傅立叶变换红外光谱仪的基本原理
傅里叶变换红外光谱法

傅里叶变换红外光谱法傅里叶变换红外光谱法(Fourier Transform Infrared Spectroscopy,简称FTIR)是一种用于分析和鉴定化合物的重要手段。
它基于傅里叶变换原理,通过将样品吸收或散射的红外光信号转化为频谱图,提供非常详细的化学信息,从而实现对样品的定性和定量分析。
一、傅里叶变换原理傅里叶变换原理是FTIR技术的基础,它描述了信号在频域和时域之间的转换关系。
根据这一原理,任何连续的函数信号都可以通过傅里叶变换转换为频谱形式,而频谱图中的每一个峰对应一个特定的振动模式或结构信息。
二、红外光谱的基本原理红外光谱是利用物质在红外光区(波长范围:2.5-25 μm)的吸收行为,来分析样品的一种方法。
当物质中的化学键发生振动或键角发生变化时,它们会吸收红外光的能量,而产生特定波数的吸收峰。
根据这些吸收峰的位置、强度和形状,可以对物质的结构和组成进行准确的鉴定。
三、傅里叶变换红外光谱仪的结构傅里叶变换红外光谱仪主要由光源、样品室、光谱仪和检测器组成。
光源产生红外辐射,经过样品室时发生与样品的相互作用,然后通过光谱仪进行解析,最后由检测器接收并转化为电信号。
这些信号经过傅里叶变换后,最终得到样品的红外光谱图。
四、傅里叶变换红外光谱法的应用领域傅里叶变换红外光谱法是一种非常广泛应用的分析技术,被广泛应用于化学、材料、生物、制药、食品等领域。
具体应用包括但不限于:1. 化学物质鉴定:通过比较样品与数据库中的标准谱图,可以准确鉴定出物质的化学组成和结构。
2. 反应动力学研究:红外光谱可以实时监测反应物与产物之间的变化,从而研究反应速率、反应机理等。
3. 质量控制与检测:对于药品、食品等生产过程中的原料、中间体和成品进行质量控制和检测,确保产品的安全和合格。
4. 生物医学研究:对于蛋白质、核酸等生物大分子的结构解析、疾病的诊断等方面具有重要意义。
五、傅里叶变换红外光谱法的优势和局限傅里叶变换红外光谱法的优势在于其非破坏性、高分辨率、快速分析的特点,可以对物质进行快速、准确的鉴定和分析。
傅里叶变换红外光谱仪的基本原理

傅里叶变换红外光谱仪的基本原理傅里叶变换红外光谱仪是一种广泛应用于化学、材料科学、生物学等领域的重要分析仪器。
它利用傅里叶变换技术,将红外光通过样品后得到的复杂光谱转化为可以进行分析的谱图,从而实现对样品成分的定性和定量分析。
下面将详细介绍傅里叶变换红外光谱仪的基本原理。
1.光源傅里叶变换红外光谱仪中的光源通常采用稳定、强度可调的红外激光器,发出一定波长的红外光。
不同样品需要使用不同波长的红外光进行检测,因此光源的波长范围和稳定性对分析结果至关重要。
2.样品室样品室是傅里叶变换红外光谱仪的核心部分,用于放置待测样品。
样品可以是固体、液体或气体,但需要保证在测量过程中样品的状态保持不变。
样品室内部通常装有温度和湿度控制装置,以保证样品的稳定性和测试结果的准确性。
3.干涉仪干涉仪是傅里叶变换红外光谱仪的关键部件,它将光源发出的红外光进行干涉,形成干涉图。
干涉图反映了红外光的相位和振幅变化,后续通过傅里叶变换将这些信息转化为可以进行分析的谱图。
常用的干涉仪有Michelson干涉仪和Fabry-Perot干涉仪。
4.采集和调制在傅里叶变换红外光谱仪中,采集和调制系统负责对干涉图进行采集和调制。
干涉图是一个随时间变化的信号,需要通过采集系统将其转换为数字信号,然后进行进一步处理。
调制系统则负责对干涉图进行调制,以增加信号的信噪比和减小误差。
5.傅里叶变换傅里叶变换是傅里叶变换红外光谱仪的核心算法。
它将采集到的干涉图进行数学变换,将时域信号转换为频域信号。
简单来说,傅里叶变换可以将一个随时间变化的信号分解成多个固定频率的成分,从而方便对信号进行分析和解谱。
6.数据处理和谱图显示经过傅里叶变换后,得到的是频域信号,可以将其进行处理并生成谱图。
数据处理部分负责对干扰信号进行过滤和处理,提高谱图的准确性和可靠性。
谱图显示部分则将处理后的数据以图形方式呈现出来,方便用户进行观察和分析。
总之,傅里叶变换红外光谱仪利用光源发出红外光,通过样品室中的样品后得到干涉图,经过采集和调制、傅里叶变换、数据处理和谱图显示等步骤,最终得到可以进行分析的谱图。
