距离测量,与电气仪 表和继电保护及自动装置配合测量电力系统高电压回路的电流、电压、电能 等参数; 2.有利于使用低压、低截面电缆完成测量保护功能 ; 3.将二次设备与高压部分隔离,保护工作人员的安全; 4.互感器二次侧均接地,这样可防止当一/二次绝缘损坏时,在二次设备上发 生高压危险。 5. 互感器二次测额定值统一,有利于二次设备标准化。
电压互感器知识全解

一、何谓电压互感器1电压互感器(Potentialtransformer简称PT,Voltagetransformer也简称VT)和降压变压器很相像,都是用来变换线路或母线上的电压。
2电压互感器是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。
3改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。
4电压互感器将高电压按比例转换成低电压,一般为100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等设备。
二、电压互感器的作用1电压互感器时隔离高电压,供继电保护、自动装置和测量仪表获取一次电压信息的传感器。
把高电压按比例关系变换成100V或100/3V标准二次电压,供计量、仪表装置和继电保护使用。
2同时使用电压互感器可以将高电压与电气工作人员隔离,保证设备和人身安全的作用。
三、电压互感器分类1按安装地点可分:户内式和户外式。
35kV及以下多为户内式,35kV及以上多为户外式,其绝缘有明显差距。
2按相数可分:单相式和三相式。
10kV及以下采用三相式。
3按绕组数可分:双绕组、三绕组和四绕组。
4按绝缘方式可分:干式、浇注式、油浸式和气体式。
5按工作原理可分为:电磁式、电容式和新型的光电式电压互感器。
其中电磁式可分为:三相式和单相式;三相式又可分:三相两柱式和两相五柱式。
四、电压互感器结构1油浸式电压互感器油浸式电压互感器分为:单级式和串级式单级式,单级式可用于220kV及以下电压等级,串级式可用于66kV及以上电压的所有电压等级。
单级式其一二次绕组绕在共同的铁芯上,绝缘不分级,靠磁耦合实现能量转换。
串级式由多个匝数相同的一次绕组装在数量为绕组数一半的相同的铁芯上,自上而下排列,接于高压与地之间。
2SF6气体绝缘电压互感器SF6气体绝缘电压互感器由外壳、绝缘套管、铁芯、一、二次绕组以及安装附件组成。
电压互感器(PT)知识介绍及故障处理总结【精华】

在电力系统中,电压互感器(PT)是一、二次系统的联络元件,它能正确地反映电气设备的正常运行和故障情况。
PT的一次线圈并联在高压电路中,其作用是将一次高压变换成额定100V低电压,用作测量和保护等的二次回路电源,在正常工作时二次绕组近似于开路状态,所以,正常运行中的PT二次侧不允许短路。
一、PT单相接地及处理在10kV中性点不接地系统中,为了监视系统中各相对地的绝缘状况以及计量和保护的需要,在每个变电站的母线上均装有电磁式PT。
当系统发生单相接地故障时,将产生较高的谐振过电压,影响系统设备的绝缘性能和使用寿命,进而出现更频繁的故障。
1.1在中性点不接地系统中,当其中一相出现金属性接地时,就会产生激磁涌流,导致PT 铁芯饱和。
如A相接地,则Uan的电压为零,非接地相Ubn、Ucn的电压表指示为100V线电压。
PT开口三角两端出现约100V电压(正常时只有约3V),这个电压将起动绝缘检查继电器发出接地信号并报警。
1.2当发生非金属性短路接地时,即高电阻、电弧、树竹等单相接地。
如A相发生接地,则Uan的电压低于正常相电压,Ubn、Ucn电压则大于58V,且小于100V,PT开口三角处两端有约70V电压,达到绝缘检查继电器起动值,发出接地信号并报警。
1.3PT二次侧熔断器熔断或接触不良时,中央信号屏发出“电压回路断线”的预告信号,同时光字牌亮,警铃响。
查电压表可发现:未熔断相电压表指示不变,熔断相的电压表指示降低或为零。
遇到这种情况,可检查PT二次回路接头(端子排)处有无松动、断头、电压切换回路有无接触不良等现象和PT二次熔断器是否完好,找到松动、断线处应立即处理;若更换熔断器后再次熔断,应查明原因,不可随意将其熔丝增大。
1.4PT高压侧熔断器熔断。
其原因有:①电力系统发生单相间歇性电弧放电、树竹接地等使系统产生铁磁谐振过电压。
②PT本身内部出现单相接地或匝间、层间、相间短路故障。
③PT二次侧发生短路,而二次侧熔断器未熔断,造成高压熔断器熔断。
互感器基础知识培训(2024)

安装方式
根据互感器类型和规格选择合 适的安装方式,如固定式、悬
挂式等。
接线方式
按照互感器接线图正确接线, 注意同名端和接地端子的连接
。
调试方法
使用专用测试仪器对互感器进 行测试和校准,确保其准确性
和稳定性。
2024/1/28
17
使用注意事项及维护保养
使用环境
保持互感器使用环境干燥、清 洁,避免潮湿、污染和高温。
2024/1/28
21
在配电环节的应用
2024/1/28
配电自动化
在配电系统中,互感器是实现配电自动化的关键设备之一。 通过互感器监测配电线路的电流、电压等参数,实现故障定 位、隔离和非故障区域的恢复供电。
电能计量
互感器在配电环节还用于电能计量。通过互感器将高电压、 大电流的电能信号转换为标准的低电压、小电流信号,供给 电能表进行计量。同时,互感器还可提供有功功率、无功功 率等电能质量参数的测量。
2024/1/28
8
互感器工作过程
一次侧电流产生磁通
在一次绕组中通入交流电流,产生交变磁通 。
二次侧感应电动势的产生
在二次绕组中,根据电磁感应原理,会产生 感应电动势。
2024/1/28
磁通的传递
交变磁通通过铁芯传递到二次绕组。
二次侧电流的产生
当二次绕组接通负载时,感应电动势在负载 中产生电流。
9
交通运输需求
电动汽车、高速铁路等交通运输领 域的快速发展,对互感器在电力转 换、电池管理等方面的需求也将增 加。
24
行业竞争格局和发展趋势
2024/1/28
行业竞争格局
目前,全球互感器市场主要由几家大 型跨国公司主导,如ABB、西门子、 施耐德等。这些公司拥有先进的技术 和品牌影响力,占据了市场份额的较 大部分。
电压互感器基本知识与选型要求

3
3.6 / 25 / 40 3.6 / 10 / 40
6
7.2 / 32 / 60 7.2 / 20 / 60
10
12 / 42 / 75 12 / 28 / 75
15
17.5 / 50 / 95 17.5 / 38 / 95
20
24 / 70 / 125 24 / 50 / 125
35
9
式中 Kn — 额定电压比; U1 — 实际一次电压,V; U2 — 在测量条件下,施加U1时的实际二次电压,V。 用文字来表述就是:电压误差等于实际二次电压乘以额定电 压比后与一次电压之差,并以后者的百分数表示。
K nU 2 U1 电压误差 100,% U1
2013-8-23
电压互感器基本知识与选型要求
L — 试验用互感器; M — 测量用互感器; P — 保护用互感器; R — 剩余电压用互感 器; 其中1 (crad) = 34.4 (′) L、P对应的一次电压范 围是0.05 — 1.5; M、R对应的一次电压范 围是0.9 — 1.1 2013-8-23
12
电压互感器基本知识与选型要求
3、额定输出 在额定二次电压及接有额定负荷的条件下,互感器供给二次 回路的视在功率值,以伏安表示。国家标准GB1207-1997《电压 互感器》规定的标准值为:10、15、25、30、50、75、100、 150、200、250、300、400、500VA。 对于给定的一台互感器,如果它的一个额定输出是标准值并 符合一个标准准确级,则在规定其他额定输出时,可允许其是非 标准值,但要求其符合另一个标准准确级。例如可以取45VA0.2 级,但不能取50VA0.3级,因为0.3级不是标准准确级。
电压互感器的小知识
电压互感器的小知识电压互感器(Voltage Transformer, VT,缩写为PT)是电力系统中常用的一种测量和保护设备,主要用于将高电压信号降压成为一定比例的低电压信号,以便于测量和保护。