傅里叶红外光谱仪工作原理及应用

傅里叶红外光谱仪工作原理及应用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
FTIR工作原理:光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
FTIR主要特点:1.信噪比高:傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。
2. 重现性好:傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。
3. 扫描速度快:傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。
简单来说,红外光谱具有特征性强、分析快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较高、应用范围广(固态、液态或气态样品都能应用;无机、有机、高分子化合物均可检测)等特点,其与色谱(GC-IR)联用或TGA(TGA-IR)联用,定性功能强大。
傅里叶 变换红外(ftir)光谱

傅里叶变换红外(FTIR)光谱是一种常用的分析技术,它通过分析物质在红外光谱范围内的吸收和散射特性,来研究样品的成分、结构和性质。
本文将从以下几个方面对傅里叶变换红外光谱进行介绍和解析。
一、傅里叶变换红外光谱原理简介傅里叶变换红外光谱是利用物质分子对红外光的吸收和散射特性来研究其结构和成分的一种技术。
当物质分子受到红外光的激发时,会发生特定振动和转动,这些振动和转动对应了物质分子内部的特定结构和键的存在。
傅里叶变换红外光谱仪利用光源产生的连续光通过样品后,得到经过样品吸收、散射后的光信号,并使用傅里叶变换算法将这些信号转换成详细的光谱图像。
通过解析这些光谱图像,可以获得样品中存在的各种成分的信息,包括它们的分子结构、官能团和键的类型、含量等。
二、傅里叶变换红外光谱的应用领域傅里叶变换红外光谱广泛应用于化学、材料、制药、生物、环境和食品等领域。
在化学领域,它常被用来鉴定有机化合物的结构、功能团的存在和含量,以及分子之间的相互作用;在材料领域,它常被用来研究材料的成分、性能和结构变化;在制药领域,它常被用来分析药品的成分和质量;在生物领域,它常被用来研究蛋白质、多糖等生物大分子的结构和功能。
三、傅里叶变换红外光谱的特点和优势傅里叶变换红外光谱具有快速、准确、非破坏性等特点。
相比传统的红外光谱技术,傅里叶变换红外光谱仪具有更高的光谱分辨率和灵敏度,可以检测到更低浓度的样品成分,还能够通过多种光谱技术的组合来获得更多细致的信息。
傅里叶变换红外光谱技术还可以与其他分析技术相结合,如拉曼光谱、质谱等,扩大了其应用范围和分析能力。
四、结语傅里叶变换红外光谱技术作为一种强大的分析工具,为科学研究和工程实践提供了重要的支持。
随着技术的不断发展,傅里叶变换红外光谱将在更多领域发挥其作用,为人们的生活和工作带来更多便利和科学发现。
傅里叶变换红外光谱(FTIR)技术是一种非常重要的分析技术,在许多领域都有着广泛的应用。
傅里叶红外光谱仪的分光原理

傅里叶红外光谱仪的分光原理傅里叶红外光谱仪是一种广泛用于化学、物理和生物领域的重要光谱分析仪器。
它通过分析样品在外加红外光作用下吸收、反射或散射的光波特性,从而得到有关样品分子结构和成分信息的结果。
傅里叶红外光谱仪的分光原理是其中关键的部分。
1. 红外光波段介绍红外光是电磁波谱中波长范围为0.78-1000微米(μm)的区间,其频率范围是3x10^11 Hz至4x10^14 Hz。
红外光谱法是基于与样品分子内部振动、转动和形变相关联的特定波长的吸收谱,而这些谱线通常在红外光区域中。
红外光波段被分为三部分:近红外(0.78–2.5 μm),中红外(2.5–25 μm)和远红外(25–1000 μm)。
近红外光主要涵盖了化学键振动和反乌龙烯基团的振动。
中红外光包括了主要的化学键振动,如羧基和酰基的伸缩振动、酰胺I与II基的振动、苯环的振动等。