在电力系统中,电压互感器通常被作为电压测量的标准装置来使用。
电压互感器的工作原理电压互感器的工作原理基于电磁感应定律,即:当磁场发生变化时,会在导体内产生电动势。
在电压互感器中,高电压导线通过绕在磁芯上的线圈中,产生一个变化的磁场,这个磁场会影响到低电压绕组中的导线,从而在低电压绕组中引起电势差,使得低电压绕组中的电压得到降低。
电压互感器的分类根据电压互感器的用途和结构,可以将它们分为以下几类:功率变形器功率变形器也叫做耦合电容器式电压互感器,它由一对绕组和一个电容器组成。
在储能时间间隔内,当高电压导线产生变化的电场时,由于绝缘导电子串联的缘故,高电压线圈中的电荷将会沿着绕组流动,通过电容器产生反向电荷,从而达到降压的目的。
此时,低压绕组上的降压电压正好与高压输入的电压成比例,称为 PT 的变比。
电抗器式电抗器式电压互感器由一个铸铁磁芯、线圈和绝缘组件组成。
它的结构紧凑,使用方便,但不能承受高电压,一般用于检测低压侧的电压和信号。
气体绝缘式气体绝缘式电压互感器,即 GIS-VT,是一种容积小、可靠性高的电压互感器。
由于使用了气体绝缘技术,所以可以在极小的空间内提供高精度、低成本、长寿命的电压测量服务。
它广泛用于输电、配电设备中的电压测量,对于电力系统的稳定运行起到了重要的作用。
电压互感器的特点•电压互感器可以在各种压力、温度和环境中工作。
•电压互感器可以达到很高的准确性,误差范围通常在 ±0.2%。
•电压互感器的可重复性和一致性非常好,能长期保持精度。
•电压互感器铸铁外壳具有很好的防护性能,即使途中受到外力冲击或短路电流影响也能保证人员和设备的安全。
电压互感器的应用范围电压互感器广泛应用于电力系统中的各个领域,包括:•电压测量:将高电压降低至安全的水平后,作为计量、控制和保护之用;•电力监测:监测电力系统中的电压波形和幅值等,对电力系统进行状态监测、预警和诊断分析;•保护:将高电压降低至中低电压,保护电力系统中的拓扑结构和设备安全;•控制:根据电压信号的大小和变化,调整电力系统中的设备。
电压互感器的作用和工作原理
电压互感器的作用和工作原理
电压互感器是一种用来将高电压信号变换成低电压信号的装置,它在电力系统中起着重要的作用。
其工作原理如下:
1. 原理概述:电压互感器的工作原理基于电磁感应现象,通过互感器的一侧感应线圈与电力系统的高压线路相连,另一侧的低压线圈连接仪表或测量设备,从而实现对高压信号的降压和转换。
2. 互感效应:电压互感器的一侧线圈(称为一次侧)通过磁链与高压线路相连接,当高压线路通电时,产生的磁场会在互感器的另一侧线圈(称为二次侧)中诱导出较低的电压信号。
3. 比变比:电压互感器的比变比(也称为准确度等级)表示了高压信号与低压信号之间的比例关系。
通过调整一次侧和二次侧线圈的绕组匝数,可以实现不同的变比,常见的比变比有100:5、200:5等等。
4. 绕组和核心:一次侧和二次侧线圈通常由绝缘铜线绕制而成,线圈上设置隔离和保护层。
互感器的铁芯由铁片叠压而成,用来集中磁链并增加磁感应强度。
5. 准确度和误差:电压互感器的准确度决定了它的使用精度,通常用百分比来表示。
由于一些因素(如线圈电阻、磁滞等),电压互感器会存在一定的误差,设计和制造时需要尽量减小误差,以提供更准确的信号。
6. 保护装置:电压互感器通常还配备有过压、过载和短路保护装置,用来防止设备受损或事故发生。
总结起来,电压互感器通过电磁感应原理将高电压信号降压成低电压信号,提供给仪表或测量设备使用。
它在电力系统中广泛应用,用于保护和监测电路的电压情况,确保电力系统的安全和正常运行。
电压互感器知识点总结
电压互感器知识点总结1.定义1)PT将高电压按比例转换成较低的电压,再连接到仪表或者继电器中去。
它的两个绕组在一个闭合的铁芯上,一次侧匝数很多,二次侧匝数很少,一次侧并联接在系统中,二次侧并联仪表、保护等负荷,这些负荷阻抗很大,因此其工作状态相当于变压器空载。
2)PT一次侧作用于一个恒压源,不受二次负荷的影响。
3)中性点直接接地系统中,二次绕组额定电压为100V,测得相电压。
4) 中性点不直接接地系统中,二次绕组额定电压为100√3V,测得线电压。
5) 通常三相PT接线组别均为Yyn0-12.6)采用一台三相三柱式电压互感器,接成Y- Y0,形接线。
该方式能进行相间电压的测量。
7)JDJJ型电压互感器的D表示单相。
2.误差&等级1)其准确度等级一般有0.2,0.5,1级,3级。
2)商业计算用0.2计量准确度,继电保护和自动装置一般用0.5及3P,合闸或重合闸同期、检无压信号一般用1级和3级。
3)误差有比差和角差,比差受漏阻抗影响,角差因铁损而产生。
二次侧接近于空载运行时,误差最小。
4)电压互感器在正常运行范围内,其误差通常是随着电压的增大,先减小,然后增大。
5)随着铁芯平均磁路长度的增大,电压互感器的空载误差增大。
6)电压互感器空载误差分量是由励磁电流在一次绕组的阻抗上产生的压降引起的。
7)电压互感器二次负荷功率因数减小时,互感器的相位差增大。
8)电压互感器二次负荷变大时,二次电压基本不变。
9)电压互感器二次导线压降引起的角差,与负荷电纳成正比。
10)电压互感器的复数误差可分为两项,第二项是二次电流在一次、二次线圈阻抗上产生的压降。
11)当电压互感器一、二次绕组匝数增大时,其误差的变化是增大。
12)当电压互感器所接二次负荷的导纳值减小时,其误差的变化是比值差往正,相位差往负。
13)互感器误差的匝数补偿方法是电压互感器减少一次绕组的匝数使得比值差向正方向变化。
3.极性类似CT,通常为减极性。
总结开口三角电压互感器的零序电压问题
总结开口三角电压互感器的零序电压问题一、开口三角电压互感器简介在电力系统中,电压互感器是一种重要的电气设备,用于测量电网中的电压参数。
开口三角电压互感器是电力系统中常见的一种互感器类型,其特点是三个相位之间通过高压绕组直接相连,形成一个开口的三角形结构。
当电压发生变化时,互感器的次级绕组会感应出相应的电流,从而测量电压参数。
然而,在实际应用中,开口三角电压互感器常常会出现零序电压问题,给电力系统的安全稳定运行带来一定的影响。
二、零序电压问题的成因在电力系统中,零序电压是指三相电压的共模电压,通常由对地故障、绕组不平衡等原因引起。
而对于开口三角电压互感器来说,由于其特殊的结构和工作原理,往往会导致零序电压问题的出现。
具体表现为:1. 互感器绝缘老化、损坏等导致的零序电压漏损;2. 互感器接地方式不当引起的零序电压测量错误;3. 电力系统中的共模干扰引起的零序电压误差。
三、零序电压问题的影响零序电压问题对电力系统的影响不容忽视。
零序电压的存在会导致电力系统中的保护装置误动作或漏动作,影响系统的安全稳定运行。
零序电压的存在也会对互感器的测量精度造成一定的影响,影响系统的电气参数测量准确性。
四、解决零序电压问题的方法为解决开口三角电压互感器的零序电压问题,可以采取以下措施:1. 加强对互感器绝缘状态的监测和检测,确保互感器的绝缘性能符合要求;2. 优化互感器的接地方式,减小零序电压的影响;3. 在系统设计和运行中加强对共模干扰的控制,降低零序电压的产生。
五、个人观点和理解总体来说,开口三角电压互感器的零序电压问题是一个复杂而又常见的技术难题。
解决这一问题需要综合应用电气、电子等多学科知识,通过理论分析和实际调试相结合的方式,找出根本原因并制定有效的解决方案。
只有这样,才能保证电力系统的安全稳定运行,同时提高互感器的测量准确性。
总结回顾:在本文中,我们针对开口三角电压互感器的零序电压问题展开了全面的评述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小问题:V-v接法的互感器如果A接A, N接N,可以吗?
图a
A N A N
说明:
图b
A N N A
图c
其实这种接 法在原理上 没什么问题, 但不符合规 范,容易混 淆接线,从 而导致故障 的发生,所 以一般不允 许这种接法!