远红外光中,主要包括氢键振动、蛋白亚基振动、网络振动、水分子的振动等。
2. 傅里叶变换红外光谱仪的基本结构傅里叶变换红外光谱仪的基本结构如下图所示。
它主要包括三个部分:光源、分光装置和检测器。
光源产生的红外辐射通过样品,然后进入分光装置。
分光装置将红外光谱分为不同波段并将其输送到检测器。
检测器将接收到的辐射转换为电信号,并经过数学处理后输出光谱曲线。
3. 傅里叶变换的原理傅里叶变换在信号处理和光谱学中扮演着重要的角色。
它的基本原理是将一段时间函数分解成不同频率的正弦和余弦函数之和。
在实际的光谱分析中,傅里叶变换主要用于将时间域的光谱数据转换为频率域的光谱数据。
在傅里叶红外光谱仪中,样品被照射红外辐射后,样品分子中振动、旋转、变形所产生的各种频率的振动光谱信号通过检测器转化为电信号。
傅里叶变换会将这些信号分解成不同频率的信号。
这些信号经过计算分析后,就可以得出物质的光谱特征。
在傅里叶变换红外光谱仪中,分光装置的主要任务是将红外辐射分离成不同波段的光谱,并将其转换为电信号。
傅里叶变换红外光谱的工作原理

傅里叶变换红外光谱的工作原理傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是一种常见的分析技术,主要用于无机和有机化合物的结构分析。
该技术是通过对样品的红外辐射的吸收特性进行观察和分析,来确定样品中的化学组成和分子结构。
本文将详细介绍傅里叶变换红外光谱的工作原理,并讨论其在实际应用中的优势和局限性。
傅里叶变换红外光谱技术基于一个基本原理,即不同物质在不同的频率下对红外光的吸收具有特异性。
通过观测和分析样品吸收红外辐射的能力,可以推断出样品的结构和成分。
傅里叶变换红外光谱技术通常采用的是喇曼预扫描技术,其步骤包括样品的制备和加热,以及光谱图的记录和处理。
光谱数据可以在红外光谱计中以数字信号的形式记录下来,从而可以进行定量分析和结构识别。
在傅里叶变换红外光谱中,样品被放在红外光源和检测器之间的路径上,通过光学元件来聚焦和分散样品的红外辐射。
光谱计记录样品在不同频率下的红外光谱,然后使用傅里叶变换将这些数据转换成一个时间域信号,该信号表示了样品吸收红外辐射的强度与频率的关系。
傅里叶变换红外光谱中用到的红外光谱区域包括近红外光谱、中红外光谱和远红外光谱。
中红外光谱区间是最常用的光谱区间,因为它与有机化合物和其他常见化学物质的振动频率相对应。
1. 偏光方向光学元件在分散和聚焦样品的红外辐射时,会有一个偏光方向。
这个方向控制了检测器在样品中获得的光谱信号。
2. 能量源傅里叶变换红外光谱仪使用各种稳定且可靠的红外光源,包括铟钨灯、格氏棒和钨丝灯。
这些光源都能以一定的稳定频率发出可靠的光谱信号。
3. 检测器傅里叶变换红外光谱常用的检测器有热电偶和半导体检测器两种,用于记录光谱信号和电流输出。
4. 延迟面镜延迟面镜将样品的光谱信号从衰减或光学相移中恢复,同时可以提高光谱计的性能,对于高精度的谱线位置和强度测量是必不可少的。
5. 反射方式和透射方式在傅里叶变换红外光谱技术中,还可以通过透射方式和反射方式对样品进行测量。
傅里叶变换红外光谱仪原理

傅里叶变换红外光谱仪原理傅里叶变换红外光谱仪工作的第一步是收集红外光谱数据。
这个过程中,仪器会发射一束包含多个不同波长的红外光束,光束穿过待测物质后,通过光学系统收集到后方。
收集到的光谱信号将被转换为电信号,经过放大和滤波等处理后,传送到傅里叶变换模块。
傅里叶变换模块的主要功能是将收集到的光谱信号从时间域转换到频率域。
为了实现这一转换,光谱信号会通过一个干涉仪,引入一个与光谱信号正交的信号。
这个正交信号和光谱信号经过光电模块转换为电信号,然后通过快速傅里叶变换算法进行频谱分析。
最终得到的频域信号将被转换为频率-强度图谱,并输出到显示器上。
在傅里叶变换红外光谱仪中,频率-强度图谱是分析物质的主要依据。
每一种物质都有特定的红外吸收特征,其呈现为一系列的吸收峰。
这些吸收峰代表了物质分子内键振动或者序贯振动等特定的运动模式。
通过对峰值位置和强度的分析,可以确定物质的组成和结构信息,实现非破坏性的物质分析。