电压互感器的接线形式3
此为三只PT的为Y/Y0接法:
这种接法是用三台单相电压互感 器构成一台三相电压互感器,也
f=fn; 0.8~1.2 (0.25~1)Sn; 0.05~1.5或 (0.05~1.9) Cosφ=0.8;
注:此表摘自于《GB 1207-2006 电磁式电压互感器》(括号内数值适用于 中性点非有效接地系统) 说明:0.1级在35kV及以下系统基本不用,0.2级一般用于精确计量,0.5级 用于测量和内部考核计量,1级、3级很少用;3P、6P用于保护,一般只有 零序电压绕组有此参数要求
注:无功电度表一般与同一回路的有功电度表共用同一等级的互感器 注:此表摘自于《DL T 866-2004电流互感器和电压互感器选择及计算导则》
电压互感器变比
电压互感器变比
电力系统接地方式
首先需要先了解电力系统接地方式的分类:
中性点接地方式分为中性点有效接地(大电流接地)和中性点非有效接
地(小电流接地),中性点非有效接地系统包括中性点绝缘系统和中性点补 偿系统,中性点补偿系统又可分为中性点经电抗接地和中性点经高(中)电 阻接地;而中性点有效接地系统可分为中性点直接接地和中性点经小电阻接 地两种方式。 补充:《国家电网公司输配电工程通用设计 -电能计量装臵分册》明确说明: 中性点绝缘系统任何情况下中性点都不会流过不平衡电流,采用三相三线计 量不会产生附加误差;中性点非绝缘系统,当三相系统不平衡时,中性点会 流过不平衡电流,采用三相三线计量会产生附加误差;所以35kV及以下系统 如果中性点是绝缘的,计量PT宜采用V-v接法;如果中性点是非绝缘的,计 量PT应采用Y/y0的接法。
电源频率会影响PT的参数吗? 互感器是通过铁心将电流进行转换,B=(I2*Z2)/(4.44*f*Ac*N2n) 所以当频率变大时,铁心中的磁通密度变小,根据B-H磁化曲线可查出,磁
密降低,矫顽力H也减小,比差和角差也会减小。对于测量级来讲,额定负
荷和1/4负荷的误差向正方向偏移,通常情况下,由于测量级调整都保持在 中间公差,一般不会正公差超差,只有类似0.2S级这种公差带比较小的需适 当注意。对保护级来讲,保护倍数会更大,误差特性会更好,没有任何问题。 对PT来讲,由于频率改变产生的漏抗大,所以误差特性变化大,无法通用。
A B C QS FU1 FU2 FU3 TV
A X A a x a x a x
FU4 FU5 FU6 PV1 PV2 PV3
可以用一台三铁芯柱式三相电压
互感器,将其高低压绕组分别接 成星形。Y,yn接法多用于小电
X A X
流接地的高压三相系统,可以测
对于小电流接地系 统原边星形中性点 一般不允许接地
注:此种接法如果互感器高压侧不接地,那么一次侧就没有零序电流 通路,二次侧开口三角形线圈两端也就不会感应出零序电压
电压互感器接线注意事项
三、电压互感器使用的注意事项 1.电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二 次绕组应和所接的测量仪表、继电保护装臵或自动装臵的电压线圈并联,同 时要注意极性的正确性。 2.接在电压互感器二次侧负荷的容量应合适,接在电压互感器二次侧 的负荷不应超过其额定容量,否则,会使互感器的误差增大,难以达到测量 的正确性。 3.电压互感器二次侧不允许短路。由于电压互感器内阻抗很小,若二 次回路短路时,会出现很大的电流,将损坏二次设备甚至危及人身安全。 4.为了确保人在接触测量仪表和继电器时的安全,电压互感器二次绕 组必须有一点接地。因为接地后,当一次和二次绕组间的绝缘损坏时,可以 防止仪表和继电器出现高电压危及人身安全。 5. 电压互感器二次接地点只能有一个,因为一个变电所的接地网并不 是一个等电位面,当大接地电流注入接地网时,在不同点间会出现电位差。 如果一个回路在不同的地点接地,地电位差将不可避免地进入这个回路,造 成测量的不准确,严重时,会导致保护误动。当二次有击穿保险器时,一般 也需要在配电房内通过小母线一点接地。
电压互感器二次容量的选择
表3:多股电缆电阻率表 温度℃
10
ρ(Ω*mm2/m)
0.0165
20
30 40 50 60
0.0172
0.0185 0.0192 0.0200 0.0212
其中电阻率ρ=R*S/L,则R=ρ*L/S 现以100米2.5方多股线为例(40℃) R=0.0192*100/1.5=1.28Ω,接触电阻每台设备一般不超过0.05Ω,现假设有 10台设备需要电压信号,则接触电阻为0.5Ω;合计<1.8Ω 所以10台设备以内线损基本可忽略!