傅里叶变换红外光谱仪具有多种应用领域,包括化学、生物、药物、环境和食品等。
在化学领域,它可用于分析化学物质的结构和组分,例如鉴定有机化合物的功能团和鉴定无机化合物的结构。
在生物领域,它可以用于检测蛋白质、核酸和多糖等生物大分子的结构和功能。
在药物领域,它可以用于药物的质量控制和药效评价。
在环境和食品领域,它可以用于监测和检测环境中有害物质和食品中残留物的含量。
总之,傅里叶变换红外光谱仪通过对物质红外光谱的傅里叶变换,实现了对物质的非破坏性分析。
其原理基于傅里叶变换,通过将红外光谱转换为频率-强度图谱,获得物质的红外吸收信息,从而实现对物质的分析和鉴定。
傅里叶红外光谱仪的工作原理检出限

傅里叶红外光谱仪的工作原理检出限
傅里叶红外光谱仪(FTIR)是一种重要的光谱分析仪器,广泛用于化学、材料科学、药物分析等领域。
其工作原理和检出限如下:
一、工作原理
1.傅里叶变换:
FTIR通过测量样品对红外光的吸收来获取信息。
它使用的是一种称为傅里叶变换的数学方法,通过这种方法,仪器可以同时收集到所有频率的红外光信号,提高了光谱获取的速度和灵敏度。
2.干涉仪:
在FTIR中,使用了一个名为迈克尔逊干涉仪的组件。
红外光从光源发出后,被分割成两束,这两束光在干涉仪中走不同的路径,然后再次合并。
这种路径差异导致了干涉,产生干涉图样。
3.信号检测和处理:
合并后的光被送到检测器,检测器记录下干涉图样。
这个干涉图样随后通过傅里叶变换转换成光谱数据。
这些数据展现了样品对不同波长红外光的吸收情况,从而得到样品的分子指纹。
二、检出限
FTIR的检出限取决于多种因素,包括仪器的灵敏度、样品的性质以及测试条件等。
一般而言,FTIR能够检测到微量级别的物质,检出限通常在微克到纳克的范围内。
但对于具体的样品和测试条件,检出限可能有所不同。
FTIR由于其高灵敏度、快速的测试速度和非破坏性的特点,在现代分析测试中非常受欢迎。
通过它,科学家可以快速而准确地获得关于各种材料的详细化学和结构信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅立叶变换红外光谱仪的基本原理及其应用红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。
它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。
本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。
关键词:傅立叶变换红外光谱仪;基本原理;应用;发展目录摘要........................................................................ 错误!未定义书签。
ABSTRACT............................................................. 错误!未定义书签。
1 傅里叶红外光谱仪的发展历史 (1)2 基本原理 (3)2.1光学系统及工作原理 (4)2.2傅立叶变换红外光谱测定 (5)2.3傅立叶变换红外光谱仪的主要特点 (6)3 样品处理 (6)3.1气体样品 (6)3.2液体和溶液样品 (6)3.3固体样品 (7)4 傅立叶变换红外光谱仪的应用 (7)4.1在临床医学和药学方面的应用⑷ (7)4.2在化学、化工方面的应用 (8)4.3在环境分析中的应用 (9)4.4在半导体和超导材料等方面的应用⑼ (10)5 全文总结 (10)参考文献 (10)1 傅立叶红外光谱仪的发展历史到目前为止红外光谱仪已发展了三代。
第一代是最早使用的棱镜式色散型红外光谱仪, 用棱镜作为分光元件,分辨率较低,对温度、湿度敏感, 对环境要求苛刻。
60年代出现了第二代光栅型色散式红外光谱仪, 由于采用先进的光栅刻制和复制技术, 提高了仪器的分辨率, 拓宽了测量波段, 降低了环境要求。
70年代发展起来的干涉型红外光谱仪, 是红外光谱仪的第三代的典型代表(见图1), 具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度。