V-v接法就是将两台全绝缘单 相电压互感器的高低压绕组分别接 于相与相间构成不完全三角形。这 种接法广泛用于中性点不接地或经 消弧线圈接地的35kV及以下的高压
A B C QS FU1 TV
A a
FU4
x a
FU2 FU3
X A
FU5 FU6
PV1 PV2
X
x
图b
三相系统中,特别是10kV的三相系统中。V-v接法不仅能节省一 台电压互感器,还能满足三相表计所需的线电压。这种接线方法 的缺点是不能测量相电压,不能接入监视系统绝缘状况的电压表
电压互感器的接线形式1 此为单只PT接法:
A B C QS FU1
A
1.可用于测量35kv及以下中性点
不直接接地系统的线电压(图a1) 2.可用于测量110kv以上中性点直 接接地系统的相对地电压(图a2)
TV
a X x
FU3 PV
FU2
图a1
图a2
电压互感器的接线形式2 此为两只PT的V-v接法:
电压互感器二次容量的选择
表4:各类负荷功耗简表
负荷类型
多功能电度表 多功能数显表 指针式电度表 指针式电压表 微机保护
功耗(VA)
<4~6(10) <1 <1.5 <1 <0.5
根据表4及以下系统图,可以初步估算出 PT容量(其中Wh为多功能电度表,V为数 显电压表,A为数显电流表): 1.计量PT:一般按当地供电部门要求设计, 如无要求,可按30VA以内考虑; 2.母线PT:0.5*5+4*4+1*1=19.5,考虑到 放大一定余量,可按30~50VA设计!(满 足25%~100%的范围)
达到限值。
电压互感器二次容量的选择
电压互感器二次容量选择没有特别明确的方式,一般都是由估算而来,或者 按照当地供电部门要求值提供! 《DL T 866-2004电流互感器和电压互感器选择及计算导则》中第8.6.3的表 15中有详细的计算方法,但因各表计及保护等负载的实际容量大多是个范围, 这就导致按此表计算所得结果本身就不是非常精确,所以此表一般仅作为验 算使用。实际工程设计中基本还是以估算为主! 那么估算需要得到哪些参数呢? 电压互感器和电流互感器不一样,一般可不考虑线损,因为二次电流很小, 按50VA折算的二次电流为0.5A,线路阻抗一般不会超过4Ω,即线损不超过 1VA,可忽略;PT的主要二次负荷在表计这一块,根据查相关厂家资料可以 看出:
计(测)量表与互感器准确级的配合
表2:仪表与配套的电压互感器准确级 指示仪表 仪表准确级 0.5 1.0 1.5 2.5 互感器准确级 0.5 0.5 1.0 1.0 有功电能表 0.5 1.0 2.0 计量仪表 仪表准确级 无功电能表* 2.0 2.0 3.0 互感器准确级 0.2 0.5 0.5
从而导致互感器爆炸等一系列事故!所以二次容量在选择时可适当放大一定
余量,需保证不超过实际负荷的4倍!否则也会影响测量精度!
注:根据《国家电网公司输配电工程通用设计 -电能计量装臵分册》要求, 计量专用PT额定二次容量应为实际负荷容量的1.5~2倍,计量专用PT的额定 二次容量一般为10~50VA。
频率对互感器参数的影响
电力系统接地方式
零序电压详解
Y Y
Ua
Ua’ Ua
△U
0 Uo
X 0 Uo Ub X Ub Uc 图b Ub’
Uc 图a Y Ua
△U 0
Uo
X
Uc 图c
Ub
电压互感器二次容量定义
电压互感器的额定容量Sn:是指对应于最高准确级下的容量(VA)。对于三 相式电压互感器,其额定输出容量是指每相的额定输出。当电压互感器二次 侧承受负载功率因数为0.8(滞后),负载容量不大于额定容量时,互感器 能保证幅值与相位的精度。 选择二次绕组额定输出时,应保证二次实接负荷在额定输出的25%—100% 范围内,以保证互感器的准确级;在功率为0.8(滞后)时,额定输出输出 标准值为10、15、25、30、50、75、100、150、200、250、300、400、 500VA,其中下标线者为优先值 热极限输出:在电压互感器可能作为电源使用时,可规定其额定热极限输出。 在这种情况下,误差限值可能超过,但温升不可超过规定限值。对于多个二 次绕组的互感器,应分别规定各二次绕组的热极限输出,但使用时只能一个
注:括号内为高精度的功耗
电压互感器二次容量的选择
需要注意的是:当系统中电压回路的负荷超过互感器标示的精度范围内的额 定容量时,互感器的测量精度会明显下降;负荷超出额定输出越大,二次输 出衰减越厉害,进而造成测计量值大幅降低,与供电局计量总表形成明显差 距,负荷如果超过或接近热极限输出,则长时间运行必然会造成互感器过热,
通常只有几Hale Waihona Puke 到几百伏安。电压互感器的外形
电压互感器从结构形式上来说,一般可分为4种:全绝缘、半绝缘、 全封闭、半封闭