傅立叶变换红外光谱仪是干涉型红外光谱仪器的代表, 具有优良的特性, 完善的功能。
图1 傅立叶变换红外光谱仪实物图近年来各国厂家对其光源、干涉仪、检测器及数据处理等各系统进行了大量的研究和改进, 使之日趋完善。
由于计算机技术和自动化技术在仪器中的广泛使用, 使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机完成, 如显微红外光谱中的图像技术。
各公司的显微红外光谱仪均能对样品的某一区域进行面扫描, 得到该区域的化学成分的分布图, 如Continuum (Nicolet) 、EquinoxTM55 (Bruker) 、Spectrum2000 ( Perkin El2mer) 和Stingray lmaging (Bio-Rad) 等显微镜都有此功能。
随着仪器精密度的提高, 红外光谱仪在分辨率和扫描速度等方面达到了很高的指标。
如BrukerIFSl20H最佳分辨率为010008cm- 1 , Bomen公司的DA系列可达010026cm- 1。
而扫描速度Bruker可达117张谱图/ s, 利用步进扫描技术可达250皮纳秒的时间分辨率。
Nicolet8700扫描速度为105 次/ s,步进扫描时间分辨率为10ns。
现有的傅立叶变换红外光谱仪已不仅限于中红外(MIR) 的使用, 分束器的使用可将光谱范围可覆盖紫外到远红外的区段。
如Bruker为50000~4cm- 1, Bomen为50000~5cm- 1, Nicolet为25000~20cm- 1。
这些很高的技术指标、标志材料、光路设计、加工技术和软件都达到了很高的水平[1]。
但是,通常的透射红外光谱,即使是傅里叶变换透射红外光谱,都存在如下不足: ①固体压片或液膜法制样麻烦,光程很难控制一致,给测量结果带来误差。
另外,无论是添加红外惰性物质或是压制自支撑片,都会给粉末状态的样品造成形态变化或表面污染,使其在一定程度上失去其“本来面目”②大多数物质都有独特的红外吸收,多组分共存时,普遍存在谱峰重叠现象。
③透射样品池无法解决催化气相反应中反应物的“短路”问题,使得催化剂表面的吸附物种浓度较低,影响检测的灵敏度。
④不能用于原位(在线) 研究,只能在少数研究中应用。
因此,漫反射傅里叶变换红外光谱技术和衰减全反射傅里叶变换红外光谱技术应运而生[2]。
漫反射技术是一种对固体粉末样品进行直接测量的光谱方法。
虽然早在20 世纪60 年代就已发展成为光谱学中的一个分支,但与红外光谱结合,是在傅里叶变换红外光谱出现后,漫反射傅立叶变换红外光谱技术才进入实用阶段。
与透射傅立叶变换红外光谱技术相比,漫反射傅里叶变换红外光谱法具有如下优点:不需要制样、不改变样品的形状、不会污染样品, 不要求样品有足够的透明度或表面光洁度,也不需要破坏样品,不会对样品的外观及性能造成任何损坏,可直接将样品放在样品支架上进行测定,可以同时测定多种组分,这些特点很适合对样品的无损检测,如对珠宝、钻石、纸币、邮票的真伪进行鉴定,对样品无任何不良作用。
20世纪90 年代初,衰减全反射(ATR ) 技术开始应用到红外显微镜上, 诞生了全反射傅里叶变换红外(ATR-FTIR ) 光谱仪。
近年来,随着计算机技术和多媒体图视功能的运用,实现了非均匀样品和不平整样品表面的微区无损测量,可以获得官能团和化合物在微区空间分布的红外光谱图像。
衰减全反射不需要通过透过样品的信号,而是通过样品表面的反射信号获得样品表层有机成分的结构信息,因此,衰减全反射具有如下特点:1) 不破坏样品,不需要象透射红外光谱那样要将样品进行分离和制样。
对样品的大小,形状没有特殊要求,属于样品表面无损测量。
2) 可测量含水和潮湿的样品。
3) 检测灵敏度高,测量区域小,检测点可为数微米。
4) 能得到测量位置处物质分子的结构信息、某化合物或官能团空间分布的红外光谱图像及微区的可见显微图象。
5) 能进行红外光谱数据库检索以及化学官能团辅助分析,确定物资和种类和性质。
6) 操作简便,自动化,用计算机进行选点、定位、聚集、测量。
由于衰减全反射的上述特点,极大地扩大了红外光谱技术的应用范围,使许多采用透射红外光谱技术无法制样,或者样品制做过程十分复杂、难度大、而效果又不理想的实验成为可能,采用衰减全反射附件和实验方法,可以获得常规的透射红外光谱技术所不能得到的检测效果。
傅立叶变换红外光谱仪与其他仪器的联用技术是近代研究发展的重要方向。
在现代分析测试技术中, 用于复杂试样的微量或痕量组分的分离分析的多功能红外联机检测技术代表了新的发展方向。
傅立叶变换红外光谱仪与色谱联用可以进行多组分样品的分离和定性, 与显微镜联用可进行微量样品的分析鉴定, 与热失重联用可进行材料的热稳定性研究, 与拉曼光谱联用可得到红外光谱弱吸收的信息。
实践证明, 红外光谱联用技术是一种十分有效的实用技术, 现已实现联机的有气相色谱-红外、高效液相色谱-红外、超临界流体色谱-红外、薄层色谱-红外、热失重-红外、显微镜-红外及气相色谱-红外-质谱等, 这将进一步提高分析仪器的分离分析能力。
随着傅立叶变换红外光谱技术的发展, 远红外、近红外、偏振红外、高压红外、红外光声光谱、红外遥感技术、变温红外、拉曼光谱、色散光谱等技术也相继出现, 这些技术的出现使红外成为物质结构和鉴定分析的有效方法。
近年来, 随着计算机技术的发展, 红外光谱定性分析实现了计算机检索和辅助光谱解析。
概括地说, 就是首先将相当数量化合物的红外光谱图,按照一定规则进行编码后, 存放在计算机的存储设备中形成谱库, 然后, 对待分析样品的红外光谱图也进行同样的编码, 再以某种计算方法与谱库中存储的数据逐个进行比较, 挑选出类似的数据,最后按类似的程度输出挑选结果, 从而达到光谱检索目的。
而这也大大减少了光谱解析的工作量。
2 基本原理红外线和可见光一样都是电磁波,而红外线是波长介于可见光和微波之间的一段电磁波。
红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5~25μm;4000~400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。
红外光谱属于吸收光谱,是由于化合物分子振动时吸收特定波长的红外光而产生的,化学键振动所吸收的红外光的波长取决于化学键动力常数和连接在两端的原子折合质量,也就是取决于的结构特征。
这就是红外光谱测定化合物结构的理论依据。
红外光谱作为“分子的指纹”广泛的用于分子结构和物质化学组成的研究。
根据分子对红外光吸收后得到谱带频率的位置、强度、形状以及吸收谱带和温度、聚集状态等的关系便可以确定分子的空间构型,求出化学建的力常数、键长和键角。
从光谱分析的角度看主要是利用特征吸收谱带的频率推断分子中存在某一基团或键,由特征吸收谱带频率的变化推测临近的基团或键,进而确定分子的化学结构,当然也可由特征吸收谱带强度的改变对混合物及化合物进行定量分析。
而鉴于红外光谱的应用广泛性,绘出红外光谱的红外光谱仪也成了科学家们的重点研究对象.傅立叶变换红外(FT-IR)光谱仪是根据光的相干性原理设计的,因此是一种干涉型光谱仪,它主要由光源(硅碳棒,高压汞灯),干涉仪,检测器,计算机和记录系统组成,大多数傅立叶变换红外光谱仪使用了迈克尔逊(Michelson)干涉仪,因此实验测量的原始光谱图是光源的干涉图,然后通过计算机对干涉图进行快速傅立叶变换计算,从而得到以波长或波数为函数的光谱图,因此,谱图称为傅立叶变换红外光谱,仪器称为傅立叶变换红外光谱仪。
2.1 光学系统及工作原理图2是傅立叶变换红外光谱仪的典型光路系统,来自红外光源的辐射,经过凹面反射镜使成平行光后进入迈克尔逊干涉仪,离开干涉仪的脉动光束投射到一摆动的反射镜B,使光束交替通过样品池或参比池,再经摆动反射镜C(与B同步),使光束聚焦到检测器上。
图2傅立叶变换红外光谱仪的典型光路系统傅立叶变换红外光谱仪无色散元件,没有夹缝,故来自光源的光有足够的能量经过干涉后照射到样品上然后到达检测器,傅立叶变换红外光谱仪测量部分的主要核心部件是干涉仪,图3是单束光照射迈克尔逊干涉仪时的工作原理图,干涉仪是由固定不动的反射镜M1(定镜),可移动的反射镜M2(动镜)及分光束器B组成,M1和M2是互相垂直的平面反射镜。
B以45°角置于M1和M2之间,B能将来自光源的光束分成相等的两部分,一半光束经B后被反射,另一半光束则透射通过B。